CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION

Professor Dae Ryook Yang

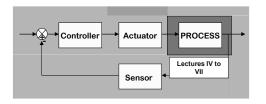
Fall 2021 Dept. of Chemical and Biological Engineering **Korea University**

CHBE320 Process Dynamics and Control

Korea University 5-1

Road Map of the Lecture V

- Laplace Transform and Transfer functions
 - Definition of Laplace transform
 - Properties of Laplace transform
 - Inverse Laplace transform
 - Definition of transfer function
 - How to get the transfer functions
 - Properties of transfer function



CHBE320 Process Dynamics and Control

SOLUTION OF LINEAR ODE

- 1st-order linear ODE
 - Integrating factor: For $\frac{dx}{dt} + a(t)x = f(t)$, I.F. = $\exp(\int a(t)dt)$ $[xe^{\int a(t)dt}]' = f(t)e^{\int a(t)dt}$ $\longrightarrow x(t) = [\int f(t)e^{\int a(t)dt} dt + C]e^{-\int a(t)dt}$
- High-order linear ODE with constant coeffs.
 - Modes: roots of characteristic equation

For
$$a_2x'' + a_1x' + a_0x = f(t)$$
,
$$a_2p^2 + a_1p + a_0 = a_2(p - p_1)(p - p_2) = 0$$

- Depending on the roots, modes are
 - Distinct roots: (e^{-p₁t}, e^{-p₂t})
 Double roots: (e^{-p₁t}, te^{-p₁t})
 - Imaginary roots: $(e^{-\alpha t} \cos \beta t, e^{-\alpha} \sin \beta t)$

Solution is a linear combination of modes and the coefficients are decided by the initial conditions.

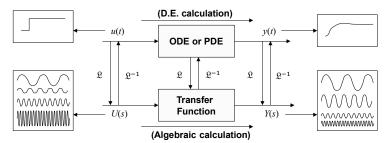
· Many other techniques for different cases

CHBE320 Process Dynamics and Control

Korea University 5-3

LAPLACE TRANSFORM FOR LINEAR ODE AND PDE

- Laplace Transform
 - Not in time domain, rather in frequency domain
 - Derivatives and integral become some operators.
 - ODE is converted into algebraic equation
 - PDE is converted into ODE in spatial coordinate
 - Need inverse transform to recover time-domain solution



CHBE320 Process Dynamics and Control

Korea University

5-4

DEFINITION OF LAPLACE TRANSFORM

Definition

$$F(s) = \mathfrak{L}{f(t)} \triangleq \int_0^\infty f(t)e^{-s} dt$$

- $\overline{F(s)}$ is called Laplace transform of f(t).
- f(t) must be piecewise continuous.
- F(s) contains no information on f(t) for t < 0.
- The past information on f(t) (for t < 0) is irrelevant.
- The s is a complex variable called "Laplace transform variable"
- Inverse Laplace transform

$$f(t) = \mathfrak{L}^{-1}\{F(s)\}$$

- \mathfrak{L} and \mathfrak{L}^{-1} are linear. $\mathfrak{L}\{af_1(t) + bf_2(t)\} = aF_1(s) + bF_2(s)$

CHBE320 Process Dynamics and Control

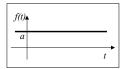
Korea University 5

5-5

LAPLACE TRANSFORM OF FUNCTIONS

• Constant function, a

$$\mathfrak{L}{a} = \int_0^\infty ae^{-st} dt = -\frac{a}{s}e^{-st}\Big|_0^\infty = 0 - \left(-\frac{a}{s}\right) = \frac{a}{s}$$



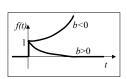
• Step function, S(t)

$$f(t) = S(t) = \begin{cases} 1 & \text{for } t \ge 0 \\ 0 & \text{for } t < 0 \end{cases}$$

$$\mathfrak{L}\{S(t)\} = \int_{0}^{\infty} e^{-st} dt = -\frac{1}{s} e^{-st} \bigg|_{0}^{\infty} = 0 - \left(-\frac{1}{s}\right) = \frac{1}{s}$$

• Exponential function, e-bt

$$\mathfrak{Q}\{e^{-bt}\} = \int_0^\infty e^{-bt} e^{-st} dt = \frac{-1}{s+b} e^{-(b+s)t} \bigg|_0^\infty = \frac{1}{s+b}$$

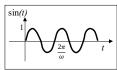


CHBE320 Process Dynamics and Control

Trigonometric functions

- **Euler's Identity:**
$$e^{j\omega t} \triangleq \cos \omega t + j \sin \omega t$$

 $\cos \omega t = \frac{1}{2} (e^{j\omega t} + e^{-j\omega})$ $\sin \omega t = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega})$



