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SOLUTION OF LINEAR ODE

« 1st-order linear ODE
— Integrating factor: For Z—f+ a(t)x = f(t), LF. = exp( f a(t)dt)

[xej' a(t)dt]r — f(t)ef a(t)dt x(t) - [ff(t)ef a(t)dt dt + C]e—fa(t)dt

» High-order linear ODE with constant coeffs.
— Modes: roots of characteristic equation

For a,x” + a;x' + agx = f(t),
ap*+ap+ay=a(-p)P—p)=0

— Depending on the roots, modes are

« Distinct roots: (e7e™9) Solution is a linear combination of
Doubl ¢ (e7Pit, tePit) > modes and the coefficients are
* Double roots: ,

decided by the initial conditions.
+ Imaginary roots: (e"“cosfte“sinfit)

* Many other techniques for different cases
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Road Map of the Lecture V

» Laplace Transform and Transfer functions
— Definition of Laplace transform
— Properties of Laplace transform
— Inverse Laplace transform
— Definition of transfer function
— How to get the transfer functions
— Properties of transfer function

—@

Controller

Sensor
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PROCESS
LecturesIV to
Vi

LAPLACE TRANSFORM FOR LINEAR ODE
AND PDE

+ Laplace Transform
— Not in time domain, rather in frequency domain
— Derivatives and integral become some operators.
— ODE is converted into algebraic equation
— PDE is converted into ODE in spatial coordinate
— Need inverse transform to recover time-domain solution

(D.E. calculation)
J [ u@® oy —*

ODE or PDE

s
2 gt L g1 2 g1
N AAVA
AMAWWVWWN Transfer W/\/\J

B v© Gancticn ¥(s) ——— s
VWML

P ——
(Algebraic calculation)
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DEFINITION OF LAPLACE TRANSFORM
» Definition

F(s) = 2{f () 2 fo F()estdt

F(s) is called Laplace transform of f(1).

f(t) must be piecewise continuous.

— F(s) contains no information on f{?) for < 0.

The past information on £{?) (for 7 < 0) is irrelevant.

— The s is a complex variable called “Laplace transform variable”

* Inverse Laplace transform

f(®) =27HF(s)}

— ¢ and g 'are linear.  g{af;(t) + bf,(t)} = aF;(s) + bF,(s)
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+ Trigonometric functions e
— Euler’s Identity: /' £coswt+jsinwt 1

1 ) ) 1 -
COSwt:E(e“"+e'1“’f) Smwtzz_j(e/mt_e /m) n

etsine 6} — | L eior) — L gmsor) - L(_1 1) w
Smet==12¢ 7 T\ —jo stje) 2re?

Ut t}*sl{l f‘”‘}+53[1 ‘fw}fl L L)
coswty==13¢ 2°¢ T 2\s—jo  s+jo) s?+w?

* Rectangular pulse, P(?)

0 fort>t,

F@©) =P(t)={h fort,=t>0 f
0 fort<O0 h
1, t

[ h tw h
2{P(t)} = J- he™Stdt = ——e™St| =—(1—e"tw%)
o s s

0
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LAPLACE TRANSFORM OF FUNCTIONS

» Constant function, a 1)

° a
2{a} = f ae s dt = ——e~St
o s

f”‘(‘g):; A ,

+ Step function, S(?)

_ _j1 fort=0 §
f(t)_s(t)_{o fort <0 Tty
1 f——— —
@ 1 “ 1\ 1 N BN
ﬂ{s(t)}=fU [ dt:_;e_Sto :0—(—;):; P

« Exponential function, ¢

S0 b<0
e} = fme“’ e de =L e-ovo| = L 1
o s+b o, Stb b>0
t
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* Impulse function, s

0 fort>t,

f© =06(0) = Jim {1/t,, fort, 2t >0 e
v 0 fort<o
Ly t

t,
Q) = Jim [ —etdt = lim ——(1- ") =1
® c”llo t ¢ tlmt N €
w 0 w w

w—0

(L Hospital's rule: ll_l:lgg(t) = tll%g’(t))

* Ramp function, ¢

- -s
8t} = J; te™ dt 1)
t C[mes 1 1 -
=_—Se’5‘ —f — dt=;f e~stdt =% ! ]
0 0 0 1 p

