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Road Map of the Lecture XI

+ Controller Design and PID Tuning
— Performance criteria
— Trial and error method
— Continuous cycling method
— Relay feedback method
— Tuning relationships
— Direct Synthesis
— Internal Model Control (IMC)
— Effects of modeling error
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CONTROLLER DESIGN

* Performance criteria for closed-loop systems
— Stable
— Minimal effect of disturbance
— Rapid, smooth response to set point change
— No offset
— No excessive control action
— Robust to plant-model mismatch

min f (wye%(1) + wyAu?(7))dr
K¢ t1,Tp 0
» Trade-offs in control problems
— Set point tracking vs. disturbance rejection
— Robustness vs. performance
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GUIDELINES FOR COMMON CONTROL
LOOPS
* Flow and liquid pressure control
— Fast response with no time delay
— Usually with small high-frequency noise
— PI controller with intermediate controller gain
* 0.5<K_.<0.7 and 0.2< 7;<0.3min (Fruehauf et al. (1994))

* Liquid level control

— Noisy due to splashing and turbulence

— High gain PI controller for integrating process
* Increase in K, may decrease oscillation (special behavior)

— Conservative setting for averaging control when it is used for

damping the fluctuation of the inlet stream (usually P-control)
* PI control:
K. =100%/Ah, 7, =4V/(K:Qmax)  (Ah = min(hpax — Rsp, hsp — himin )

* Error-squared controller with careful tuning

— If heat transfer is involved, it becomes much more complicated.
CHBE320 Process Dynamics and Control Korea University 11-4



» Gas pressure control
— Usually fast and self regulating
— PI controller with small integral action (large reset time)
— D mode is not usually needed.

* Temperature control
— Wide variety of the process nature
— Usually slow response with time delay
— Use PID controller to speed up the response

* Composition control

— Similar to temperature control usually with larger noise and
more time delay

— Effectiveness of derivative action is limited

— Temperature and composition controls are the prime
candidates for advance control strategies due to its importance
and difficulty of control
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TRIAL AND ERROR TUNING

+ Step1: With P-only controller

— Start with low K_ value and increase it until the response has a
sustained oscillation (continuous cycling) for a small set point
or load change. (K_)

— SetK,.=0.5K,,.

+ Step2: Add | mode
— Decrease the reset time until sustained oscillation occurs. ( 7;,)
— Set 7, = 31y
— If a further improvement is required, proceed to Step 3.

+ Step3: Add D mode
— Increase the preact time until sustained oscillation occurs. (7p,)
— Set T = Tpu/3.

(The sustained oscillation should not be cause by the controller saturation)
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CONTINUOUS CYCLING METHOD

* Also called as loop tuning or ultimate gain method

— Increase controller gain until sustained oscillation

— Find ultimate gain (K;) and ultimate period (P;)
« Ziegler-Nichols controller setting
— Va decay ratio (too much oscillatory)

Controller Ko T Tp
P 0.5K - -
Pl 0.45K Poy/1.2 -
PID 0.6K Pey/2 Po/8
— Modified Ziegler-Nichols setting
Controller K. T Tp
Original 0.6K Pey/2 Pey/8
Some overshoot 0.33K ¢y Pey/2 Pey/3
No overshoot 0.2K Pey/2 Pey/3
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 Examples
47355 Key = 0.95 2e”s Key = 7.88
- G, = - 4
Gp() =27 Py =12 () (10s+D(5s+1) Py =116
Controller Kc T ™o Controller Kc T Tp
Original 0.57 6.0 1.5 Original 4.73 5.8 1.45
Some overshoot 0.31 6.0 4.0 Some overshoot 2.60 5.8 3.87
No overshoot 0.19 6.0 4.0 No overshoot 1.58 5.8 3.87
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+ Advantages of continuous cycling method
— No a priori information on process required
— Applicable to all stable processes

+ Disadvantages of continuous cycling method
— Time consuming
— Loss of product quality and productivity during the tests