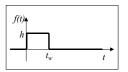
$$\mathfrak{L}\{\sin\omega\,t\} = \mathfrak{L}\left\{\frac{1}{2j}e^{j\omega t}\right\} - \mathfrak{L}\left\{\frac{1}{2j}e^{-j\omega t}\right\} = \frac{1}{2j}\left(\frac{1}{s-j\omega} - \frac{1}{s+j\omega}\right) = \frac{\omega}{s^2 + \omega^2}$$

$$\mathfrak{L}\{\cos\omega\,t\} = \mathfrak{L}\left\{\frac{1}{2}e^{j\omega t}\right\} + \mathfrak{L}\left\{\frac{1}{2}e^{-j\omega t}\right\} = \frac{1}{2}\left(\frac{1}{s-j\omega} + \frac{1}{s+j\omega}\right) = \frac{s}{s^2+\omega^2}$$

• Rectangular pulse, P(t)

$$f(t) = P(t) = \begin{cases} 0 & \text{for } t > t_w \\ h & \text{for } t_w \ge t \ge 0 \\ 0 & \text{for } t < 0 \end{cases}$$

$$\mathfrak{L}\{P(t)\} = \int_0^{t_w} h e^{-st} dt = -\frac{h}{s} e^{-st} \bigg|_0^{t_w} = \frac{h}{s} (1 - e^{-t_w s})$$



CHBE320 Process Dynamics and Control

Korea University

• Impulse function, $\delta(t)$

$$f(t) = \delta(t) = \lim_{t_w \to 0} \begin{cases} 0 & \text{for } t > t_w \\ 1/t_w & \text{for } t_w \ge t \ge 0 \\ 0 & \text{for } t < 0 \end{cases}$$

$$\begin{array}{c|c} f(t) \\ \hline 1/t_w \\ \hline \\ t_w \\ t \end{array}$$

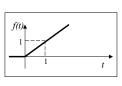
$$\mathfrak{L}\{\delta(t)\} = \lim_{t_w \to 0} \int_0^{t_w} \frac{1}{t_w} e^{-st} dt = \lim_{t_w \to 0} \frac{1}{t_w s} (1 - e^{-t_w s}) = 1$$

$$\left(\text{L'Hospital's rule: } \lim_{t \to 0} \frac{f(t)}{g(t)} = \lim_{t \to 0} \frac{f'(t)}{g'(t)}\right)$$

Ramp function, t

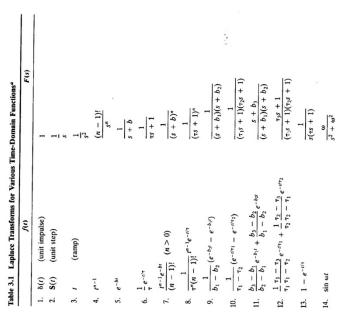
$\mathfrak{L}{t} = \int_0^\infty t e^{-st} dt$ $= \frac{t}{-s} e^{-st} \Big|_0^\infty - \int_0^\infty \frac{e^{-st}}{-s} dt = \frac{1}{s} \int_0^\infty e^{-st} dt = \frac{1}{s^2}$

(Integration by part: $\int_{0}^{\infty} f' \cdot g dt = f \cdot g \Big|_{0}^{\infty} - \int_{0}^{\infty} f \cdot g' dt$)



Refer the Table 3.1 (Seborg et al.) for other functions

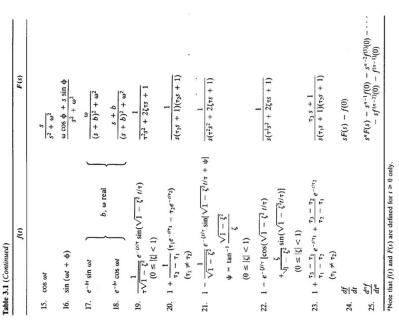
CHBE320 Process Dynamics and Control



CHBE320 Process Dynamics and Control

Korea University

5-9



CHBE320 Process Dynamics and Control

Korea University 5-10

PROPERTIES OF LAPLACE TRANSFORM

Differentiation

$$\mathfrak{L}\left\{\frac{df}{dt}\right\} = \int_0^\infty f' \cdot e^{-s} \ dt = f(t)e^{-st}\Big|_0^\infty - \int_0^\infty f \cdot (-s)e^{-st} dt \qquad \text{(by } i.b.p.)$$

$$= s \int_0^\infty f \cdot e^{-s} \ dt - f(0) = sF(s) - f(0)$$

$$\mathfrak{L}\left\{\frac{d^2f}{dt^2}\right\} = \int_0^\infty f'' \cdot e^{-st} dt = f(t)'e^{-s} \Big|_0^\infty - \int_0^\infty f' \cdot (-s)e^{-s} dt = s \int_0^\infty f' \cdot e^{-st} dt - f'(0)$$

