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Road Map of the Lecture VIII

 Dynamic Behavior of Closed-loop Control System

— Closed-loop: controller is connected and working

— Closed-loop transfer function

* Response of output for set point change

* Response of output for load/disturbance change

— Effects of each block on closed-loop system

» Effect of controller tuning parameters

IR

Controller

A 4

Actuator

\ 4
v

Sensor [*

Process

CHBE320 Process Dynamics and Control

Korea University 8-2



BLOCK DIAGRAM REPRESENTATION

« Standard block diagram of a feedback control system

Load
L
Compzrator — G/(s) X,
R . E P M X, Y} Y
— 7 Ki(s) 2 Gels) > G,(s) > G(s) L
Calibration Controller Actuator Process
B
G(s)
Sensor

— Process TF: MV (M) effect on CV (X,, part of Y)

— Load TF: DV (L) effect on CV (X, partof Y)

— Sensor TF: CV (Y) is transferred to measurement (B)

— Actuator TF: Controller output (P) is transferred to MV (M)

— Controller TF: Controller output (P) is calculated based on error (E)
— Calibration TF: Gain of sensor TF, used to match the actual var.
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* Individual TF of the standard block diagram
— TF of each block between input and output of that block

— Each gain will have different unit.

 [Example] Sensor TF
e Input range: 0-50 I/min
* QOutput range: 4-20 mA

Gain, K, 50 0

Y

—»

[I/min]

Gr(s)

= 0.32 [mA/(1/min)]

* Dynamics: usually 1% order with small time constant

[mA]

Gm(5) = TS + 1

— Block diagram shows the flow of signal and the connections

— Schematic diagram shows the physical components connection

- = = = Electrical signal
—4%— Pneumatic signal

@ Temperature Transmitter

@ Flow Controller
@ Level Indicator
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P&ID

* Piping and Instrumentation diagram
— A P&ID is a blueprint, or map, of a process.

— Technicians use P&IDs the same way an architect uses
blueprints.

— A P&ID shows each of the instruments in a process , their
functions, their relationship to other components in the system.

— Most diagrams use a standard format, such as the one
developed by ISA (Instrumental Society of America) or SAMA
(Scientific Apparatus Makers Association).
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General instrument or function symbols

Primary location accessible to Field mounted Auxiliary location accessible to
operator operator

Discrete instruments 3

Shared display, shared
control

Computer function

Programmable logic
control

1. Symbol size may vary according to the user's needs and the type of document.

2. Abbreviations of the user's choice may be used when necessary to specify location.

3. Inaccessible (behind the panel) devices may be depicted using the same symbol but with a dashed horizontal bar.
Source: Control Engineering with data from ISA S5.1 standard

y: usually used to indicate video display in DCS
ion: panel mounted—normally having an analog faceplate
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Identification letters

First letter Succeeding letters
Measured or initiating var. Modifier Readout or passive func. Output function Modifier
Analysis Alarm
Burner, combustion User's choice User's choice User's choice
User's choice Control
User's choice Differential

Voltage

Sensor (primary element)

Flow rate

Ration (fraction)

User's choice

Glass, viewing device

Hand High

Current (electrical) Indication

Power Scan

Time, time schedule Time rate of Control station

Level change Light Low

User's choice Momentary Middle, interm.

User's choice

User's choice

User's choice

User's choice

User's choice

Orrifice, restriction

Pressure, vacuum

Point (test connection)

N<Xs<cHwAPUVOZTrXe«c—ITETMMOOTD>

Quantity Integrate, totalizer

Radiation Record

Speed, frequency Safety Switch

Temperature Transmit

Multivariable Multifunction Multifunction Multifunction
Vibration, mechanical analysis Valve, damper, louver

Weight, force Well

Unclassified X axis Unclassified Unclassified Unclassified
Event, state, or presence Y axis Relay,compute,convert

Position, dimension Z axis Driver, actuator

Source: Control Enagineerinag with data from ISA S5.1 standard
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 Instrument description examples

— FIC-101: Flow Indicator and Controller, 0 to 50 m3/Hr, (normal
reading 30 T/Hr). This instrument controls the flow of cold feedstock
entering the tube side of the heat exchanger by positioning a valve on
the cold feedstock flow path.

