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Road Map of the Lecture V

» Laplace Transform and Transfer functions
— Definition of Laplace transform
— Properties of Laplace transform
— Inverse Laplace transform
— Definition of transfer function
— How to get the transfer functions
— Properties of transfer function
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SOLUTION OF LINEAR ODE

» 1st.order linear ODE

— Integrating factor: For i—f+ a(®)x = f(t), LF. = exp( f a(t)dt)

[xel @ty — £yl aat () = [ff(t)ef a®dt g 4 ¢l faat

* High-order linear ODE with constant coeffs.
— Modes: roots of characteristic equation

For ax" + a;x' + apx = f(t),
ap? +ap+ag=a(p-p)P-p) =0

— Depending on the roots, modes are
+ Distinct roots: (777
* Double roots: (7™ te™)
+ Imaginary roots: (e *cosfte™® sinft)

—

Solution is a linear combination of
modes and the coefficients are
decided by the initial conditions.

+ Many other techniques for different cases
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LAPLACE TRANSFORM FOR LINEAR ODE

AND PDE
* Laplace Transform

— Not in time domain, rather in frequency domain

— Derivatives and integral become some operators.

— ODE is converted into algebraic equation

— PDE is converted into ODE in spatial coordinate

— Need inverse transform to recover time-domain solution

(D.E. calculation)

(Algebraic calculation)
CHBE320 Process Dynamics and Control
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DEFINITION OF LAPLACE TRANSFORM

+ Definition

F(s) = 2{f(0)} 2 fo (e de

— F(s) is called Laplace transform of f(t).
— f{¢) must be piecewise continuous.

— F(s) contains no information on f{?) for 1 <0.

— The past information on f(?) (for ¢ <0) is irrelevant.
— The s is a complex variable called “Laplace transform variable”

* Inverse Laplace transform

f(&) = 27HF(s)}

— ¢ and ¢ tare linear.  g{af; (¢t) + by ()} = aFy(s) + bF,(s)
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LAPLACE TRANSFORM OF FUNCTIONS

* Constant function, a
J=0-(-9)=

° a
2{a} = f ae~Stdt = ——e~St
o s

) N

» Step function, S(¥)

jo=s0=fy =1

()
=0—(-=)==
0 N N

« Exponential function, ¢

*© 1
2{S(t)} = J- e Stdt = — —e~St
o s

1

oo _1 o
Qe bt :f —bto=stgs — —(b+s)t =
e ee s+b € s+b

o 0
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+ Trigonometric functions
— Euler’s Identity:

eJ®t 2 coswt +jsinwt

1, . _ 1
coswt:E(eJ“’t+e'1‘") SlnthZ—j(e”‘”—e o)

sin(t)
1

NN

Uzw_n\/ t

w

sinwt}=¢ le"“’t -8 le'j“’f L (S
2j 2j 2j\s—jw s+jw

s2

N

+ w?

5l{cosa)t}=53{1(3/"‘”}+53{le"""‘}=1 LI
2 2 2\s—jo s+jo

* Rectangular pulse, P(7)

0 fort>t,
f@® =P(t)={h fort,=t=0
0 fort<O
ty h tw
.{P(t)} = f he™Stdt = ——e~St| =—(1—e~twS)
0 S S

0
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* Impulse function, sq)

0 fort>t,
f(®) =8(t) = lim 11/t fort, >¢>0
v 0 fort<o0

1
—(1-etw) =1
twS

w

tw 1
2{6(t)} = lim f —e~Stdt = lim
tw=0Jy ty tw—0

(L'Hospital'srule: ltg G f'(t))

0g(®) 0 g'(0)
* Ramp function, ¢

2{t} = f te=Stdt
0

t © coe—st 1(® 1
=—e" —f dt=—f e~Stdt =—
o Jo =S sy s

—-s
(Integration by part: J- flogdt=f- g|:c —f f- g'dt)
0 0

st

52 + w?