$$= s(sF(s) - f(0)) - f'(0) = s^2F(s) - sf(0) - f'(0)$$

$$\begin{split} \mathfrak{L}\left\{ &\frac{d^{n}f}{dt^{n}} \right\} = \int_{0}^{\infty} f^{(n)} \cdot e^{-st} dt = f(t)^{(n-1)} e^{-s} \Big|_{0}^{\infty} - \int_{0}^{\infty} f^{(n-1)} \cdot (-s) e^{-st} dt \\ &= s \int_{0}^{\infty} f^{(n-1)} \cdot e^{-st} dt - f^{(n-1)}(0) = s \left(\mathfrak{L}\left\{ \frac{d^{n-1}f}{dt^{n-1}} \right\} \right) - f^{(n-1)}(0) \\ &= s^{n}F(s) - s^{n-1}f(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0) \end{split}$$

CHBE320 Process Dynamics and Control

Korea University 5-11

- If $f(0) = f'(0) = f''(0) = \dots = f^{(n-1)}(0) = 0$, $g\left\{\frac{df}{dt}\right\} = sF(s)$
 - Initial condition effects are vanished.
 - It is very convenient to use deviation variables so that all the effects of initial condition vanish.

$$\mathfrak{L}\left\{\frac{df}{dt}\right\} = sF(s)$$

$$\mathfrak{L}\left\{\frac{d^2f}{dt^2}\right\} = s^2F(s)$$

$$\vdots$$

$$\mathfrak{L}\left\{\frac{d^n f}{dt^n}\right\} = s^n F(s)$$

· Transforms of linear differential equations.

$$y(t) \xrightarrow{\varrho} Y(s), \qquad u(t) \xrightarrow{\varrho} U(s)$$

$$\frac{dy(t)}{dt} \xrightarrow{\varrho} sY(s) \quad (\text{if } y(0) = 0)$$

$$\tau \frac{dy(t)}{dt} = -y(t) + Ku(t) \ (y(0) = 0) \xrightarrow{\mathfrak{L}} (\tau s + 1)Y(s) = KU(s)$$

$$\frac{\partial T_L}{\partial t} = -v \frac{\partial T_L}{\partial z} + \frac{1}{\tau_{tv}} (T_w - T_L) \xrightarrow{\mathfrak{L}} \tau_{HL} v \frac{\partial \tilde{T}_L(s)}{\partial z} + (\tau_{HL} s + 1) \tilde{T}_L(s) = \tilde{T}_w(s)$$

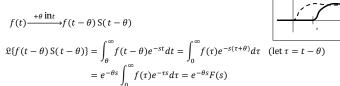
CHBE320 Process Dynamics and Control

Integration

$$\mathfrak{L}\left\{\int_{0}^{t} f(\xi)d\xi\right\} = \int_{0}^{\infty} \left(\int_{0}^{t} f(\xi)d\xi\right) e^{-st}dt$$

$$= \frac{e^{-st}}{-s} \int_{0}^{t} f(\xi)d\xi \int_{0}^{\infty} \mathbf{f} \cdot \mathbf{$$

• Time delay (Translation in time)



· Derivative of Laplace transform

$$\frac{dF(s)}{ds} = \frac{d}{ds} \int_0^\infty f \cdot e^{-st} dt = \int_0^\infty f \cdot \frac{d}{ds} e^{-st} dt = \int_0^\infty (-t \cdot f) e^{-st} dt = \mathfrak{L}[-t \cdot f(t)]$$

CHBE320 Process Dynamics and Control

Korea University 5-13

Final value theorem

- From the LT of differentiation, as s approaches to zero

$$\lim_{s \to 0} \int_0^\infty \frac{df}{dt} \cdot e^{-s} dt = \int_0^\infty \frac{df}{dt} \cdot \lim_{s \to 0} e^{-s} dt = \lim_{s \to 0} [sF(s) - f(0)]$$

$$\int_0^\infty \frac{df}{dt} dt = f(\infty) - f(0) = \lim_{s \to 0} sF(s) - f(0) \Rightarrow f(\infty) = \lim_{s \to 0} sF(s)$$

- Limitation: $f(\infty)$ has to exist. If it diverges or oscillates, this theorem is not valid.