— Continuous cycling may cause the violation of process
limitation and safety hazards

— Not applicable to open-loop unstable process

— First-order and second-order process without time delay will
not oscillate even with very large controller gain

=> Motivates Relay feedback method. (Astrom and Wittenmark)
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RELAY FEEDBACK METHOD

* Relay feedback controller
— Forces the system to oscillate by a relay controller

— Require a single closed-loop experiment to find the ultimate
frequency information

— No a priori information on process is required
— Switch relay feedback controller for tuning
— Find P, and calculate K,

4d

Koy =—
cU Ta

— User specified parameter: d

Decide d in order not to perturb the
system too much. i R Ty 1

Time:

Use Ziegler-Nichols Tuning rules for PID tuning parameters
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+ Calculation of model parameters from K, and P,

—0s

— Integrator-plus-time-delay model: ¢(s) = Ke
K=" 6=pya
“Reoby 0V
—0s
— First-order-plus-time-delay model: G(s) = p—
_ 21
KCUPU

Py w(Py—26) Py \/—2
T= 27_[tan By or T=o- (KKcy)?—1

* The @is decided by visual inspection and K can be calculated

using two equations of 7above.
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DESIGN RELATIONS FOR PID
CONTROLLERS

+ Cohen-Coon controller design relations
— Empirical relation for % decay ratio for FOPDT model

Table 12.2 Cohen and Coon Controller Design Relati
Controller Setrings Cohen—Coon
17
P K, — T
e X0 [1 + 8/37)
17
PI K. Pk
) [0.9 + 8/121]
- 6[30 + 3(8/7)]
* 9 + 20(6/7)
PID K 17167 + 30
Ko 127
= 8[32 + 6(8/7)]
f 13 + 8(0/1)
46
kS —_—
11 + 2(8/7)
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+ Design relations based on integral error criteria

IAE =f le(®)|dt
0

ISE = Jw[e(t)]zdt
0

Y4 decay ratio is too oscillatory
Decay ratio concerns only two peak points of the response
TAE: Integral of the Absolute Error

ISE: Integral of the Square Error

* Large error contributes more

¢ Small error contributes less

« Large penalty for large overshoot
* Small penalty for small persisting oscillation

Time
1b) Set.point change

— ITAE: Integral of the Time-weighted Absolute Error

[}

ITAE=J tle(t)|dt
0

» Large penalty for persisting oscillation

* Small penalty for initial transient response
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« Controller design relation based on ITAE for

FOPDT model

Table 12.3 Controller Design Relations Based on the ITAE Performance Index and a First-
Order plus Time-Delay Model [6-8]°

Type of Input Type of Controller Mode A B
Load PI P 0.859 -0.977
I 0.674 —0.680
Load PID P 1.357 —0.947
I 0.842 -0.738
D 0.381 0.995
Set point PI P 0.586 —0.916
I 1.03® —0.165%
Set point PID P 0.965 -0.85
I 0.796° —0.1465°
D 0.308 0.929

“Design relation: Y = A(68/7)® where Y = KK, for the proportional mode, 7/1; for the integral mode,

and 1,/7 for the derivative mode.

"For sct-point changes, the design relation for the integral mode is 7/, = A + B(8/7). [8]

« Similar design relations based on IAE and ISE for
other types of models can be found in literatures.
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+ Example1 Example2

6) 10e~S 4355
S) = =
25+ 1 6 =757
KK, = (0.859)(1/2)7%°77 = 1.69 o A B G
= Kc =0.169 e TAE (l0ad) — ITAE (i0ad)

1.5 === ITAE (setpoint) 151 ——=ITAE 1
(set point)

/7, = (0.674)(1/2) 7680 = 1,08
>1,=185 ¢ 10

0.5

6
T T T Most

— —— 15c* oscillatqry

0.0 1 L
VSR

Time
Trade-offs

Pl response PID response
ITAE tioad) o ITAE (load)

