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Road Map of the Lecture XI

• Controller Design and PID Tuning
– Performance criteria

– Trial and error method

– Continuous cycling method

– Relay feedback method

– Tuning relationships

– Direct Synthesis

– Internal Model Control (IMC)

– Effects of modeling error
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CONTROLLER DESIGN 

• Performance criteria for closed-loop systems
– Stable

– Minimal effect of disturbance

– Rapid, smooth response to set point change

– No offset

– No excessive control action

– Robust to plant-model mismatch

• Trade-offs in control problems
– Set point tracking vs. disturbance rejection

– Robustness vs. performance

min
௄೎,ఛ಺,ఛವ

න (𝑤ଵ𝑒ଶ(𝜏) + 𝑤ଶΔ𝑢ଶ(𝜏))𝑑𝜏
ஶ

଴
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GUIDELINES FOR COMMON CONTROL 
LOOPS

• Flow  and liquid pressure control
– Fast response with no time delay

– Usually with small high-frequency noise

– PI controller with intermediate controller gain
• 0.5< Kc <0.7 and 0.2< tI <0.3min (Fruehauf et al. (1994))

• Liquid level control
– Noisy due to splashing and turbulence

– High gain PI controller for integrating process
• Increase in Kc may decrease oscillation (special behavior)

– Conservative setting for averaging control when it is used for 
damping the fluctuation of the inlet stream (usually P-control)
• PI control: 

• Error-squared controller with careful tuning

– If heat transfer is involved, it becomes much more complicated.

𝐾௖ = 100%/Δℎ, 𝜏ூ = 4𝑉/(𝐾௖𝑄௠௔௫)         (∆ℎ ≡ min ℎ௠௔௫ − ℎ௦௣, ℎ௦௣ − ℎ௠௜௡ )
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• Gas pressure control
– Usually fast and self regulating

– PI controller with small integral action (large reset time)

– D mode is not usually needed.

• Temperature control
– Wide variety of the process nature

– Usually slow response with time delay

– Use PID controller to speed up the response

• Composition control
– Similar to temperature control usually with larger noise and 

more time delay

– Effectiveness of derivative action  is limited

– Temperature and composition controls are the prime 
candidates for advance control strategies due to its importance 
and difficulty of control
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TRIAL AND ERROR TUNING

• Step1: With P-only controller
– Start with low Kc value and increase it until the response has a 

sustained oscillation (continuous cycling) for a small set point 
or load change. (Kcu)

– Set Kc = 0.5Kcu.

• Step2: Add I mode
– Decrease the reset time until sustained oscillation occurs. (     )

– Set                .

– If a further improvement is required, proceed to Step 3.

• Step3: Add D mode
– Increase the preact time until sustained oscillation occurs. (     )

– Set                  .
(The sustained oscillation should not be cause by the controller saturation)

𝜏ூ௨

𝜏ூ = 3𝜏ூ௨

𝜏஽௨

𝜏஽ = 𝜏஽௨/3
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CONTINUOUS CYCLING METHOD

• Also called as loop tuning or ultimate gain method
– Increase controller gain until sustained oscillation

– Find ultimate gain (KCU) and ultimate period (PCU)

• Ziegler-Nichols controller setting
– ¼ decay ratio (too much oscillatory)

– Modified Ziegler-Nichols setting

Controller KC

P 0.5KCU - -

PI 0.45KCU PCU /1.2 -

PID 0.6KCU PCU /2 PCU/8

Controller KC

Original 0.6KCU PCU /2 PCU/8

Some overshoot 0.33KCU PCU /2 PCU/3

No overshoot 0.2KCU PCU /2 PCU/3

𝜏ூ 𝜏஽

𝜏஽𝜏ூ
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• Examples

Controller KC

Original 0.57 6.0 1.5

Some overshoot 0.31 6.0 4.0

No overshoot 0.19 6.0 4.0

𝜏஽𝜏ூ Controller KC

Original 4.73 5.8 1.45

Some overshoot 2.60 5.8 3.87

No overshoot 1.58 5.8 3.87

𝜏஽𝜏ூ

𝐺௣(𝑠) =
4𝑒ିଷ.ହ௦

7𝑠 + 1
𝐺௣(𝑠) =

2𝑒ି௦

(10𝑠 + 1)(5𝑠 + 1)
𝐾஼௎ = 0.95
𝑃஼௎ = 12

𝐾஼௎ = 7.88
𝑃஼௎ = 11.6
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• Advantages of continuous cycling method
– No a priori information on process required