Initial value theorem

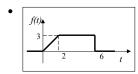
- From the LT of differentiation, as s approaches to infinity

$$\lim_{s \to \infty} \int_0^\infty \frac{df}{dt} \cdot e^{-s} dt = \lim_{s \to \infty} [sF(s) - f(0)]$$

$$\lim_{s \to \infty} \int_0^\infty \frac{df}{dt} e^{-st} dt = 0 = \lim_{s \to \infty} sF(s) - f(0) \Rightarrow f(0) = \lim_{s \to \infty} sF(s)$$

CHBE320 Process Dynamics and Control

EXAMPLE ON LAPLACE TRANSFORM (1)



$$f(t) = \begin{cases} 1.5t & \text{for } 0 \le t < 2\\ 3 & \text{for } 2 \le t < 6\\ 0 & \text{for } 6 \le t\\ 0 & \text{for } t < 0 \end{cases}$$

$$f(t) = 1.5t \,S(t) - 1.5(t-2) \,S(t-2) - 3 \,S(t-6)$$

$$\therefore F(s) = \mathfrak{L}\{f(t)\} = \frac{1.5}{s^2} (1 - e^{-2s}) - \frac{3}{s} e^{-6s}$$

- For $F(s) = \frac{2}{s-5}$, find f(0) and $f(\infty)$.
 - Using the initial and final value theorems

$$f(0) = \lim_{s \to \infty} s F(s) = \lim_{s \to \infty} \frac{2s}{s - 5} = 2s$$

$$f(0) = \lim_{s \to \infty} s F(s) = \lim_{s \to \infty} \frac{2s}{s - 5} = 2 \qquad f(\infty) = \lim_{s \to 0} s F(s) = \lim_{s \to 0} \frac{2s}{s - 5} = 0$$

- But the final value theorem is not valid because

$$\lim_{t \to \infty} f(t) = \lim_{t \to \infty} 2 e^{5t}$$

CHBE320 Process=Dynamics and Control

Korea University 5-15

EXAMPLE ON LAPLACE TRANSFORM (2)

· What is the final value of the following system?

$$x'' + x' + x = \sin t$$
; $x(0) = x'(0) = 0$

$$\Rightarrow s^{2}X(s) + sX(s) + X = \frac{1}{s^{2} + 1} \Rightarrow x(s) = \frac{1}{(s^{2} + 1)(s^{2} + s + 1)}$$

$$\chi(\infty) = \lim_{s \to 0} \frac{s}{(s^2 + 1)(s^2 + s + 1)} = 0$$

- Actually, $\chi(\infty)$ cannot be defined due to sin t term.
- Find the Laplace transform for $(t \sin \omega t)$?

From
$$\frac{dF(s)}{ds} = \mathfrak{L}[-t \cdot f(t)]$$

$$\mathfrak{L}[t \cdot \sin \omega \, t] = -\frac{d}{ds} \left[\frac{\omega}{s^2 + \omega^2} \right] = \frac{2\omega s}{(s^2 + \omega^2)^2}$$

CHBE320 Process Dynamics and Control

INVERSE LAPLACE TRANSFORM

Used to recover the solution in time domain

$$\mathfrak{L}^{-1}\{F(s)\} = f(t)$$

- From the table
- By partial fraction expansion
- By inversion using contour integral

$$f(t) = \mathfrak{L}^{-1}{F(s)} = \frac{1}{2\pi i} \oint_C e^{st} F(s) ds$$

Partial fraction expansion

 After the partial fraction expansion, it requires to know some simple formula of inverse Laplace transform such as

$$\frac{1}{(\tau s+1)}, \frac{s}{(s+b)^2 + \omega^2}, \frac{(n-1)!}{s^n}, \frac{e^{-\theta}}{\tau^2 s^2 + 2\zeta \tau s + 1}, \text{ etc.}$$

CHBE320 Process Dynamics and Control

Korea University 5-17

PARTIAL FRACTION EXPANSION

$$F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s+p_1)\cdots(s+p_n)} = \frac{\alpha_1}{(s+p_1)} + \dots + \frac{\alpha_n}{(s+p_n)}$$

- Case I: All p_i 's are distinct and real
 - By a root-finding technique, find all roots (time-consuming)
 - Find the coefficients for each fraction
 - Comparison of the coefficients after multiplying the denominator
 - Replace some values for s and solve linear algebraic equation
 - Use of Heaviside expansion
 - Multiply both side by a factor, $(s+p_i)$, and replace s with $-p_i$.

$$\alpha_i = (s + p_i) \frac{N(s)}{D(s)} \bigg|_{s = -p_i}$$

- Inverse LT

$$f(t) = \alpha_1 e^{-p_1 t} + \alpha_2 e^{-p_2 t} + \dots + \alpha_n e^{-p_n t}$$

CHBE320 Process Dynamics and Control

· Case II: Some roots are repeated

$$F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s+p)^r} = \frac{b_{r-1}s^{r-1} + \dots + b_0}{(s+p)^r} = \frac{\alpha_1}{(s+p)} + \dots + \frac{\alpha_r}{(s+p)^r}$$