\ o TAE. o o | TAE
(set point) (set poir) _|

Method K T
IAE 0.195 2.02
ISE 0.245 244 "o 10 20 30 4 50 0 e W
ITAE 0.169 1.85 ime o
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+ Design relations based on process reaction curve

— For the processes who have sigmoidal shape step responses
(Not for underdamped processes)

— Fit the curve with FOPDT model

B Ke—ﬂs
G(S)—m S =KAu/t S*=S/Au=K/t

Table 13.3 Ziegler-Nichols Tuning Relations {(Process Reaction Curve Method)

Controlier Type K. T ™
1

§ 0s* - -

0.9
— 3.330 —

PI 7s*

1.2
PID s 26 0.56

— Very simple

— Inherits all the problems of FOPDT model fitting
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MISCELLANEOQOUS TUNING RELATIONS

+ Héagglund and Astrom (2002)

Table 12.4 PI Controller Settings
Higglund and Astrom (2002)

G(s) K. 7
Ke % 0.35 7
E Ko
Ke ™™ 0.14 , 028 033 + 688
s+ 1 K " oK 108 + =

+ Skogestad (2003)

Table 12.5 Controller Settings for G(s) = Ke~®/(mis + 1)(ras + 1):
Skogestad (2003)

Conditions K, L ™

(e 05(1 + 1) T2

T Ko iy nEmn

1 =86

057 (sa ‘,T;) 86r;
30

0 psidiiy
Ko Y

« Ziegler-Nichols (1942) and Cohen-Coon (1953) are not
recommended since their relations are base on 1/4-decay
ratio.
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CONTROLLERS WITH TWO DEGREES OF
FREEDOM

« Trade-off between set-point tracking and disturbance rejection
* Tuning for disturbance rejection is more aggressive.
* In general, disturbance rejection is more important. Thus, tune the
controller for satisfactory disturbance rejection.
* Controllers with two degrees of freedom (Goodwin et al., 2001)
— Strategies to adjust set-point tracking and disturbance rejection independently
1. Gradual change in set point (ramp or filtered)
Yoo _

Ysp _rfs+ 1

(filtered as first order)

2. Modification of PID control law

t

. 1 g dYm
PO = B+ KBy =) +Ke| - [ et =1 22 ) 0 <p <)

0

* As b increase, the set-point response becomes faster but more overshoot.
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DIRECT SYNTHESIS METHOD

* Analysis: Given G (s), what is y(£)?
* Design: Given yf), what should G (s) be?
* Derivation

Let Gop, = KmGcGyGyp 2 GG

Y(s)  Goo _ GG c 1< Y/R )

= = = = —| —
R(s) 1+Go, 1+G.G cTG\1-Y/R

1 Y/R
Specify (Y/R)a = G = E(%)

If (Y/R),= 1, then it implies perfect control. (infinite gain)

The resulting controller may not be physically realizable

Or, not in PID form and too complicated.

Design with finite settling time: (y/p), =——
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 Examples
1. Perfect control (K. becomes infinite)

G(S) = m and (Y/R)d =1

1 ©
G.(s) = m (m> = @ (infinite gain, unrealizable)

2. Finite settling time for 1%-order process

G(s) = and (Y/R)y4 =

1
s+ 1

G 1 1/(tes + 1) s+l T 1 1 oI
C(s)_@(l—l/(rcs+l)) " Kt.s _TCK< +§)( )

K
(zs+1)

3. Finite settling time for 2"-order process

1
O s M R
_@m+T)
Ge(s) = K (1 + (11 + 13)8 * (11 +72) S) *1D)
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* Process with time delay

— If there is a time delay, any physically realizable controller
cannot overcome the time delay. (Need time lead)

