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Road Map of the Lecture IV

+ Basics of Process Modeling

4’@* Controller Actuator PROCESS

’ Lectures IV to VII ‘

|

Sensor

— Mathematical Modeling
— Steady-state model vs. Dynamic model
— Degree of freedom analysis
— Models of representative processes, etc.
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THE RATIONALE FOR MATHEMATICAL
MODELING

* Where to use
— To improve understanding of the process
— To train plant operating personnel
— To design the control strategy for a new process
— To select the controller setting
— To design the control law
— To optimize process operating conditions

» A Classification of Models
— Theoretical models (based on physicochemical law)
— Empirical models (based on process data analysis)
— Semi-empirical models (combined approach)
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DYNAMIC VERSUS STEADY-STATE MODEL

* Dynamic model
— Describes time behavior of a process
* Changes in input, disturbance, parameters, initial condition, etc.
— Described by a set of differential equations
: ordinary (ODE), partial (PDE), differential-algebraic(DAE)

Initial Condition, x(0)
—_—

Input, u(t) Dynamic Model Output, y(t)
(ODE, PDE) "

Parameter, p(t)

» Steady-state model
— Steady state: No further changes in all variables
— No dependency in time: No transient behavior
— Can be obtained by setting the time derivative term zero
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MODELING PRINCIPLES

« Conservation law
— Within a defined system boundary (control volume)

[ rate of

] _ [rate 0
accumulation input

[ rate of
+ .
generation

rate of]
output

] _ [ rate of ]
disappreance

+ Mass balance (overall, components)
* Energy balance
* Momentum or force balance

» Algebraic equations: relationships between
variables and parameters
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MODELING APPROACHES

* Theoretical Model

Follow conservation laws
Based on physicochemical
laws

Variables and parameters
have physical meaning
Difficult to develop

Can become quite complex
Extrapolation is valid unless
the physicochemical laws are
invalid

Used for optimization and
rigorous prediction of the
process behavior

CHBE320 Process Dynamics and Control

Empirical model

Based on the operation data

Parameters may not have
physical meaning

Easy to develop

Usually quite simple
Requires well designed
experimental data

The behavior is correct only
around the experimental
condition

Extrapolation is usually
invalid

Used for control design and
simplified prediction model

Korea University

45

4-6



DEGREE OF FREEDOM (DOF) ANALYSIS

+ DOF
— Number of variables that can be specified independently
- Npe=Ny-Ng

* Ng : Degree of freedom (no. of independent variables)
* Ny : Number of variables
* Ng : Number of equations (no. of dependent variables)
* Assume no equation can be obtained by a combination of other
equations
» Solution depending on DOF
— If N =0, the system is exactly determined. Unique solution
exists.
— If Ng > 0, the system is underdetermined. Infinitely many
solutions exist.
— If Ni <0, the system is overdetermined. No solutions exist.
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LINEAR VERSUS NONLINEAR MODELS

* Superposition principle

VYo, € R, and for a linear operator, L
Then L(ax;(t) + Bx2(t)) = aL(x1(t)) + BL(x2(1))

* Linear dynamic model: superposition principle holds

Va,B € R u (t) = y1(t) and u,(t) = y,(t)
auy (t) + puy(t) = ayi(t) + By ()

Va,B € R, x1(0) = y1(t) and x,(0) = y2(t)
ax1(0) + Bx2(0) = ay, (t) + By (b)

— Easy to solve and analytical solution exists.
— Usually, locally valid around the operating condition
* Nonlinear: “Not linear”
— Usually, hard to solve and analytical solution does not exist.
CHBE320 Process Dynamics and Control Korea University 4-8



ILLUSTRATION OF SUPERPOSITION

PRINCIPLE
uy(t uy(t
\ 1.51\
v 1t
b b=
ya(t) Ya(t)
Zt. L

» Valid only for linear process
— For example, if y(t)=u(t)?,
(u,(t)+1.5u,(t))* is not same as u,(t)> +1.5u,(t)%
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TYPICAL LINEAR DYNAMIC MODEL

* Linear ODE

dy(t)
1'7 = —y(t) + Ku(t) (randKare contant, 1st order)
d™y(t d™y(t
dig)ﬂlnq dtnji(l)+"'+aoJ’(t)
=b d™u(t) b d™ 1u(t) b hord
= b~ +byq qrm1 + -+ bou(t) (nthorder)
* Nonlinear ODE
dy(t dy(t
T% = —y(®)? + Ku(®) T%y(t) = —y(t)sin(y) + Ku(t)
dy(t ayv(r) -yt
T—};(t)= —y(6) + KJu(t) = € "+ Kur)
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MODELS OF REPRESENTATIVE