- Each repeated factors have to be separated first.
- Same methods as Case I can be applied.
- Heaviside expansion for repeated factors

$$\alpha_{r-i} = \frac{1}{i!} \frac{d^{(i)}}{ds^{(i)}} \left(\frac{N(s)}{D(s)} (s+p)^r \right) \bigg|_{s=-p} \quad (i=0,\cdots,r-1)$$

- Inverse LT

$$f(t) = \alpha_1 e^{-p} + \alpha_2 t e^{-pt} + \dots + \frac{\alpha_r}{(r-1)!} t^{r-1} e^{-p}$$

CHBE320 Process Dynamics and Control

Korea University 5-19

Case III: Some roots are complex

$$F(s) = \frac{N(s)}{D(s)} = \frac{c_1 s + c_0}{s^2 + d_1 s + d_0} = \frac{\alpha_1 (s+b) + \beta_1 \omega}{(s+b)^2 + \omega^2}$$

- Each repeated factors have to be separated first.
- Then,

$$\frac{\alpha_1(s+b) + \beta_1 \omega}{(s+b)^2 + \omega^2} = \alpha_1 \frac{(s+b)}{(s+b)^2 + \omega^2} + \beta_1 \frac{\omega}{(s+b)^2 + \omega^2}$$

where
$$b=d_1/2$$
, $\omega=\sqrt{{d_0-{d_1}^2/4}}$ $\alpha_1=c_1$, $\beta_1=(c_0-\alpha_1b)/\omega$

- Inverse LT

$$f(t) = \alpha_1 e^{-bt} \cos \omega t + \beta_1 e^{-bt} \sin \omega t$$

CHBE320 Process Dynamics and Control

EXAMPLES ON INVERSE LAPLACE TRANSFORM

•
$$F(s) = \frac{(s+5)}{s(s+1)(s+2)(s+3)} = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+2} + \frac{D}{s+3}$$
 (distinct)

- Multiply each factor and insert the zero value

$$\begin{split} \frac{(s+5)}{(s+1)(s+2)(s+3)}\bigg|_{s=0} &= \left(A+s\frac{B}{s+1}+s\frac{C}{s+2}+s\frac{D}{s+3}\right)\bigg|_{s=0} \Rightarrow A=5/6 \\ \frac{(s+5)}{s(s+2)(s+3)}\bigg|_{s=-1} &= \left(\frac{A(s+1)}{s}+B+\frac{C(s+1)}{s+2}+\frac{D(s+1)}{s+3}\right)\bigg|_{s=-1} \Rightarrow B=-2 \\ \frac{(s+5)}{s(s+1)(s+3)}\bigg|_{s=-2} &= \left(\frac{A(s+2)}{s}+\frac{B(s+2)}{s+1}+C+\frac{D(s+2)}{s+3}\right)\bigg|_{s=-2} \Rightarrow C=3/2 \\ \frac{(s+5)}{s(s+1)(s+2)}\bigg|_{s=-3} &= \left(\frac{A(s+3)}{s}+\frac{B(s+3)}{s+1}+\frac{C(s+3)}{s+2}+D\right)\bigg|_{s=-3} \Rightarrow D=-1/3 \\ \therefore f(t) &= \mathfrak{L}^{-1}\{F(s)\} = \frac{5}{6}-2e^{-t}+\frac{3}{2}e^{-2}-\frac{1}{3}e^{-3} \end{split}$$

CHBE320 Process Dynamics and Control

Korea University 5-21

•
$$F(s) = \frac{1}{(s+1)^3(s+2)} = \frac{As^2 + Bs + C}{(s+1)^3} + \frac{D}{(s+2)}$$
 (repeated)

$$1 = (As^2 + Bs + C)(s+2) + D(s+1)^3$$

$$= (A+D)s^3 + (2A+B+3D)s^2 + (2B+C+3D)s + (2C+D)$$

$$\therefore A = -D, \quad 2A+B+3D = 0, \quad 2B+C+3D = 0, \quad 2C+D = 1$$

$$\Rightarrow A = 1, \quad B = 1, \quad C = 1, \quad D = -1$$

$$- \text{ Use of Heaviside expansion} \quad \alpha_{r-i} = \frac{1}{i!} \frac{d^{(i)}}{ds^{(i)}} \left(\frac{N(s)}{D(s)} (s+p)^r \right) \Big|_{s=-p} \quad (i = 0, \dots, r-1)$$

$$\frac{s^2 + s + 1}{(s+1)^3} = \frac{\alpha_1}{(s+1)} + \frac{\alpha_2}{(s+1)^2} + \frac{\alpha_3}{(s+1)^3}$$

$$(i = 0): \alpha_3 = (s^2 + s + 1) \Big|_{s=-1} = 1$$

$$(i = 1): \alpha_2 = \frac{1}{1!} \frac{d}{ds} (s^2 + s + 1) \Big|_{s=-1} = -1$$

$$(i = 2): \alpha_1 = \frac{1}{2!} \frac{d^2}{ds^2} (s^2 + s + 1) \Big|_{s=-1} = 1$$

$$\therefore f(t) = \mathfrak{L}^{-1} \{F(s)\} = e^{-t} - te^{-t} + \frac{1}{2} t^2 e^{-t} - e^{-2t}$$