— Given circumstance, a reasonable choice will be

—0cs
Y/R); =
(¥/R)a Tes+1
— Examples
6765 —0s
1. G == and (Y/R)g=—77 (6. =06) Physically
s+ 1 sl /unrealizable
G _L e=? /(z;s+1) _ws+1 1 ¢ aPID
”(s)_G(s) 1—e0/(ts+1)) K |t;s+1—e0 (nota PID)
2. With 1%t-order Taylor series approx. ( e”~1-6s )
G _1s+1 1 _ T 1 1 -
= T os Kt o\ ) D
3. Gy —— K’ d (V/R)e == (0.0
. (ﬂ—man (/)a—m(c—)
_(@ms+D(1s+ 1) 1 _(t12) 1 1T,
Ge(s) = K (tc+6)s ~ K(z. + 9)( (t1 + 12)s + (t1+ 72) s> (PID)
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* Observations on Direct Synthesis Method
— Resulting controllers could be quite complex and may not even
be physically realizable.
— PID parameters will be decided by a user-specified parameter:
The desired closed-loop time constant (7.)
— The shorter . makes the action more aggressive. (larger K )
— The longer 7. makes the action more conservative. (smaller X )
— For a limited cases, it results PID form.
+ 1%t-order model without time delay: PI
« FOPDT with 1%%-order Taylor series approx.: PI
« 2ndorder model without time delay: PID
* SOPDT with 1%t-order Taylor series approx.: PID

* Delay modifies the X..

T T (11 +13) (11 +13)
— > ————— (1storder 172 172
Kt. K(t,+6) ( ) Kt,  K(z.+6)

(2nd order)

* With time delay, the K will not become infinite even for the
perfect control (Y/R=1).
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INTERNAL MODEL CONTROL (IMC)

* Motivation

— The resulting controller from direct synthesis method may not
be physically unrealizable.

— If there is RHP zero in the process, the resulting controller
from direct synthesis method will be unstable.

— Unmeasured disturbance and modeling error are not
considered in direct synthesis method.
» Source of trouble
— From direct synthesis method

1 (Y/R)4 Resulting controller may have
Gc = E W I* higher-order numerator than
4 v\_ (Y/R)q denominator

Direct inversion of process

causes many problems Process is unknown
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« IMC
— Feedback the error between the process output and model
output.
Ge

— Equivalent conventional controller: 5 — _—°
1-G:G

— Using block diagram algebra
C=GP+L P=GE E=R—-(C—C)=R-C+GP
P=G}(R-C+GP)

= P=G}(R-0C)/(1-G:G)

C=GG}(R-C)/(1-G:&)+L
(14 GG —G:G)C =GGR+ (1 —G:G)L

GG 1-6:6)
C= —R + =
1+G(G—-G) 1+Gi(G-G)

c-¢ Internal Mods:

(b) Internal Model Control

IfG=G,C=G;GR+ (1-G.G)L
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* IMC design strategy

— Factor the process model as

G = ninvertibles

G, contains any time delays and RHP zeros and is specified so

that the steady-state gain is one
 G_is the rest of G.
— The controller is specified as

, 1
GC = E_ f
» IMC filter /" is a low-pass filter with steady-state gain of one
» Typical IMC filter: 1
f= (Tes+ 1)

* The 7. is the desired closed-loop time constant and parameter 7 is
a positive integer that is selected so that the order of numerator of
G." is same as the order of denominator or exceeds the order of

c

denominator by one.

CHBE320 Process Dynamics and Control

* Example
— FOPDT model with 1/1 Pade approximation
oo Ka-0s/2)

(1+06s/2)(rs+1)

3 3 K
Gr=1-0s/2 G =G g s+ 1)

L1 (1+6s/2)(zs +1) 1
Ge = 5‘__f B K (tes +1)

G (1+06s/2)(rs+1)

G = __ PID
¢ 1-G:6 K(t.+6/2)s (PID)
1@+6/2) w2

T Ktey “TTTOZ wErrgn
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IMC based PID controller settings