– Applicable to all stable processes

• Disadvantages of continuous cycling method
– Time consuming

– Loss of product quality and productivity during the tests

– Continuous cycling may cause the violation of process 
limitation and safety hazards

– Not applicable to open-loop unstable process

– First-order and second-order process without time delay will 
not oscillate even with very large controller gain

=> Motivates Relay feedback method. (Astrom and Wittenmark)
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RELAY FEEDBACK METHOD

• Relay feedback controller
– Forces the system to oscillate by a relay controller

– Require a single closed-loop experiment to find the ultimate 
frequency information

– No a priori information on process is required

– Switch relay feedback controller for tuning

– Find PCU and calculate KCU

– User specified parameter: d

– Use Ziegler-Nichols Tuning rules for PID tuning parameters

𝐾஼௎ =
4𝑑

𝜋𝑎

Decide d in order not to perturb the 
system too much. 
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• Calculation of model parameters from KCU and PU

– Integrator-plus-time-delay model:

– First-order-plus-time-delay model:

• The q is decided by visual inspection and K can be calculated 
using two equations of t above.

𝐺(𝑠) =
𝐾𝑒ିఏ௦

𝑠

𝐺(𝑠) =
𝐾𝑒ିఏ௦

𝜏𝑠 + 1

𝐾 =
2𝜋

𝐾஼௎𝑃௎
     𝜃 = 𝑃௎/4

𝐾 =
2𝜋

𝐾஼௎𝑃௎

𝜏 =
𝑃௎

2𝜋
tan

𝜋(𝑃௎ − 2𝜃)

𝑃௎
   or    𝜏 =

𝑃௎

2𝜋
(𝐾𝐾஼௎)ଶ − 1
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DESIGN RELATIONS FOR PID 
CONTROLLERS

• Cohen-Coon controller design relations
– Empirical relation for ¼ decay ratio for FOPDT model
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• Design relations based on integral error criteria
– ¼ decay ratio is too oscillatory

– Decay ratio concerns only two peak points of the response

– IAE: Integral of the Absolute Error

– ISE: Integral of the Square Error

• Large error contributes more

• Small error contributes less

• Large penalty for large overshoot

• Small penalty for small persisting oscillation 

– ITAE: Integral of the Time-weighted Absolute Error

• Large penalty for persisting oscillation 

• Small penalty for initial transient response

IAE = න 𝑒(𝑡) 𝑑𝑡
ஶ

଴

ISE = න 𝑒(𝑡) ଶ𝑑𝑡
ஶ

଴

IAE

ITAE = න 𝑡 𝑒(𝑡) 𝑑𝑡
ஶ

଴
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• Controller design relation based on ITAE for 
FOPDT model

• Similar design relations based on IAE and ISE for 
other types of models can be found in literatures.
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• Example1                            Example2 

𝐺(𝑠) =
10𝑒ି௦

2𝑠 + 1

𝐾𝐾௖ = (0.859)(1/2)ି଴.ଽ଻଻ = 1.69
⇒ 𝐾௖ = 0.169

PI

𝜏/𝜏ூ = (0.674)(1/2)ି଴.଺଼଴ = 1.08
⇒ 𝜏ூ = 1.85

Method Kc

IAE 0.195 2.02

ISE 0.245 2.44

ITAE 0.169 1.85

𝜏ூ

𝐺(𝑠) =
4𝑒ିଷ.ହ௦

7𝑠 + 1

Most 
oscillatory

Trade-offs
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• Design relations based on process reaction curve
– For the processes who have sigmoidal shape step responses

(Not for underdamped processes)

– Fit the curve with FOPDT model

– Very simple

– Inherits all the problems of FOPDT model fitting

𝑆∗ = 𝑆/Δ𝑢 = 𝐾/𝜏𝐺(𝑠) =
𝐾𝑒ିఏ௦

(𝜏𝑠 + 1) 𝑆 = 𝐾Δ𝑢/𝜏
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MISCELLANEOUS TUNING RELATIONS

• Hägglund and Åström (2002)

• Skogestad (2003)

• Ziegler-Nichols (1942) and Cohen-Coon (1953) are not 
recommended since their relations are base on 1/4-decay 
ratio.
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CONTROLLERS WITH TWO DEGREES OF 
FREEDOM

• Trade-off between set-point tracking and disturbance rejection

• Tuning for disturbance rejection is more aggressive.

• In general, disturbance rejection is more important. Thus, tune the 
controller for satisfactory disturbance rejection.

• Controllers with two degrees of freedom (Goodwin et al., 2001)
– Strategies to adjust set-point tracking and disturbance rejection independently

1. Gradual change in set point (ramp or filtered)

2. Modification of PID control law

• As  b increase, the set-point response becomes faster but more overshoot.