CHBE320 Process Dynamics and Control

•
$$F(s) = \frac{(s+1)}{s^2(s^2+4s+5)} = \frac{A(s+2)+B}{(s+2)^2+1} + \frac{Cs+D}{s^2}$$
 (complex)
 $s+1 = A(s+2)s^2+Bs^2+(Cs+D)(s^2+4s+5)$
 $= (A+C)s^3+(2A+B+4C+D)s^2+(5C+4D)s+5D$
 $\therefore A = -C, \quad 2A+B+4C+D = 0, \quad 5C+4D = 1, \quad 5D = 1$
 $\Rightarrow A = -1/25, \quad B = -7/25, \quad C = 1/25, \quad D = 1/5$
 $\frac{A(s+2)+B}{(s+2)^2+1} = -\frac{1}{25}\frac{(s+2)}{(s+2)^2+1} - \frac{7}{25}\frac{B}{(s+2)^2+1}$
 $\frac{Cs+D}{s^2} = \frac{1}{25}\frac{1}{s} + \frac{1}{5}\frac{1}{s^2}$
 $\therefore f(t) = \mathfrak{L}^{-1}{F(s)} = -\frac{1}{25}e^{-2t}\cos t - \frac{7}{25}e^{-2t}\sin t + \frac{1}{25} + \frac{1}{5}t$

CHBE320 Process Dynamics and Control

Korea University 5-23

•
$$F(s) = \frac{1+e^{-2}}{(4s+1)(3s+1)} = \left(\frac{A}{4s+1} + \frac{B}{3s+1}\right)(1+e^{-2s})$$
 (Time delay)

$$A = 1/(3s+1)\Big|_{s=-1/4} = 4, \qquad B = 1/(4s+1)\Big|_{s=-1/3} = -3$$

$$\therefore f(t) = \mathfrak{L}^{-1}{F(s)} = \mathfrak{L}^{-1}\left\{\frac{4}{4s+1} - \frac{3}{3s+1}\right\} + \mathfrak{L}^{-1}\left\{\frac{4e^{-2s}}{4s+1} - \frac{3e^{-2}}{3s+1}\right\}$$

$$= e^{-t/4} - e^{-t/3} + \left(e^{-(t-2)/4} - e^{-(t-2)/3}\right)S(t-2)$$

CHBE320 Process Dynamics and Control

SOLVING ODE BY LAPLACE TRANSFORM

Procedure

- 1. Given linear ODE with initial condition,
- 2. Take Laplace transform and solve for output
- 3. Inverse Laplace transform

• **Example:** Solve for
$$5\frac{dy}{dt} + 4y = 2$$
; $y(0) = 1$

$$2\left\{5\frac{dy}{dt}\right\} + 2\left\{4y\right\} = 2\left\{2\right\} \implies 5(sY(s) - y(0)) + 4Y(s) = \frac{2}{s}$$

$$(5s + 4)Y(s) = \frac{2}{s} + 5 \implies Y(s) = \frac{5s + 2}{s(5s + 4)}$$

$$\therefore y(t) = 2^{-1}\left\{Y(s)\right\} = 2^{-1}\left\{\frac{0.5}{s} + \frac{2.5}{5s + 4}\right\} = 0.5 + 0.5e^{-0.8t}$$

CHBE320 Process Dynamics and Control

Korea University 5-25

TRANSFER FUNCTION (1)

Definition

An algebraic expression for the dynamic relation between the input and output of the process model

$$5\frac{dy}{dt} + 4y = u; \ y(0) = 1$$
Let $\tilde{y} = y - 1$ and $\tilde{u} = u - 4$

$$(5s + 4)\tilde{Y}(s) = \tilde{U}(s) \Rightarrow \frac{\tilde{Y}(s)}{\tilde{U}(s)} = \frac{1}{5s + 4} = 0.25$$

$$1.25s + 1$$

$$G(s)$$

· How to find transfer function

- 1. Find the equilibrium point
- 2. If the system is nonlinear, then linearize around equil. point
- 3. Introduce deviation variables
- 4. Take Laplace transform and solve for output
- 5. Do the Inverse Laplace transform and recover the original variables from deviation variables