(Integration by part: f f-gdt = f«g|;O —f f»g’dt)
0 o

* Refer the Table 3.1 (Seborg et al.) for other functions
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. = £’ = £ = = fn-1) = d
PROPERTIES OF LAPLACE TRANSFORM K/ =)=/ ==/ N0 =0, ofh)_ s
— Initial condition effects are vanished. A
el L= g2p
« Differentiation — Itis very convenient to use deviation {dfz}‘ SEE
g{%} - fwfr Cestdr = f(t)e—st|: _ f‘”f espe-tdt  (byib.p) variables so that all the effects of ﬂ{‘in—f} .
L 0 initial condition vanish. i

=s[ fretde=f0) =sF) - £
0
Q{dzf} _ men e-Stdt = f(t)re—st|:’ _ J:Qf, (=s)eStdt = Sj;mf' -eStdt — f'(0)

a * Transforms of linear differential equations.
= 5(sF(s) = F(0)) — f'(0) = 52F(s) — 5 (0) — f'(0)
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YOV, u®—U(s)
dy(t) ¢ v ) _
@ sV @y =0)
ﬁ{%} = fmf“” eTtde = f()" Ve |m — fmf(“’” -(=s)e~stdt () o
0w 0 o an-1 17 =—y(t) + Ku(t) (y(0) =0)—(rs+ 1)Y(s) = KU(s)
= Sf [0 ems dt - fD(0) =5 <53 {T“‘{}) = f@1(0)
0 -
—_ _ gn— i gf=2) ) = F(R-1) aT, aT, 1 4 aT, ~ -
SPE(S) =51 (©) = = 5 -D(0) - VD) e o %y L 1) (4 01,0 = oo
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* Integration

53{ fU tf(f)df} - fU B ( fﬂ tf(f)df)e‘“dr

-s ot Y01 e r
[rege™ 5[ remae="2 wyinp
0 0 0

N

=S

R B db(t) da(t)
(Lelbmz rule: EJ;(,:) f(@dr = f(b(t))T— f(a(t)) T)

» Time delay (Translation in time) i
+6int ”‘ /
FO——F(-0)S(t—0) , ;

f(t—0)S(t—6)} = f:f(t —B)e~Stdt = fomf(‘r)e"(”g)dr (lett=t—8)
=e? J‘mf(r)e’“d‘r =e P F(s)
o

* Derivative of Laplace transform

aF(s) d [® © 4 o
dis)z—sfu f«e-Sdrsz f«%e-Sdrzfu (=t fye=s dt = 8[—t - f(O)]
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EXAMPLE ON LAPLACE TRANSFORM (1)

) 1.5t for0<t<2
3 for2<t<6
30 - <
_EI_, f® 0 for6 <t

2 6t 0 fort<o0

F(£) = 1.5¢S(£) — 1.5(t —2)S(t —2) — 3S(t — 6)
15 3
SF(s) = 2f(O) = F(1—e?)—Ze®

e ForF(s)= %, find f(0) and f (o).

— Using the initial and final value theorems

2s s
f(0)=limsF(s) = lim——=2 f(e0) =limsF(s) =lim =0
§—00 s—0§—5 50 s-0S —
— But the final value theorem is not valid because
lim f (t) = lim 2 5t
t—o0 t—oo
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* Final value theorem

— From the LT of differentiation, as s approaches to zero

I B e e
£§1(1)J; 2% dt—J; E~£1£1(1)e dt—gré[sF(s)—f(O)]

— Limitation: f() has to exist. If it diverges or oscillates,
this theorem is not valid.