— FR-103: Flow Recorder, 0 to 10 Ton/Hr, (2.14 T/Hr). This instrument
records the steam flow rate.

— HS-101: Hand Switch, ON/OFF (ON). This switch turns on/off cold
feedstock pump P-101. When the switch is in the ON condition, the
pump is running. When the switch is in the OFF condition, the pump
is not running.

— HV-102: Hand Valve, OPEN/CLOSED, (OPEN). This switch
opens/closes the steam block valve through which steam is routed
from the header to the shell side of the heat exchanger. When the
switch is in the OPEN condition the block valve is open. When the
switch is in the CLOSED condition, the block valve is closed.

— PAL-103: Pressure Alarm Low, (Normal). This alarm fires should the
steam header pressure be less than 6 kg/cm?.
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— PI-100: Pressure Indicator, 0 to 15 kg/cm?, (3.18 Kg/cm?). This
instrument displays the steam pressure at the shell side of the
heat exchanger.

— PI-103: Pressure Indicator, 0 to 15 kg/cm?, (10.55 Kg/cm?).
This instrument displays the steam header pressure.

— TAH/L-102: Temperature Alarm High/Low, (Normal). This
alarm fires should the temperature of the feedstock at the
exchanger outlet exceed 85°C or be less than 71°C.

— TI-103: Temperature Indicator, 0 to 200°C, (186°C). This
instrument displays the temperature of the steam entering the
shell side of the heat exchanger.

— TIRC-102 :Temperature Indicator, Recorder, and Controller,
0 to 200°C, (80°C). This instrument controls the temperature
of the feedstock at the exchanger outlet by positioning the
valve that regulates the steam flow to the exchanger.

— TR-101: Temperature Recorder, 0 to 200°C, (38°C). This
instrument displays the temperature of the feedstock entering
the exchanger.
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CLOSED LOOP TRANSFER FUNCTION

 Block diagram algebra

u(s) Ys)  Y(s)
= Xil) [ Xals) [ o Xl [ 5 = K)o (9K ()
Us(s) |

X;(s)
%Y(S) Y(s) = X1(s)U1(s) + Xo(s)Uy(s)
Uﬁ» X,(s)
2

* Transfer functions of closed-loop system

X2(8) = Gp(5)Gy ()G (S)E(S) E(s) = Km(S)R(s) — Gn(s)Y(s)

Y(s) = GL(s)L(s) + X2(s) = Y (s) = GL(S)L(S) + Gp(5)Gy(5)Ge(S)E(S)
=  Y(5) = GL(S)L(S) + Gp(5)Gy(5)Ge () (Km(S)R(S) — Gm ()Y (5))
= (1+Gn()Gp()Gy(5)Ge(5))Y () = GL(S)L(S) + K Gp (5) Gy (S) G (S)R(S)
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For set-point change (L=0)

Y(s) B KimGp(s)Gy(s)Gc(s)
R(S) 1+ Gu(s)Gp(s)Gy(s)G(s)

For load change (R=0)

Y(s) Gy (s)
L(S) 1+ Gn(5)Gy(5)Gy(5)Ge(S)

Open-loop transfer function (G, )
Gor(S) = G (S)Gp(5)Gy(S)Gc(S)
— Feedforward path: Path with no connection backward
— Feedback path: Path with circular connection loop
— G, : feedback loop is broken before the comparator
Simultaneous change of set point and load

_ KinGyp(s)Gy(s)Ge(s) GL(s)
B 14 Gy (s) R(s)+ 1+ GoL(s)

Y(s) L(s)
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MASON’S RULE

 General expression for feedback control systems

Y T[f
X 1+4mn,
7y = product of the transfer functions in the path from X to'Y
m, = product of all transfer functions in the entire feedback loop

— Assume feedback loop has negative feedback.
— If it has positive feedback, 1 + 7, should be 1 — 7.
— In the previous example, for set-point change