CHBE320 Process Dynamics and Control

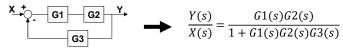
TRANSFER FUNCTION (2)

Benefits

 Once TF is known, the output response to various given inputs can be obtained easily.

$$y(t) = \mathfrak{L}^{-1}{Y(s)} = \mathfrak{L}^{-1}{G(s)U(s)} \neq \mathfrak{L}^{-1}{G(s)}\mathfrak{L}^{-1}{U(s)}$$

- Interconnected system can be analyzed easily.
 - By block diagram algebra



- Easy to analyze the qualitative behavior of a process, such as stability, speed of response, oscillation, etc.
 - · By inspecting "Poles" and "Zeros"
 - Poles: all s's satisfying D(s)=0
 - Zeros: all s's satisfying N(s)=0

CHBE320 Process Dynamics and Control

Korea University 5-27

TRANSFER FUNCTION (3)

Steady-state Gain: The ratio between ultimate changes in input and output

Gain=
$$K = \frac{\Delta \text{ouput}}{\Delta \text{input}} = \frac{(y(\infty) - y(0))}{(u(\infty) - u(0))}$$

- For a unit step change in input, the gain is the change in output
- Gain may not be definable: for example, integrating processes and processes with sustaining oscillation in output
- From the final value theorem, unit step change in input with zero initial condition gives

$$K = \frac{y(\infty)}{1} = \lim_{s \to 0} s \, Y(s) = \lim_{s \to 0} s \, G(s) \frac{1}{s} = \lim_{s \to 0} G(s)$$

- The transfer function itself is an impulse response of the system $Y(s) = G(s)U(s) = G(s)\Re\{\delta(t)\} = G(s)$

CHBE320 Process Dynamics and Control

EXAMPLE

Horizontal cylindrical storage tank (Ex4.7)

$$\frac{dm}{dt} = \rho \frac{dV}{dt} = \rho q_i - \rho q$$

$$V(h) = \int_0^h Lw_i(\tilde{h})d\tilde{h} \Rightarrow \frac{dV}{dt} = Lw_i(h)\frac{dh}{dt}$$

$$w_i(h)/2 = \sqrt{R^2 - (R - h)^2} = \sqrt{(2R - h)h}$$

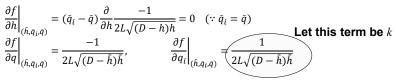
$$w_i L\frac{dh}{dt} = q_i - q \Rightarrow \frac{dh}{dt} = \frac{1}{2L\sqrt{(D - h)h}}(q_i - q) \text{ (Nonlinear ODE)}$$

- **Equilibrium point:** $(\bar{q}_i, \bar{q}, \bar{h})$ $0 = (\bar{q}_i \bar{q})/(2L\sqrt{(D \bar{h})\bar{h}})$ (if $\bar{q}_i = \bar{q}$, \bar{h} can be any value in $0 \le \bar{h} \le D$.)
- Linearization:

$$\frac{dh}{dt} = f(h,q_i,q) = \frac{\partial f}{\partial h}\bigg|_{(\bar{h},\bar{q}_i,\bar{q})} (h-\bar{h}) + \frac{\partial f}{\partial q_i}\bigg|_{(\bar{h},\bar{q}_i,\bar{q})} (q_i-\bar{q}_i) + \frac{\partial f}{\partial q}\bigg|_{(\bar{h},\bar{q}_i,\bar{q})} (q-\bar{q})$$

CHBE320 Process Dynamics and Control

Korea University 5-29



- $s\widetilde{H}(s) = k\widetilde{Q}_i(s) k\widetilde{Q}(s)$ Transfer function between $\widetilde{H}(s)$ and $\widetilde{Q}(s)$: $-\frac{k}{s}$ (integrating)
 Transfer function between $\widetilde{H}(s)$ and $\widetilde{Q}_i(s)$: $\frac{k}{s}$ (integrating)
- If \bar{h} is near 0 or D, k becomes very large and \bar{h} is around D/2, k becomes minimum.
- ⇒ The model could be quite different depending on the operating condition used for the linearization.
- ⇒ The best suitable range for the linearization in this case is around D/2. (less change in gain)
- ⇒ Linearized model would be valid in very narrow range near 0.