 Initial value theorem

— From the LT of differentiation, as s approaches to infinity

“d
lim a. e~stdt = lim [sF(s) — £(0)]
s=00 Jo dt s§—0
L (Pdf . .
lim —eSdt=0=limsF(s)— f(0) =|f(0) = lim sF(s)
s=00 Jo dt s—>00 s>
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EXAMPLE ON LAPLACE TRANSFORM (2)

+ What is the final value of the following system?
x"+x"+x =sint; x(0) =x(0) =0
1

1
= S2X(S) +sX() +X = 777 = x(9) S rDGE s+ D)

S
—lim— -9
o) = I S T D2 v s+ D)

— Actually, x(«) cannot be defined due to sin  term.
* Find the Laplace transform for (tsinwt) ?

dr
From % =g¢[-t-f(®)]
. d w 2ws
le-sinotl =~z [ ] = o
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INVERSE LAPLACE TRANSFORM

* Used to recover the solution in time domain

L UF(}=f(O) |

— From the table
— By partial fraction expansion

— By inversion using contour integral
1
=g1 = — st
f@) =27YF(s)} pre ie F(s)ds

+ Partial fraction expansion
— After the partial fraction expansion, it requires to know some
simple formula of inverse Laplace transform such as
1 s (m—1)! e0s
(ts+1) ' (s+b)2+ w2 s 't2s2+20ts+1

, etc.
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+ Case ll: Some roots are repeated

_N(s) _ N(s) _ brgs" ' +-+by  ay g
TD(s) G+pT (s+p) T (s+p) (s+p)

F(s)

— Each repeated factors have to be separated first.
— Same methods as Case I can be applied.

Heaviside expansion for repeated factors

L YO )| a=0r-
Ay i = ——— | —=(s i=0,-,1r—
= 1O\ TP
s=-p
— Inverse LT
Qa.
t) = a;e”P +azte Pt 4 b — 7"l Pt
f®=a 2 =]
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PARTIAL FRACTION EXPANSION

NG NG _w . m
D(s)  (s+p)-(s+pn) (s+p) (s +pn)

F(s) =

+ Case I: All p/s are distinct and real
— By aroot-finding technique, find all roots (time-consuming)
— Find the coefficients for each fraction
« Comparison of the coefficients after multiplying the denominator
* Replace some values for s and solve linear algebraic equation
* Use of Heaviside expansion
— Multiply both side by a factor, (s+p,), and replace s with —p,.
N(s)
D(s)

a; = (s+p;)

s==p;
— Inverse LT:
f(t) = qpe Pt + aze P2l + o 4 g 7Pt

CHBE320 Process Dynamics and Control Korea University 5-18

+ Case lll: Some roots are complex

N(s)  as+tc  a(s+b)+pw
D(s) s2+dis+dy (s+b)?2+w?

F(s) =

— Each repeated factors have to be separated first.

— Then,
a;(s+b)+prw (s+b) + w
(s +b)? + w? _al(s+b)2+w2 ﬁl(s+b)2+a)2

where b=d,/2, w= /do —di%/4

ay = ¢y, B1 = (co —a1b)/w

— Inverse LT

ft) = ae P coswt + e sinwt
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EXAMPLES ON INVERSE LAPLACE
TRANSFORM

(s+5) _A+ B C
s(s+1)(s+2)(s+3)_s s+1 s+2

* F(s)= =0 (distinct)

— Multiply each factor and insert the zero value

(s +5) _ B c D _
0—(A+ss+—1+ss+—2+ 5_‘_3): =>A=5/6
(s+5) | A(s+1) C(s+1) D(s+1)
s(s+2)(s+3)| s +5 s+2 s+3
(s+5 | _(As+2) LBE+D L DG+2) _
s(s+1)(s+3)|$:_2’( s s+1 s+3 )7_2:C 3/2
(s+5 | _(As+3) LB+ CG+3) __
s(s+1)(s+2)|5:_3’( s s+1 | s+2 +D) =D=-1/3
5 3 1
. _qa-1 _2 5ty 2 2t _ T -3
SfO=LTHF()) =g -2 H e — e
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(s+1) A(s+2)+B C(Cs+D
* F(s) = = (complex)

s2(s2+4s+5) (S+2)2+1+ s2

s+1=A(s+2)s>+Bs?+ (Cs + D)(s®* +4s +5)
=(A+C)s*+ (2A+ B +4C + D)s? + (5C + 4D)s + 5D
“A=-C, 2A+B+4C+D=0, 5C+4D=1, 5D=1
=>A=-1/25, B=-7/25, (C=1/25, D=1/5
A(s+2)+B 1 (s+2) 7 B
(5+22+1  25G+2)2+1 25(+2)2+1