X=R Y=Y Ty = KnGe(5)G,(s)Gy(S) Te = Gor(S)
Y'(s) _ KmGp(s)Gy(s)Ge(s)
R(s) 1+ Gpyr(s)

— For load change, x=L Y=Y Ty = GL(S) e = GoL(5)
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« Example 1

Inner loop L, L,
R 5 Xl [, L+ : Y
— K. —»(Z?)—» G.1 4?—» G.,—* G, ! G, G;
2
Gm2
Gm1 ;
GG
— Inner loop: x, = SnlZ )
1+ GGG,y
— TF between R and Y:
Gchz Gchz

= K...G.G
B2 GG

X Kml GB GZ Gl GCZ Gcl

R 1+ GpyGyiGey + GpiG3G2G1G 3Gy

— TF between L, and Y:

i il G3G,(1 + GpaG1GL)
Li 14 GGGy + GppG3GG1GG

CHBE320 Process Dynamics and Control
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« Example 2

L Xlnnerloop L
+ Y 1 + Y
—08) 6. (1 &[S R 6, [ 6, [

% d - J
G, 4’@ - G,

A 4

A 4

E:R_(Gl_Gz)M:R—GlM+GzM

— Inner loop: M= _ G
186,6, *

— TF between R and Y:
G, G,

RN G.c ! e = 16,6, ¢

Y GG, GG,

BN GG L G.G. 1+ (G,— GG,

— TFbetween LandY: Y__ 1-GG6c = 1-G0Ge
L 1 N GZGC + GlGC 1 + (Gl Il GZ)GC
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PID CONTROLLER REVISITED

e P control

] g P(s)
p(t)=p+ Kce(t)_)m = K,

e Pl control

t
p(t) =p+ K. {e(t) + le e(T)dT}LiS) = K,(1+ L) _ i (trs +1)
0

I E(s) ;S ;S

e PID control

i 1 (¢ de) ¢
p(t) =p+ K, e(t)+—j e(t)ydt + tp——
P(S) 1 (TITDSZ + TIS + 1)
——=K.(1+— =K
E(s) oL+ 7,8 t1ps) = Ke 7,8

— Ideal PID controller:
— Modified form has to be used.
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* Nonideal PID controller
— Interacting type

(t/s+1) (tps+1)

GX(s) = K;:
¢ (5) ¢ 1fs  (Brps+1)

0< B K1)
¥ Filtering effect

— Comparison with ideal PID except filter
(t;7ps? + 15+ 1)

TIS

Ge(s) = K,

o (tptis? + (t7 + t5)s + 1) B K:(t] +13) (1 | 1 1 T )

=5 S
g (5 T} (t; +t5)s (17 + 1)
= " ’ Ty = T + Tp, Tp = — 0 e
T; (r; +7p)

— These types are physically realizable and the modification
provides the prefiltering of the error signal.

— Generally, 7 =7p and typically 7; = 417p .

— In this form, 7; = 7p Is satisfied automatically since algebraic
mean is not less than logarithm mean.
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* Block diagram of PID controller
— Nonideal interacting type PID

E(s) + ws+1|  P(S)
KC + 1 §ﬁrDs+1 d
1 al
uys+1|°  «—— P| control
;s+1) (tps+1
pisy = k, (5D s+ D o
TIS (ﬁTDS + 1)

1 T]S+1 _T]S+1

1

i 1 :T[S+1_1_ )
TIS+1

— Removal of derivative Kkick (PI-D controller)

P(s) = K,

(t;s +1)

;S

R(s) -

(t;s+1) (tps+ 1)

;S (Btps+ 1)

Y(s)]

— Removal of both P & D kicks (I-PD controller)

P(s) = K,

CHBE320 Process Dynamics and Control
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(t;s+1) (tps+1)

TIS
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* Other variations of PID controller
— Gain scheduling : modifying proportional gain
K& = K _KCS
where
1 KGS — {KGap for (lower gap) < e(t) < (upper gap)
1 otherwise

Z.KGS = |5 Casle(t)l

3.K % is decided based on some strategy

— Nonlinear PID controller
* Replace e(7) with e(?) | e(?) |.