CHBE320 Process Dynamics and Control

PROPERTIES OF TRANSFER FUNCTION

Additive property

$$Y(s) = Y_1(s) + Y_2(s)$$

= $G_1(s)X_1(s) + G_2(s)X_2(s)$



Multiplicative property

$$X_3(s) = G_2(s)X_2(s)$$

$$= G_2(s)[G_1(s)X_1(s)]$$

$$X_3(s)$$

$$G_1(s)$$

$$X_2(s)$$

$$G_2(s)$$

$$X_3(s)$$

- · Physical realizability
 - In a transfer function, the order of numerator(m) is greater than that of denominator(n): called "physically unrealizable"
 - The order of derivative for the input is higher than that of output. (requires future input values for current output)

CHBE320 Process Dynamics and Control

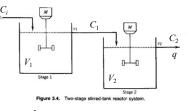
Korea University 5-31

EXAMPLES ON TWO TANK SYSTEM

• Two tanks in series (Ex3.7) $C_{\underline{i}}$

- No reaction
$$V_1 \frac{dc_1}{dt} + qc_1 = qc_i$$

$$V_2 \frac{dc_2}{dt} + qc_2 = qc_1$$



- Initial condition: $c_1(0) = c_2(0) = 1 \text{ kg mol/m}^3$ (Use deviation var.)
- Parameters: $V_1/q=2$ min., $V_2/q=1.5$ min.
- Transfer functions

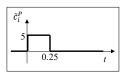
$$\frac{\tilde{C}_1(s)}{\tilde{C}_i(s)} = \frac{1}{(V_1/q)s+1} \qquad \qquad \frac{\tilde{C}_2(s)}{\tilde{C}_1(s)} = \frac{1}{(V_2/q)s+1}$$

$$\frac{\tilde{\mathcal{C}}_2(s)}{\tilde{\mathcal{C}}_i(s)} = \frac{\tilde{\mathcal{C}}_2(s)}{\tilde{\mathcal{C}}_1(s)} \frac{\tilde{\mathcal{C}}_1(s)}{\tilde{\mathcal{C}}_i(s)} = \frac{1}{((V_2/q)s+1)((V_1/q)s+1)}$$

CHBE320 Process Dynamics and Control

· Pulse input

$$\tilde{C}_i^P(s) = \frac{5}{s}(1 - e^{-0.25s})$$



· Equivalent impulse input

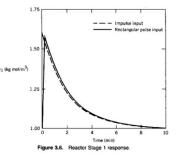
$$\tilde{C}_i^{\delta}(s) = \mathfrak{L}\{(5 \times 0.25)\delta(t)\} = 1.25$$

· Pulse response vs. Impulse response

$$\begin{split} \tilde{C}_{1}^{P}(s) &= \frac{1}{2s+1} \tilde{C}_{i}^{P}(s) = \frac{5}{s(2s+1)} (1 - e^{-0.25s}) \\ &= \left(\frac{5}{s} - \frac{10}{2s+1}\right) (1 - e^{-0.25s}) \\ &\Rightarrow \tilde{c}_{1}^{P}(t) = 5(1 - e^{-t/2}) \\ &\quad - 5(1 - e^{-(t-0.25)/2}) S(t - 0.25) \end{split}$$

$$\tilde{C}_{1}^{\delta}(s) &= \frac{1}{2s+1} \tilde{C}_{i}^{\delta}(s) = \frac{1.25}{(2s+1)}$$

$$\Rightarrow \tilde{c}_{1}^{\delta} = 0.625e^{-t/2} \end{split}$$



CHBE320 Process Dynamics and Control

Korea University 5-33

$$\begin{split} \tilde{C}_{2}^{P}(s) &= \frac{1}{(2s+1)(1.5s+1)} \tilde{C}_{i}^{P}(s) = \frac{5}{s(2s+1)(1.5s+1)} (1 - e^{-0.25s}) \\ &= \left(\frac{5}{s} - \frac{40}{2s+1} + \frac{22.5}{1.5s+1}\right) (1 - e^{-0.25s}) \end{split}$$

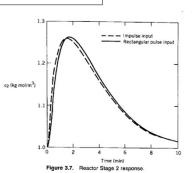
$$\Rightarrow \overline{c_2^P(t)} = (5 - 20e^{-t/2} + 15e^{-t/1.5}) - (5 - 20e^{-(t-0.25)/2} + 15e^{-(t-0.25)/1.5}) S(t - 0.25)$$

$$\tilde{C}_{2}^{\delta}(s) = \frac{1}{(2s+1)(1.5s+1)} \tilde{C}_{i}^{\delta}(s)$$

$$= \frac{1.25}{(2s+1)(1.5s+1)}$$

$$= \frac{5}{2s+1} - \frac{3.75}{1.5s+1}$$

$$\Rightarrow \tilde{C}_{2}^{\delta} = 2.5e^{-t/2} - 2.5e^{-t/1.5}$$



CHBE320 Process Dynamics and Control

Korea University 5-34