Cs+D 11 11

s2 255  5s2
1 7 1 1
.'.f(t)=ﬁ’1{F(s)}=—Ee’z cost—ﬁe’Z smt+25 5
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1 _As?+Bs+C D

* PO e . G ) T G+D)

1=(As?+Bs+C)(s+2)+D(s+1)3
=(A+D)s®+ (2A+ B +3D)s? + (2B + C + 3D)s + (2C

(repeated)

+D)

~A=-D, 2A+B+3D =0, 2B+C+3D =0, 2+D=1

=>A=1, B=1, c=1, D=-1

1d® (N
— Use of Heaviside expansion a,—; = ( (S)( +p))

ds®
s2+s+ 1 o a, + as
(s+1)3 (s +1) (s +1)2 (s+1)3

D(s)

(i = 0): a3:(sz+s+1)‘ =1

=-1
s=-1
=1

s=—1

Fd_(s +s+1)

(i=1:a;=

. 1
(i=2): ‘11:ZE(52+5+1)

“F@ =2 FE) = et — tet 4 2t — oo

CHBE320 Process Dynamics and Control

F(s) = —— er (A4 + 1+e™?
c FO =G e vy \m+1 )t
A:1/(35+1)| =3, B:1/(4s+1)| =-
s=—1/4 s=-1/3
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(Time delay)

3

4 3 4 =25 3 =25
“f® =ﬁ_1{F(s)}=ﬁ_1{ - }+2_1{4—se+1_33+1}

4s+1 3s+1
= e~t/4 _o-t/3 4 (e—(t—z)/4 _ e—(c—z)/3) S(t—2)

CHBE320 Process Dynamics and Control
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SOLVING ODE BY LAPLACE TRANSFORM

* Procedure
1. Given linear ODE with initial condition,
2. Take Laplace transform and solve for output
3. Inverse Laplace transform

dy
*  Example: |solve for 5oty =2y0)=1

2{5 Z—Jt/} + 2{4y} = £{2} = 5(sY(s) —y(0)) +4Y(s) = %

2 55+2
(Gs+4)Y(s) :;+5 = Y(s) :m

Ly(t) =87 r(s)} =gt {E + 25

— -0.8t
- toor 4] 0.5+ 0.5e
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TRANSFER FUNCTION (2)

» Benefits

— Once TF is known, the output response to various given inputs
can be obtained easily.

y() =LY ()} = LHESU ()} # LHE(HILTHU(s)}

— Interconnected system can be analyzed easily.
* By block diagram algebra

X o etfHez} Y Y(s)  Gl(s)G2(s)
“ﬂ = X6 17 01(5)62()63()

— Easy to analyze the qualitative behavior of a process, such as
stability, speed of response, oscillation, etc.
* By inspecting “Poles” and “Zeros”
* Poles: all s’s satisfying D(s)=0
e Zeros: all s’s satisfying N(s)=0
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TRANSFER FUNCTION (1)

* Definition

An algebraic expression for the dynamic relation between the
input and output of the process model

dy U Transfer 7(s)
5 i +4y=u; y(0)=1 Fu:1ction, G(s)
Lety=y—1landii=u—4

Y(s) _ 1

(Bs+4)Y(s)=0(s) = G(s)

U(s) 5s+4

*  How to find transfer function

1.

Find the equilibrium point

2. If the system is nonlinear, then linearize around equil. point

oW

CHBE320 Process Dynamics and Control

Introduce deviation variables
Take Laplace transform and solve for output

Do the Inverse Laplace transform and recover the original
variables from deviation variables
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TRANSFER FUNCTION (3)

+ Steady-state Gain: The ratio between ultimate
changes in input and output

CHBE320 Process Dynamics and Control

Aouput _ (y() —y(0))
Ainput ~ (u(e) — u(0))

Gain=K =

For a unit step change in input, the gain is the change in output

Gain may not be definable: for example, integrating processes
and processes with sustaining oscillation in output

From the final value theorem, unit step change in input with
zero initial condition gives

_y)
I

. . 1
K —LT%SY(S)—LT&SG(S);—lT&G(S)

The transfer function itself is an impulse response of the
system v (s) = G(s)U(s) = G()LE®)} = G(s)
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EXAMPLE