Korea University

* Refer the Table 3.1 (Seborg et al.) for other functions
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PROPERTIES OF LAPLACE TRANSFORM

» Differentiation
ﬁ{%} = J:cf’ ceTS dt = f(t)e st

” J-mfA(—s)e’Sfdt (by i.b.p.)
0

0

=sJ- f-e *dt—f(0)=sF(s)— f(0)

0

d*f ® Y s T * s © L .
Q{W}z.fof ce~Stdt = f(t)'e O_J;)f.(_s)e dt:sfofle tdt — £(0)

= 5(sF(s) = £(0)) — f'(0) = s?F(s) — sf(0) — f'(0)

an ) o )
L _f = J‘ f(n) . efstdt = f(t)(nfl)efs _J‘ f(nfl) . (—S)eiStdt
dtn o 0 o
© dnflf
=s fo fED . emStdt — fOD(0) = 5 (ﬁ {FD - F®=D(0)
= S"F(s) = "7 (0) = o= sf"TD(0) — fD(0)
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« KO =/0)=/"0)=..=f"D0)=0, =50

dt
— Initial condition effects are vanished. A
el——=t = s2F
— It is very convenient to use deviation tz} . SFE
variables so that all the effects of {d"f} '
8= =S"F(s)
initial condition vanish. t

* Transforms of linear differential equations.

YO—Y(E),  u®——U(s)
DO 2 s G y0) = 0)
P2 Ssr(s) G y(0) =
dy(t) e
1'7 = —y(t) + Ku(t) (y(0) =0)—>(ts+ 1)Y(s) = KU(s)
aT, T, 1 oT, N N
= T o (= Tt T+ (taus + D) = T )
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* Integration

9{ fo tf(f)df} - fo ) < fo tf(s‘)df)e’“dt

e-st [t 04 o B F(s) ‘
- @ 0 o) remae=T2 wyinp)

g rule: 4 b(t) de = Fobcen 22O da(t)
(Lel niz rule: Efa(t) f(@dr = f( (t))T—f(a(t))7>

* Time delay (Translation in time)

S
r—

+6ine
fO——f(t-6)S(t-6) . P

f(t—0)S(t— )} = f:f(t — 0)e~stdt = fwf(r)e‘s(”s)dr (lett=t—6)
0

=e0s fmf(r)e’”d‘r = e OSF(s)
0

* Derivative of Laplace transform

dF(S) — d e —st — J-OO d —st — f‘“ —st —
s —dsjofe dt—ofdse dt—o(tf)e dt = g[-t- f(t)]
CHBE320 Process Dynamics and Control Korea University 5-13

* Final value theorem
— From the LT of differentiation, as s approaches to zero

lim mﬂ-e—s dt = fmﬂ-lime—s dt = lim[sF(s) — £ (0)]
dt 0 dt —0

s-0 0 s-0 S

fwﬂdt = f(00) — f(0) =limsF(s) — f(0) =|f(0) =lims F(s)
0 dt -0 $=0

— Limitation: f(w) has to exist. If it diverges or oscillates,
this theorem is not valid.
+ Initial value theorem
— From the LT of differentiation, as s approaches to infinity

“d
tn [[ e de= IylsF) - o)
_(*df ) )
lim | —e™Stdt =0 = lim s F(s) — f(0) =|f(0) = lim s F(s)
s> Jo dt s—>00 s>
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EXAMPLE ON LAPLACE TRANSFORM (1)

1.5t for0<t<2

or
3 ft =]
: () 0 f0r6<t

e 6 ¢ 0 fort <0

F(6) = 1.5tS(t) — 1.5(t — 2) S(t — 2) — 3S(t — 6)

1.5 3
“FE=2fOy=7z0- e %)~ ;9765
e ForF(s)= &, find £(0) and f (o).

— Using the initial and final value theorems

. _2s . 25
fO=lmsF© =lmmg=2  f()=lmsr() =lim=g=0
— But the final value theorem is not valid because
lim £ (t) = lim 2 et
t—ooo t—ooo
CHBE320 Process-Dymamics and Control Korea University 5-15

EXAMPLE ON LAPLACE TRANSFORM (2)

* What is the final value of the following system?
x" +x"+x =sint; x(0) =x'(0) =0
1
TGP+ DGZ+s+ D)

1
2 = —
= s°X(s) +sX(s)+X ) = x(s)

. S —
x(0) = ?—% 2+ 1D(s2+s+1) 0

— Actually, x(0) cannot be defined due to sin 7 term.