𝑝(𝑡) = 𝑝̄ + 𝐾௖(𝛽𝑦௦௣ − 𝑦௠) + 𝐾௖

1

𝜏ூ
න 𝑒(𝑡∗)𝑑𝑡∗ − 𝜏஽

𝑑𝑦௠

𝑑𝑡

௧

଴

   (0 < 𝛽 < 1)

𝑌௦௣
∗

𝑌௦௣
=

1

𝜏௙𝑠 + 1
  (filtered as first order)
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DIRECT SYNTHESIS METHOD

• Analysis: Given Gc(s), what is y(t)?

• Design: Given yd(t), what should Gc(s) be?

• Derivation

– If (Y/R)d = 1, then it implies perfect control. (infinite gain)

– The resulting controller may not be physically realizable

– Or, not in PID form and too complicated.

– Design with finite settling time:

𝑌(𝑠)

𝑅(𝑠)
=

𝐺ை௅

1 + 𝐺ை௅
=

𝐺௖𝐺

1 + 𝐺௖𝐺
  ⇒   𝐺௖ =

1

𝐺

𝑌/𝑅

1 − 𝑌/𝑅

Let 𝐺ை௅ = 𝐾௠𝐺௖𝐺௩𝐺௣ ≜ 𝐺௖𝐺

Specify (𝑌/𝑅)ௗ  ⇒   𝐺௖ =
1

𝐺

(𝑌/𝑅)ௗ

1 − (𝑌/𝑅)ௗ

(𝑌/𝑅)ௗ  =
1

𝜏ୡ𝑠 + 1
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• Examples
1. Perfect control (Kc becomes infinite)

2. Finite settling time for 1st-order process

3. Finite settling time for 2nd-order process

𝐺(𝑠) =
𝐾

(𝜏ଵ𝑠 + 1)(𝜏ଶ𝑠 + 1)
  and  (𝑌/𝑅)ௗ = 1

𝐺௖(𝑠) =
1

𝐺(𝑠)
 

1

1 − 1
 =

∞

𝐺(𝑠)
 (infinite gain, unrealizable)

𝐺(𝑠) =
𝐾

(𝜏𝑠 + 1)
  and  (𝑌/𝑅)ௗ =

1

𝜏௖𝑠 + 1

𝐺௖(𝑠) =
1

𝐺(𝑠)
 

1/(𝜏௖𝑠 + 1)

1 − 1/(𝜏௖𝑠 + 1)
 =

𝜏𝑠 + 1

𝐾𝜏௖𝑠
=

𝜏

𝜏௖𝐾
1 +

1

𝜏𝑠
 (PI)

𝐺(𝑠) =
𝐾

(𝜏ଵ𝑠 + 1)(𝜏ଶ𝑠 + 1)
  and  (𝑌/𝑅)ௗ =

1

𝜏௖𝑠 + 1

𝐺௖(𝑠) =
(𝜏ଵ + 𝜏ଶ)

𝜏௖𝐾
1 +

1

(𝜏ଵ + 𝜏ଶ)𝑠
+

𝜏ଵ𝜏ଶ

(𝜏ଵ + 𝜏ଶ)
𝑠  (PID)
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• Process with time delay
– If there is a time delay, any physically realizable controller 

cannot overcome the time delay. (Need time lead)

– Given circumstance, a reasonable choice will be

– Examples

1.

2. With 1st-order Taylor series approx. (                  )

3. 

𝑌/𝑅 ௗ =
𝑒ିఏ೎௦

𝜏௖𝑠 + 1

𝐺(𝑠) =
𝐾𝑒ିఏ௦

(𝜏𝑠 + 1)
  and  (𝑌/𝑅)ௗ =

𝑒ିఏ௦

𝜏௖𝑠 + 1
  (𝜃௖ = 𝜃)

𝐺௖(𝑠) =
1

𝐺(𝑠)
 

𝑒ିఏ /(𝜏௖𝑠 + 1)

1 − 𝑒ିఏ௦/(𝜏௖𝑠 + 1)
 =

𝜏𝑠 + 1

𝐾

1

𝜏௖𝑠 + 1 − 𝑒ିఏ௦
 (not a PID)

𝑒ିఏ௦ ≈ 1 − 𝜃𝑠

𝐺௖(𝑠) =
𝜏𝑠 + 1

𝐾

1

(𝜏௖ + 𝜃)𝑠
=

𝜏

𝐾(𝜏௖ + 𝜃)
1 +

1

𝜏𝑠
  (PI)