 Sign of error will be preserved but small error gets smaller and
larger error gets larger.

« It imposes less action for a small error.
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DIGITAL PID CONTROLLER

* Discrete time system

— Measurements and actions are taken at every sampling
interval.

— An action will be hold during the sampling interval.

* Digital PID controller

— 1 tn
using j e(n)dt = Atz e(t;) (Rectangular rule)
0 i=0
de(t t,) —e(t,_
et) _ e(tn) — e(tn-1) (Backward difference approx.)
dt At )
At e(t,) —e(t,—
p(tn) =D + K¢ |e(tn) + T_Z e(t;) +p S At( 1 1)] o
14
1=0

Ap(ty) = p(tn) — p(tn-1)

A o) — 2e(t,_
K, [e(tn)—e(tn_1)+r_fe(tn) G B R EC

n_Z)] (Velocity form)
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— Most modern PID controllers are manufactured in digital form
with short sampling time.

— If the sampling time is small, there is not much difference
between continuous and digital forms.

— Velocity form does not have reset windup problem because
there is no summation (integration).

— Other approximation such as trapezoidal rule and etc. can be
used to enhance the accuracy. But the improvement is not

substantial.
tn S e(ty) + etior)
j e(t)dt = Atz : 5 s (Trapezoidal rule)
) i=1
de(t e(t,) + 3e(t,—1) — 3e(t,,—,) —e(t,—
d(t) = () e(tn-1) Ate( n-z) ~ €{tn-3) (Interpolation formula)

* For discrete time system, z-transform is the
counterpart of Laplace transform. (out of scope of
this lecture)
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CLOSED-LOOP RESPONSE OF 15T ORDER
SYSTEM

* Process ?
Ad_h i h . DV w MV é ‘
pPA— =Pt tpaz =Py *l ¢
N H(S) i R B Kp —@ b A >{ LC
W) =0 T RAst1 s +1 l cv

6, (s) H(s) R K, J SP
S) = = == 93
L Q:(s) RAs+1 1s+1 D
— Assume
Q
Sensor and actuator dynamics are fast enough to - G
be ignored and gains are lumped in other TF. l+

R +—~E Q + H
—b(%)—b G.—2» G —»(X)—»
Gv(s) u Gm(S) =1 - ° b ‘

H(s) = Ge Gy R(s) + ! L
(S)_1+Gcc;p (5) T (s)
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* P control for set-point change (L=0)
Ge(s) = K. (K:>0)

H(s)  KKp/(ts+1)  K.Kp/(1+KcKp)

GaS) =3 =1+ K.K,/(ts+1) (/A +K.Kp))s + 1 (closed SICUEEES

— Closed-loop gain and time constant
KK, _ T
T A+KK) T (A+KK,)

Ker,

— Steady-state behavior of closed-loop system

<1, Klim Gcr =1 (H(s) = R(s), no offset)

T T —1
|~ Steady—state offset = 7(o0) — h(®) = 1 — K¢, = 1+ KK,

Closed-loop response will not reach to set point (offset)

Infinite controller gain will eliminate the offset

Higher controller gain results faster closed-loop
10 response: shorter time constant
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* P control for load change (R=0)
Gc(s) = K. (K:>0)

H(s)  Kp/(ts+1) K,/(1+ K.K,)

6 = 1) T TH KK (s + D /(L + KeKyp))s + 1

(closed—loop TF)

— Closed-loop gain and time constant

K T
Ky 2

T A +K.K,) LT A ¥ K K,y)

— Steady-state behavior of closed-loop system

Ky

e = A+ K.K) > 0, lim G, = 0 (disturbance is compensated)

Kc—>oo

K
06 I ' ‘ Steady—state offset =0 — h(0) = 0 — K = :

———k. - 1+ K.K
K. =2 | c
0.4} - / p
- e 7/__ Disturbance effect will not be eliminated completely (offset)

Rl 0.2 /;.
o

7 Infinite controller gain will eliminate the offset

0

Higher controller gain results faster closed-loop
-02; ; 4 : 5 io  response: shorter time constant

Time (min)
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* Pl control for load change (R=0)
G.(s) =K .(t;s +1)/1;5 (K.>0)