* Find the Laplace transform for (tsinwt) ?

dF
From % = 8[—t- f(t)]
. d W 2ws
Lt -sinwt] = _E[sz + wz] - (s + w?)?
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INVERSE LAPLACE TRANSFORM

« Used to recover the solution in time domain

LHF()} =f®

— From the table
— By partial fraction expansion

— By inversion using contour integral
1
—q-1 — N3
F® = 2 HF©) = 5 i eStF(s)ds

« Partial fraction expansion
— After the partial fraction expansion, it requires to know some
simple formula of inverse Laplace transform such as
1 s n—1)! e ?
(zs+ 1)’ (s+b)2+w? s* 1252+ 201s+ 1’ ete.
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PARTIAL FRACTION EXPANSION

N(s) N(s) @
D(s) (s+p)(s+py) (s+p) (s +pn)

F(s) =

+ Case l: All p/s are distinct and real
— By a root-finding technique, find all roots (time-consuming)
— Find the coefficients for each fraction
* Comparison of the coefficients after multiplying the denominator
* Replace some values for s and solve linear algebraic equation
* Use of Heaviside expansion
— Multiply both side by a factor, (s+p,), and replace s with —p,.
N(s)
D) s=-p;

a; = (s+py)

— Inverse LT:

f(t) = are Pt + aze P2t + ... 4 g e Pnt

CHBE320 Process Dynamics and Control Korea University 5-18



+ Case Il: Some roots are repeated

_N(s)  N(s)  br_ys"'+et+by g by
D) (s+p)r G+pT (+p) (s+p)

F(s)

Each repeated factors have to be separated first.

Same methods as Case I can be applied.
Heaviside expansion for repeated factors

_1.d® (N(s) .
Ar—j = L'_!dS(i) <D(S) (S + P) >

(i=0,,r—1)

s=—p

Inverse LT

a
t) =ae™P +ayte P4 b ———t""le7P
f®) =a 2 D

CHBE320 Process Dynamics and Control Korea University 5-19

» Case lll: Some roots are complex

N(s)  ¢as+cg  ai(s+b)+piw

) =) v ds+dy . b2 +a?

— Each repeated factors have to be separated first.

— Then,
a(s+b)+pw (s+b) + w
(s+b2+w?2 ~ '(s+b)?+w? ﬁl(s+b)2+w2
where b =d,/2, w= ,do_d12/4
a; = Cq, By =(co—ayb)/w
— Inverse LT

f(©) =aePcoswt + e Pisinwt

CHBE320 Process Dynamics and Control Korea University 5-20
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EXAMPLES ON INVERSE LAPLACE
TRANSFORM

. ' (s+5)

A

B

C

sG+DGE+2)G+3)

N

s+1

s+2

13 (distinct)

— Multiply each factor and insert the zero value

(s+5) —(a B c D
LTSRS R )|
(s+5 | :<A(s+1)+B+C(s+l) D(s+1)>
s(s+2)(s+3)|__, s s+2 s+3
(s+5 | _(AGs+2) B(s+2) D(s+2
ssHDE+3)|,_, s T Terd s+3
(s+5 | _[A(s+3) B(s+3) C(s+3)
s(s+1)(s+2)|3;3’< PR s+2 +D>

S f®) =27 YF(s)} = g —2et +Ee'2 —%e*

2

CHBE320 Process Dynamics and Control

1 As +Bs+C

D

o F(s)=

(+D3(s+2)  (s+1)3

1=(4s?+Bs+C)(s+2)+D(s+1)3
=(A+D)s*+ A+ B +3D)s*+ (2B + C +3D)s + (2C + D)

~A=-D, 2A+B+3D=0,
>4=1, B=1 (=1,
— Use of Heaviside expansion

s? +s+1 o a;

(s+2)

2B+C+3D =0,

Gr1? Gt Gzt

(i=0): a3=(sz+s+1)|

_ 1d
(i=1):a,= 1'd —(s?+s+1)

("_2) a; = 2|d2

Ssf®) =27 YHF(s)}=et—tet

CHBE320 Process Dynamics and Control

—(s?2+s+1)

1
+Et2€_t -

D=-1
1d®
G TG5O
as
(s+1)3
=1

s=-1

b

=-1

s=-1

=1

e

-2t

N(s)
D(s)

¢A25/6

ﬁc—3/2

=-1/3
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(repeated)

20+D =1

(s +P)) @=0r=-1

s=—p

Korea University 5-22
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(s+1) _A(s+2)+B  Cs+D
s2(s2+4s+5) (s+2)2+1 s?