PROCESSES
* Liquid storage systems a Control
— System boundary: storage tank Y | L/
— Mass in: q; (vol. flow, indep. var) : !
—  Mass out: q (vol, flow, dep. var) i v h i q
— No generation or disappearance 'L———A—r—ea—gl——————' DI—

(no reaction or leakage)

— No energy balance
- DOF=2 (h,q)-1=1
— If £(n) = n/r,, the ODE is linear. " Mass outrate o oiflowis a
ass in rate A
(R, is the resistance to flow)  Accumulation ratein tank function of head

— If r(v) = ¢, /pgh/g. » the ODE is nonlinear.
(Cy is the valve constant)
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» Continuous Stirred Tank Reactor (CSTR)
— Liquid level is constant (No acc. in tank)

— Constant density, perfect mixing Cai Qs Ti
— Reaction: A > B (7= kyexp(-E/RT)c,) / caral, T
— System boundary: CSTR tank =l
— Component mass balance v, T h
dcy 400
VE=CI(CAi—CA)_VkCA ’ l
Cooling
— Energy balance medium, T,
dT
VpCpE =qpCp(T; — T) + (AH)Vkcy + UA(T, — T)

— DOF analysis
* No. of variables: 6 (g, c,c i T, T, T,)
* No. of equation:2 (two dependent vars.: c,, 7)
* DOF=6-2=4
* Independent variables: 4 (¢, c,, T), T,)
* Parameters: kinetic parameters, V, U, 4, other physical properties
» Disturbances: any of ¢, c;, T}, T, which are not manipulatable
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STANDARD FORM OF MODELS

From the previous example

dey q

dar = V(CAL' —ca) —kea = filea T, q, cai)

dT q q UA

oy i—D+ E(_AH)]{CA + E(Tc -T) = falcaT.q, T, Tp)

» State-space model

x = dx/dt = f(x,u,d)
where x = [xq, -, x]T,u = [ug, -+, up]’,d = [dq, -, d;]7

— x: states, [c, T]”

— w: inputs, [¢ T.]7

— d: disturbances, [c,; T;]”

— y: outputs — can be a function of above, y=g(x,d,u), [c, T]"
— If higher order derivatives exist, convert them to 1% order.
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CONVERT TO 15T-ORDER ODE

* Higher order ODE

d"x(t) d"x(t)

drn an_lw + -+ aox(t) = bou(t)

* Define new states

Xp =X, Xy =X, X3 = X, , %, = x™1
» A set of 1st-order ODE’s
561 = x2
562 = x3
Xp = —Qn-1Xn — An-pXn-1 — "+ — GoX1 + bou
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SOLUTION OF MODELS

+ ODE (state-space model)
— Linear case: find the analytical solution via Laplace transform,
or other methods.
— Nonlinear case: analytical solution usually does not exist.
* Use a numerical integration, such as RK method, by defining
initial condition, time behavior of input/disturbance
* Linearize around the operating condition and find the analytical
solution

- PDE

— Convert to ODE by discretization of spatial variables using
finite difference approximation and etc.

aT, ar, 1 arL() _ _ Vom o Ay _ (¥, 1 Ny 1 c a4
BTV Ty BT T T T aztU—1 (Az+rHL)TLU)+THLT‘”U_1’ M

M, _T()-TG-1D
0z Az
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LINEARIZATION

+ Equilibrium (Steady state)
— Set the derivatives as zero: 0=f(xu,d)

— Overbar denotes the steady-state value and & u.d) is the
equilibrium point. (could be multiple)

— Solve them analytically or numerically using Newton method, etc.

* Linearization around equilibrium point

— Taylor series expansion to 1%t order Jacobian
0 of of fi ofi
f(x,u)=f(/)'(ff5'+— -+ (u—1a)+ - 2= ... =
x| 0 05 of _ a);(1 . aJ:Cn
— Ignore higher order terms ox Ofn O
— Define deviation variables: x' =x—-% u' =u-1u 0z 0%
., Of , of ' — Ax' + Bu'
X = & E B u = Ax' + Bu
(€30)]

&)
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