K,/(ts +1) B Kyts
1+ K.K,(t;s + 1)/(zs + 1) /1is 1152 + 1,(1 + K Kp)s + KcK,

Ger(s) =

— Closed-loop gain, time constant, damping coefficient
T; TT; 1(1+K.Kp)
K.K,

Knum Fc’ TcL = KcKp ) CcL = 5 T /T

— Steady-state behavior of closed-loop system

lin& Gcp (s) = 0 (disturbance is compensated for all cases)
S—

0.6— 06—

Time {min)
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— As K, increases, faster compensation of disturbance and less
oscillatory response can be achieved.

— As 7; decreases, faster compensation of disturbance and less
overshooting response can be achieved.

— However, usually the response gets more oscillation as K
increases or 7; decreases. =>

— If there is small lag in sensor/actuator TF or time delay in
process TF, the system becomes higher order and these
anomalous results will not occur. These results is only possible
for very simple process such as 1% order system.

— Usual effect of PID tuning parameters

* As K, increases, the response will be faster, more oscillatory.
* As T;decreases, the response will be faster, more oscillatory.

e AsTpincreases, the response will be faster, less oscillatory when
there is no noise.

CHBE320 Process Dynamics and Control Korea University 8-30



CLOSED-LOOP RESPONSE OF

INTEGRATING SYSTEM
* Process
dh q DV

pA—- = p(a1 +42) — P43 ——l
E _H(s) 1

P =0 T s

_ H(s) 1
1= 0.6) " as
— Assume
Q, +Q,
Sensor and actuator dynamics are fast enough to — G
be ignored and gains are lumped in other TF. l+

R +—E Q + H
—b(%)—b G.—» G —»(X)—»
Gv(s) » Gm(S) =1 - ° ° ‘

H(s) = Ge Gy R(s) + ! L
(S)_1+Gcc;p (5) T (s)
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* P control for set-point change (L=0)

Ge(s) = K. (K.<0)

. _H(s) K /(—4s) 1
c(s) = R(s) 1+K./(—4s) (—A/K.)s+1

(closed—loop TF)

— Closed-loop gain and time constant

Kep =1, Tc, = —A/K,

— Steady-state behavior of closed-loop system
Kcp =1 (H(s) = R(s),no offset even with p control)

— Itis very that the integrating system will not have offset
even with P control for the set point change.

— Even though there are other dynamics in sensor or actuator,
the offset will not be shown with P control for integrating
systems.

— Higher controller gain results faster closed-loop response:
shorter time constant
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* P control for load change (R=0)
G(s) = K. (K.<0)

H(s)  1/(4s) = —1/K.
L(s) 1+K./(-4s) (-A/K.)s+1

Gep(s) = (closed—loop TF)

— Closed-loop gain and time constant

Kcp = (—1/K,), Tc, = —A/K,

— Steady-state behavior of closed-loop system

1
=K > 0, Klim Gc; = 0 (disturbance is compensated)
— K, c—

Ker =

— Higher controller gain results faster closed-loop response:
shorter time constant

CHBE320 Process Dynamics and Control Korea University 8-33



* Pl control for set-point change (L=0)
Ge(s) = Kc(Tys + 1) /15 (K:<0)

Kc(t;s +1)/(=A4s)/tis (t;s +1)
1+ K.(t;5 +1)/(—=4s)/t;s  (—1;4/K)s2 +1;5 + 1

Ger(s) =

— Closed-loop gain, time constant, damping coefficient
K —1 B TIA i 1 TIKC
cL = L e, = |7 CCL_E ~ T
— Steady-state behavior of closed-loop system

K

K- = !Sl_rg Gep (s) =1 (H(s) = R(s), no offset)

— As (-K)) increases, closed-loop time constant gets smaller
(faster response) and less oscillatory response can be achieved.

— As 77 decreases, closed-loop time constant gets smaller (faster
response) and more oscillatory response can be achieved.

— Partly due to integrating nature

— For integrating system, the effect of tuning parameters can be
different. Thus, rules of thumb cannot be applied blindly.
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