» Horizontal cylindrical storage tank (Ex4.7)

dm _ dv ;‘%
E*PE*P‘L Pq

=

V(h) = nL di = = L2
= [ L (i = G = b G

wi(h)/2 =R = (R — h)2 = /2R — h)h
L dh L ¢ 1 (
Wil —=q, — —
tar T dt 21 /(D-h)h
— Equilibrium point: (§:,4,7) 0= (3~ /L (D~ h)h)
(if G =3, h canbe any valuein 0<h<D.)

q; —q) (Nonlinear ODE)

— Linearization:

L _of weina
- fhawo=g4  (h-+y
(@)

(O]

., Of
(ai =0 + 5
(i)

Uil .0
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PROPERTIES OF TRANSFER FUNCTION

Xy(s) Yi(s)

+ Additive property ——  Gyls) E Y(s)
Y(S) = Yl(s) + YZ(S) Xy(s)
— Gys)

= G1()X1(s) + G2(5)X2(5) ()

* Multiplicative property

X(s) Xa(s) Xs(s)
— Gis) [—* Gis) [—>

X3(s) = G2(s)X3(5)
= G2(9)[G1()X1(s)]

* Physical realizability

— In a transfer function, the order of numerator(m) is greater
than that of denominator(n): called “physically unrealizable”

— The order of derivative for the input is higher than that of
output. (requires future input values for current output)
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af Fl -1

> =@ Dy—F7—==0 =9

oh (h,41,3) 0h2L\(D = h)h Let this term be &
" of

%Gy 2LV @ —BOR 941l 5,4,

sH(s) = kQ;(s) — kQ(s)

— ~ k
« Transfer function between | /() and Q(s): =< | (integrating)

¢ Transfer function between | j7(s) and g,(s): k (integrating)
N

« Ifh is near 0 or D, k becomes very large and h is around D/2, k
becomes minimum.

= The model could be quite different depending on the operating
condition used for the linearization.

= The best suitable range for the linearization in this case is
around D/2. (less change in gain)

=> Linearized model would be valid in very narrow range near 0.
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EXAMPLES ON TWO TANK SYSTEM

* Two tanks in series (Ex3.7) &

— No reaction

dcy
VlE +qc =q¢

N v,

dc,
V2 ar +qc; =qc; P44, Twosmge shred ok seacke sy

— Initial condition: ¢,(0)= ¢,(0)=1 kg mol/m* (Use deviation var.)
— Parameters: /,/¢g=2 min., V,/q=1.5 min.
— Transfer functions

Ci(s) _ 1 Co(s) 1
Ci(s) W/ps+1 Ci(s) (/s +1

2(s) _ C2(s) C1(s) _ 1
Ci(s) Ci()CG(s) (/s +D((/9s+1)
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* Pulse input

5
CF) =21 -e0)

* Equivalent impulse input

Co(s) = 8{(5 x 0.25)8(t)} = 1.25

+ Pulse response vs. Impulse response

3 1 5
P —— P -~ (1 _ p-025s
@ =570 = Gyt

— 5 10 ) —0.25s
_(s 2s+1 (a-e )

]

) =5(1—et/?)
—5(1 — e~(t=025)/2) 5t — 0.25)

- 1 1.25
() =57 C8 () =

2s+1 25 +1)
= |&f = 0.625¢7t2
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(53 T T T T

= = imputse input
Rectangular pulse mpot

S

Time tniry
Figure 36 Roscter S15g0 1 reponss
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i 1 i s
i) = (Zs+ D155+ 1) GO =3G7 Dass+ DL ¢ )
~ <5 40 225

—_— _ »—0.25s
s 25+1+1.55+1>(1 e

>|e5 (1) = (5 — 20e72 + 15¢71/15)
— (5 — 20e~(t7025)/2 4 15=(t-025)/15) g(¢ — (0.25)

B

= — — Impulse input
= Rectanguiar puise input

Cs(s)=;f-‘s(s) ny J
2 @s+1D(A5s+1) *

_ 1.25 €2 g mom’y

T (@2s+1)(15s+1) .

5 3.75

T 2541 15541

=[ef = 2.5¢7"/2 — 2.5¢7/19] ol A

Time (min)

Figure 37, Reactor Slage 2 rasponse.
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