Table 12.1 IMC-Based PID Controller Settings for G.(s) [4]*

Case Model

KK T TD
K T
o s + 1 T T —
B MU, P Tt T A T
(15 + 1)(m2s + 1) T, T T -
K 2 T
¢ %2 + 2rs + 1 T Ly x
K(—Bs + 1) 2t T
b 72s2+2§'rs+1'ﬂ>0 Y 2 %
E L3 1 _ _
§ Te
K 1
F s(s + 1) T_c — T

“Based on Eq. 12-30 with r = 1.
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IMC based PID controller settings

Table 12.1 IMC-Based PID Controller Settings for G.(s) (Chien and Fruehaut, 1990)

Cas Model KK

Ke

o §
sts+1) (7 + 8)

CHBE320 Process Dynamics and Control
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* Modification of IMC and DS methods

— For lag dominant models (8/7<<1), IMC and DS methods
provide satisfactory set-point response, but very slow
disturbance responses because the value 7; is very large.

— Approximate the FOPDT with IPDT model and use IMC

tuning relation for IPDT model

-6

Ke
G(s) =

Ts+1=>G(S)=

— Limit the value of 7;

7; = min{t;, 4(t. + 6)}

where K* 2 K/t

— Design the controller for disturbance rejection

CHBE320 Process Dynamics and Control
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COMPARISON OF CONTROLLER DESIGN

RELATIONS

* Pl controller settings for different methods

2e”S

G(s)=s+1

fa) IMC (7, = 0.0)  (c) Cohen-Coon
16) IMC (7. = 0.8} ) ITAE (load)

(a) IMC {7, = 0.0) (e} Cohen-Coon
&) IMC {r, = 0.8) (d) ITAE (loac)

\! No modeling error

T T R T "
50% error in process gain

r‘obust . a

CHBE320 Process Dynamics and Control
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5.0 7.5 10.0 125 15.0

Time
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EFFECT OF MODELING ERROR

» Actual plant

2e~S
G(s) =

« Approx. model
28—4.75

G0) =957 1

— Satisfactory for this case

— Use with care

As the estimated time delay
gets smaller, the performance
degradation will be pronounced.

(10s+1)(5s+ 1)

0.0

-05

T T
Set-point response
ITAE (ioad)

= = ITAE (set point) —

Load response
1TAE (ioad)
= = = ITAE (set poin

— —

Time

+ All kinds of tuning method should be used for
initial setting and fine tuning should be done!!
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GENERAL CONCLUSION FOR PID TUNING

» The controller gain should be inversely proportional to the
products of the other gains in the feedback loop.

» The controller gain should decrease as the ratio of time

delay to dominant time constant increases.

» The larger the ratio of time delay to dominant time constant

is, the harder the system is to control.

» The reset time and the derivative time should increase as
the ratio of time delay to dominant time constant increases.

» The ratio between derivative time and reset time is typically

between 0.1 to 0.3.

+ The Y decay ratio is too oscillatory for process control. If
less oscillatory response is desired, the controller gain
should decrease and reset time should increase.

+ Among IAE, ISE and ITAE, ITAE is the most conservative

and ISE is the least conservative setting.
CHBE320 Process Dynamics and Control
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TROUBLESHOOTING CONTROL LOOPS

» Causes of performance degradation of controller
— Changing process conditions, usually throughput rate
— Sticking control valve stem
— Plugged line in a pressure or DP transmitter
— Fouled heat exchangers, especially reboilers for distillation
— Cavitating pumps

» Starting points of trouble shooting
— What is the process being controlled?
— What is the controlled variable?
— What are the control objectives?
— Are closed-loop response data available?
— Is the controller in the M/A mode? Is it reverse or direct acting?
— If the pressure is cycling, what is the cycling frequency?
— What control algorithm is used? What are the controller settings?
— Is the process open-loop stable?

— What additional documentation is available?
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* Checking points

— Components in the control loop (process, sensor, actuator, ...)
+ Field instruments vs. instruments in central control room
* Recent changes to the equipment or instrumentation
(cleaning HX, catalyst replacement, transmitter span, ...
* Sensor lines (particles, bubbles)
* Control valve sticking
+ Controller tuning parameters
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