𝐺(𝑠) =
𝐾𝑒ିఏ

(𝜏ଵ𝑠 + 1)(𝜏ଶ𝑠 + 1)
  and  (𝑌/𝑅)ௗ =

𝑒ିఏ௦

𝜏௖𝑠 + 1
  (𝜃௖ = 𝜃)

𝐺௖(𝑠) =
(𝜏ଵ𝑠 + 1)(𝜏ଶ𝑠 + 1)

𝐾

1

(𝜏௖ + 𝜃)𝑠
=

(𝜏ଵ + 𝜏ଶ)

𝐾(𝜏௖ + 𝜃)
1 +

1

(𝜏ଵ + 𝜏ଶ)𝑠
+

𝜏ଵ𝜏ଶ

(𝜏ଵ + 𝜏ଶ)
𝑠  (PID)

Physically 
unrealizable
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• Observations on Direct Synthesis Method
– Resulting controllers could be quite complex and may not even 

be physically realizable.

– PID parameters will be decided by a user-specified parameter: 
The desired closed-loop time constant (    )

– The shorter    makes the action more aggressive. (larger Kc)

– The longer    makes the action more conservative. (smaller Kc)

– For a limited cases, it results PID form.
• 1st-order model without time delay: PI

• FOPDT with 1st-order Taylor series approx.: PI

• 2nd-order model without time delay: PID

• SOPDT with 1st-order Taylor series approx.: PID

• Delay modifies the Kc.

• With time delay, the Kc will not become infinite even for the 
perfect control (Y/R=1).

𝜏

𝐾𝜏௖
→

𝜏

𝐾(𝜏௖ + 𝜃)
 (1st order)

(𝜏ଵ + 𝜏ଶ)

𝐾𝜏௖
→

(𝜏ଵ + 𝜏ଶ)

𝐾(𝜏௖ + 𝜃)
 (2nd order)

𝜏௖

𝜏௖

𝜏௖
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INTERNAL MODEL CONTROL (IMC)

• Motivation
– The resulting controller from direct synthesis method may not 

be physically unrealizable.

– If there is RHP zero in the process, the resulting controller 
from direct synthesis method will be unstable.

– Unmeasured disturbance and modeling error are not 
considered in direct synthesis method.

• Source of trouble
– From direct synthesis method

𝐺௖ =
1

𝐺

(𝑌/𝑅)ௗ

1 − (𝑌/𝑅)ௗ

Direct inversion of process 
causes many problems

Resulting controller may have 
higher-order numerator than 
denominator

Process is unknown
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• IMC 
– Feedback the error between the process output and model 

output.

– Equivalent conventional controller:

– Using block diagram algebra
𝐶 = 𝐺𝑃 + 𝐿     𝑃 = 𝐺௖

∗𝐸     𝐸 = 𝑅 − (𝐶 − 𝐶ሚ) = 𝑅 − 𝐶 + 𝐺෨𝑃

𝑃 = 𝐺௖
∗(𝑅 − 𝐶 + 𝐺෨𝑃)  

        ⇒    𝑃 = 𝐺௖
∗(𝑅 − 𝐶)/(1 − 𝐺௖

∗𝐺෨)

𝐶 = 𝐺𝐺௖
∗(𝑅 − 𝐶)/(1 − 𝐺௖

∗𝐺෨) + 𝐿

(1 + 𝐺𝐺௖
∗ − 𝐺௖

∗𝐺෨)𝐶 = 𝐺𝐺௖
∗𝑅 + (1 − 𝐺௖

∗𝐺෨)𝐿

𝐶 =
𝐺௖

∗𝐺

1 + 𝐺௖
∗(𝐺 − 𝐺෨)

𝑅 +
(1 − 𝐺௖

∗𝐺෨)

1 + 𝐺௖
∗(𝐺 − 𝐺෨)

𝐿

𝐺௖ =
𝐺௖

∗

1 − 𝐺௖
∗𝐺෨

If 𝐺෨ = 𝐺, 𝐶 = 𝐺௖
∗𝐺𝑅 + (1 − 𝐺௖

∗𝐺)𝐿
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• IMC design strategy
– Factor the process model as 

• contains any time delays and RHP zeros and is specified so 
that the steady-state gain is one

• is the rest of G.

– The controller is specified as 

• IMC filter f  is a low-pass filter with steady-state gain of one
• Typical IMC filter:

• The      is the desired closed-loop time constant and parameter r is 
a positive integer that is selected so that the order of numerator of 
Gc

* is same as the order of denominator or exceeds the order of 
denominator by one.

