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DEFINITION OF FREQUENCY RESPONSE

* For linear system

— “The ultimate output response of a process for a sinusoidal
input at a frequency will show amplitude change and phase
shift at the same frequency depending on the process

characteristics.”
Input Output
»  Process N >
Asinwt Asin(wt + ¢)
\

After all transient
effects are decayed out.

— Amplitude ratio (AR): attenuation of amplitude, A4/4

— Phase angle (¢ ): phase shift compared to input

— These two quantities are the function of frequency.
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BENEFITS OF FREQUENCY RESPONSE

 Frequency responses are the informative
representations of dynamic systems
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— Low-pass filter
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— In signal processing field, transfer functions are called “filters”.
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 Any linear dynamical system is completely

defined by its frequency response.
— The AR and phase angle define the system completely.
— Bode diagram
AR in log-log plot
* Phase angle in log-linear plot

— Via efficient numerical technique (fast Fourier transform,
FFT), the output can be calculated for any type of input.

* Frequency response representation of a system
dynamics is very convenient for designing a
feedback controller and analyzing a closed-loop

system.

— Bode stability
— Gain margin (GM) and phase margin (PM)
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* Critical frequency

As frequency changes, the amplitude ratio (AR) and the phase
angle (PA) change.
The frequency where the PA reaches —180° is called
(@)

The component of output at the critical frequency will have the
exactly same phase as the signal goes through the loop due to
comparator (-180 °) and phase shift of the process (-180 °).
For the open-loop gain at the critical frequency, Ko, (o) = 1

 No change in magnitude Sign

e Continuous cycling

For k, (w,)>1

» Getting bigger in magnitude —’(%—’ c-Op
e Unstable Sign/

change

\4

For Kk, (v,)<1

» Getting smaller in magnitude
« Stable
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« Example

— If a feed is pumped by a peristaltic pump to a CSTR, will the
fluctuation of the feed flow appear in the output?

qi

| t

Casd
> dCA
VE = q;C4; — qc4 (g = constant)
Ca(s) i Cai B Cai/q
a(s) Vs+q (V/g)s+1
— V=50cm?, g=90cm?’/min (so is the average of ¢,) I \
* Process time constant=0.555min. e 0
— The rpm of the peristaltic pump is 60rpm. oo
e Input frequency=180rad/min (3blades) 0 ”
— The AR=0.01 (wr = 100) e ]
If the magnitude of fluctuation of g; is 5% of nominal L INLL
flow rate, the fluctuation in the output concentration b
will be about 0.05% which is almost : fer 1l
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OBTAINING FREQUENCY RESPONSE

 From the transfer function, replace s with jo

S=jw

G(s) — G(i(f))
Transfer function Frequency response
— For apole, s=a+jo ,the response mode is e@+jox |

— If the modes are not unstable ( « <0 ) and enough time elapses,
the survived modes becomes e/«t. (ultimate response)

 The frequency response, ¢ is complex as a
function of frequency.  Nyquist

/W”"' diagram
G(jw) =Re[G(Jjw)] +jIm[G(jw)]

/ ¢
N

— G(jw)

AR = |G(jw)| = \/Re[ G(jw)]? + Im[ G (jw)]? Re

v

¢ = 4G(jw) = tan~ ' (Im[ G(jw)]/ Re[ G (jw)])

“sBode plot
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e Getting ultimate response

— For a sinusoidal forcing function Y(s) =G(s)

s? + w?
— Assume G(s) has stable poles 5. Decayed out at large ¢
¢ Aw - an {st+Da)
&) = (S)sz+a)2_s+b1 s+b, s?+ w?

D C
G(ja))Aa)ija)+Da)=>G(ja))=Z+jZ=R+jI

C=IAD=RA = y,; =A(lcoswt+ Rsinwt) = Asin(wt + ¢)

“AR=A/A=R?+1?=|G(jw)| and ¢ =tan'(I/R) = 2G(j)

— Without calculating transient response, the frequency response
can be obtained directly from ¢(jw).

— Unstable transfer function does not have a frequency response
because a sinusoidal input produces an unstable output
response.
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rder process
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Zero (lead)

JwT,

)| = /1+w21¢21

= tan" ! (wt,)

e pole

+ 1)

5 (1 + jTw)

w1 )
1
V1 + w?t2

_, Im(G(w))
Re(G(jw))

tan =tan lwt
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Ing process

L 1
Vo) =710~ " 1w
B 1

)= —

N 1 T
e
tiator

G(jw) = jAw
| = Aw
tan‘l(r =%

lay process

=cosOw —jsinfw

=1

—tan 1tanf w = —Ow
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SKETCHING BODE PLOT

G(s) = Ga(S)Gp(5)G(s) -+ 6iw) = G,(j@)Gp(jw)G.(jw) -
 G1(5)G2(5)G5(s) -+ i L
|IG(jw)| = |Ga G) |Gy ) ||GeGaw)| -

|GL(w)||G,Gw)||Gz(Gw)]| -

4G (jw) = 4G4 (jw) + 46y (jw) + 26, (jw) + -
46, (jw) — 4G;(jw) — 2G3(jw) — -

« Bode diagram
— AR vs. frequency in log-log plot

— PA vs. frequency in semi-log plot
— Usetul for

« Analysis of the response characteristics

« Stability of the closed-loop system only for open-loop stable
systems with phase angle curves exhibit a single critical frequency.
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« Amplitude Ratio on log-log plot

— Start from steady-state gain at o = 0. If G, includes either
integrator or differentiator it starts at oo or 0.

— Each first-order lag (lead) adds to the slope —1 (+1) starting at
the corner frequency.

— Each integrator (differentiator) adds to the slope —1 (+1)
starting at zero frequency.

— A delays does not contribute to the AR plot.

 Phase angle on semi-log plot
— Start from 0° or -180° at @ = 0 depending on the sign of steady-
state gain.

— Each first-order lag (lead) adds 0° to phase angle at @ = 0, adds
-90° (+90°) to phase angle at @ = oo, and adds -45° (+45°) to
phase angle at corner frequency.

— Each integrator (differentiator) adds -90° (+90°) to the phase
angle for all frequency.

— A delay adds —fw to phase angle depending on the frequency.
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Examples
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NYQUIST DIAGRAM

* Alternative representation of frequency response
* Polar plot of ¢(Gw) (wis implicit)

Im 4 N_yquist
G(jw) = Re[G(jw)] + jIm[ G (jw)] diagram
— Compact (one plot) yaL Re,
— Wider applicability of stability 'g '
analysis than Bode plot P O

— High frequency characteristics will be

shrunk near the origin.
* Inverse Nyquist diagram: polar plot of 1/G(jw)

— Combination of different transfer function components is not
easy as with Nyquist diagram as with Bode plot.
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