* F(s) = (complex)

s+1=A(s+2)s?+Bs?+ (Cs+D)(s?+4s+5)
=(A+C)s®+ (2A+ B +4C + D)s? + (5C + 4D)s + 5D

“A=-C, 2A+B+4C+D=0, 5C+4D=1,  5D=1
>A=-1/25, B=-7/25, (C=1/25, D=1/5
AG+2)+B 1 (s+2) 7 B

(s+22+1  25(s+2)2+1 25(s+2)2+1

Cs+D _11 11
s2 255 552

1 7 1 1
. _ -1 __ —2t _ —2t -
s~ () =7 HF(s)} 75 cost 75 smt+25+5t

CHBE320 Process Dynamics and Control Korea University 5-23
F(s) = Lt (-4 1+ e72%) (Time del
« FO =G s+ \asr1T3s+1) e ) (Timedelay)
A=1/@s+1)| =4, B=1/(4s+1)| =-3
s=—1/4 s=-1/3

4 3 4e=28 3e~?
‘ o o1 _ -1 _
f(t)—ﬂ {F(S)}—Q {4S+1 354_1}4—/8 {4S+1 3S+1}

= e 4 — gmt/3 4 (e=(-D/4 — o=(t-2)/3) 5(¢ — 2)
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SOLVING ODE BY LAPLACE TRANSFORM

* Procedure
1. Given linear ODE with initial condition,
2. Take Laplace transform and solve for output
3. Inverse Laplace transform

dy
. Example: Solve for SE+ 4y =2; y(0) =1

L {5 %} + 2{4y} = 8{2} = 5(sY(s) —y(0)) +4Y(s) = %
5s+2

2
(55+4)Y(5) =;+ 5= Y(S) = m

Ly@) =L Hr(s)} =87t {05_5 + SSZE 4} = 0.5+ 0.5708¢
CHBE320 Process Dynamics and Control Korea University 5-25
TRANSFER FUNCTION (1)

* Definition
— An algebraic expression for the dynamic relation between the
input and output of the process model

dy U(s) Transfer (s)
SE +4y=u; y(0)=1 Fu‘nction, G(s)
Lety=y—landii=u—4

55+ 47 (s) = U(s) = o) 1 G(s)

(5s N=V6) = 59755 +a ¥

* How to find transfer function

Find the equilibrium point

If the system is nonlinear, then linearize around equil. point
Introduce deviation variables

Take Laplace transform and solve for output

Do the Inverse Laplace transform and recover the original
variables from deviation variables

M e

CHBE320 Process Dynamics and Control Korea University 5-26
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TRANSFER FUNCTION (2)

» Benefits

— Once TF is known, the output response to various given inputs
can be obtained easily.

y(®) = HY(9)} = THEOU ()} # LHE()ILTHU()}

— Interconnected system can be analyzed easily.
* By block diagram algebra

X o —e1}He2 Y Y(s)  GI(s)G2(s)

[c3] — X(s) 14 G1(s)G2(s)G3(s)

— Easy to analyze the qualitative behavior of a process, such as
stability, speed of response, oscillation, etc.
* By inspecting “Poles” and “Zeros”
+ Poles: all s’s satisfying D(s)=0
» Zeros: all s’s satisfying N(s)=0

CHBE320 Process Dynamics and Control Korea University 5-27

TRANSFER FUNCTION (3)

+ Steady-state Gain: The ratio between ultimate
changes in input and output

Aouput _ (y(°) — y(0))
Ainput — (u(o0) — u(0))

Gain=K =

— For a unit step change in input, the gain is the change in output

— Gain may not be definable: for example, integrating processes
and processes with sustaining oscillation in output

From the final value theorem, unit step change in input with
zero initial condition gives

K= mz limsY(s) = limsG(s)l =1lim G (s)
1 50 5-0 s s-0
— The transfer function itself is an impulse response of the
system  y(s) = G(s)U(s) = G(s)L{E(H)} = G(s)

CHBE320 Process Dynamics and Control Korea University 5-28
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EXAMPLE