𝐺෨ = 𝐺෨ା𝐺෨ି

𝐺෨ା

𝐺෨ି

𝐺௖
∗ =

1

𝐺෨ି
𝑓

𝑓 =
1

(𝜏௖𝑠 + 1)௥

𝜏௖

Uninvertibles
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• Example
– FOPDT model with 1/1 Pade approximation

𝐺෨ =
𝐾(1 − 𝜃𝑠/2)

(1 + 𝜃𝑠/2)(𝜏𝑠 + 1)

𝐺෨ା = 1 − 𝜃𝑠/2      𝐺෨ି =
𝐾

(1 + 𝜃𝑠/2)(𝜏𝑠 + 1)

𝐺௖
∗ =

1

𝐺෨ି

𝑓 =
(1 + 𝜃𝑠/2)(𝜏𝑠 + 1)

𝐾

1

(𝜏௖𝑠 + 1)

𝐺௖ =
𝐺௖

∗

1 − 𝐺௖
∗𝐺෨

=
(1 + 𝜃𝑠/2)(𝜏𝑠 + 1)

𝐾(𝜏௖ + 𝜃/2)𝑠
  (PID)

𝐾௖ =
1

𝐾

(𝜏 + 𝜃/2)

(𝜏௖ + 𝜃/2)
     𝜏ூ = 𝜏 + 𝜃/2     𝜏஽ =

𝜏𝜃/2

𝜏 + 𝜃/2
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IMC based PID controller settings
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IMC based PID controller settings
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• Modification of IMC and DS methods
– For lag dominant models (q/t<<1), IMC and DS methods 

provide satisfactory set-point response, but very slow 
disturbance responses because the value tI is very large.

– Approximate the FOPDT with IPDT model and use IMC 
tuning relation for IPDT model

– Limit the value of tI

– Design the controller for disturbance rejection

𝐺(𝑠) =
𝐾𝑒ିఏ

𝜏𝑠 + 1
⇒ 𝐺(𝑠) =

𝐾∗𝑒ିఏ

𝑠
  where  𝐾∗ ≜ 𝐾/𝜏

𝜏ூ = min 𝜏ூ, 4(𝜏௖ + 𝜃)
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COMPARISON OF CONTROLLER DESIGN 
RELATIONS

• PI controller settings for different methods

𝐺(𝑠) =
2𝑒ି௦

𝑠 + 1

No modeling error 50% error in process gain

best

Somewhat robust
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EFFECT OF MODELING ERROR

• Actual plant 

• Approx. model

– Satisfactory for this case

– Use with care

• All kinds of tuning method should be used for 
initial setting and fine tuning should be done!!

𝐺(𝑠) =
2𝑒ି௦

(10𝑠 + 1)(5𝑠 + 1)

𝐺෨(𝑠) =
2𝑒ିସ.଻௦

12𝑠 + 1

As the estimated time delay 
gets smaller, the performance 
degradation will be pronounced.
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GENERAL CONCLUSION FOR PID TUNING

• The controller gain should be inversely proportional to the 
products of the other gains in the feedback loop.

• The controller gain should decrease as the ratio of time 
delay to dominant time constant increases.

• The larger the ratio of time delay to dominant time constant 
is, the harder the system is to control.

• The reset time and the derivative time should increase as 
the ratio of time delay to dominant time constant increases.

• The ratio between derivative time and reset time is typically 
between 0.1 to 0.3.

• The ¼ decay ratio is too oscillatory for process control. If 
less oscillatory response is desired, the controller gain 
should decrease and reset time should increase.

• Among IAE, ISE and ITAE, ITAE is the most conservative 
and ISE is the least conservative setting.
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TROUBLESHOOTING CONTROL LOOPS

• Causes of performance degradation of controller
– Changing process conditions, usually throughput rate

– Sticking control valve stem

– Plugged line in a pressure or DP transmitter

– Fouled heat exchangers, especially reboilers for distillation

– Cavitating pumps

• Starting points of trouble shooting
– What is the process being controlled?

– What is the controlled variable?

– What are the control objectives?

– Are closed-loop response data available?

– Is the controller in the M/A mode? Is it reverse or direct acting?

– If the pressure is cycling, what is the cycling frequency?

– What control algorithm is used? What are the controller settings?

– Is the process open-loop stable?

– What additional documentation is available?
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• Checking points
– Components in the control loop (process, sensor, actuator, …)

• Field instruments vs. instruments in central control room

• Recent changes to the equipment or instrumentation

(cleaning HX, catalyst replacement, transmitter span, …

• Sensor lines (particles, bubbles)

• Control valve sticking

• Controller tuning parameters