* Horizontal cylindrical storage tank (Ex4.7)

dm  dV
dt —Pdt—Pqi Pq

Re )1
14 dh h
V(h) = fo Lwi(R)dh = —- = Lw;(h) - W KB
wi(h)/2 =[R2 = (R —h)2 = /2R — h)h
L4 S 1 ( ) (Nonlinear ODE)
wil—=gq; — —_= i onlinear
a1 dt  2L/(D - h)h a4
— Equilibrium point: (3;,3,h) 0=(q—q /@LJ|(D-hh
(if §; =G, h can be any valuein 0 <h <D.)
— Linearization:
dh a _ 2 a
E:f(h,qi,q)=£ (h—h)+—f_ (qi—r?i)+a—f @-o
(@) Uil hq.a) ()
CHBE320 Process Dynamics and Control Korea University 5-29
af| G- D=0 (=)
a7 =4~ Dy = vqi=4q
o g, Oh2L\(D - W)k Let this term be &
B -1 of
Wl Gg  2LJ@ =R %l a0

sH(s) = kQ;(s) — kQ(s)

~ ~ k
* Transfer function between | f(s)and Q(s): —< (integrating)

* Transfer function between | 77 (5) and g,(s): k (integrating)
N

« Ifh is near 0 or D, k becomes very large and £ is around D/2, k
becomes minimum.

= The model could be quite different depending on the operating
condition used for the linearization.

= The best suitable range for the linearization in this case is
around D/2. (less change in gain)

= Linearized model would be valid in very narrow range near 0.
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PROPERTIES OF TRANSFER FUNCTION

g Xy(s) Yi(s)
« Additive property ——— Gy(s) Yis)
Y(s) = Yi(s) + Y2(s) X | %
= G61(8)X1(8) + G2(8)X2(s)  ——  Guls) Y,(5)
* Multiplicative property
X[ e [ o P
X3(s) = G2(5)X2(s) ' ’

= G (s)[G1(5)X1(s)]

* Physical realizability

— In a transfer function, the order of numerator(m) is greater
than that of denominator(n): called “physically unrealizable”

— The order of derivative for the input is higher than that of
output. (requires future input values for current output)
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EXAMPLES ON TWO TANK SYSTEM

+ Two tanks in series (Ex3.7) & %J
U

. c
— No reaction SO A T LBt E2
C.
v dey + \J—n 2 qz
—_— Ci = Ci
1 dt qc, qc; v,
St 1 v,
dcz = - Siage 2
VZ dt + qcz =46 Figure 3.4. Two-stage stirred-tank uacm"::rstem

— Initial condition: ¢,(0)= c,(0)=1 kg mol/m? (Use deviation var.)
— Parameters: V;/¢q=2 min., V,/g=1.5 min.
— Transfer functions

Ci(s) _ 1 Cy(s) _ 1
Ci(s) /@s+1 66) (/s +1
C2(s) _ C2(s) Ci(s) _ 1

Ci(s)  Ci(s) Ci(s) (/s +D((Vi/9)s+1)

CHBE320 Process Dynamics and Control Korea University 5-32



* Pulse input &

CF () =2 (1~ e7025) T1

0.25 p

« Equivalent impulse input

Cl(s) = 8{(5 x 0.25)8(t)} = 1.25

* Pulse response vs. Impulse response

5 = = = Impulse input
C"p — 1— —0.25s —_— H::(angul::“pu\seinpu[
5 +10 O 5zt

5 10 ) —0.25s 1.50 H -
_(2_25+1 A-e

<) thg mot/m™)
s(ef () =51 —e7?)
—5(1— e~ (t7029/2) (£ — 0.25) ]

(s =

CE(s) = o P (5) =

1
i L 1
2s+1 ¢ 25+1) g 2 a 6 10
- - Time (miry
= [ = 0.625e7t/2 Figure 35. Resclor Stage 1 respons.
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@2s+1D@A5s+1) ¢ s(2s+1)(1.5s+ 1)
5 40 22.5

[ [ . _ p—0.25s

_<s 25+1+1.55+1>(1 e

Ch(s) = (1 - e7025)

=85 (1) = (5 — 20e7t/2 + 15¢71/15)
— (5 —20e~(t7025)/2 4 15¢-(t-025)/15y 5(¢ — (.25)

o - S
ik :22!.’:;;?;1“3“‘,.,",]
Ci(s) = ! Cl(s) i
z 2s+1)(A5s+1) ¢
_ 1.25 <2 (kg mom’)
T (2s+1)(1.55+1) "
5 3.75
T 2s+1 15s+1
=[ef = 2.5¢7/2 — 2.5¢7/1 .
0 4 & 10
Time (min) ’
Figure 3.7. Reactor Stage 2 response.
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