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Road Map of the Lecture I1X

 Frequency Response
— Definition
— Benefits of frequency analysis
— How to get frequency response
— Bode Plot
— Nyquist Diagram
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DEFINITION OF FREQUENCY RESPONSE

* For linear system

— “The ultimate output response of a process for a sinusoidal
input at a frequency will show amplitude change and phase
shift at the same frequency depending on the process

characteristics.”
Input Output
»  Process - >
Asinwt Asin(wt + ¢)

After all transient
effects are decayed out.

— Amplitude ratio (AR): attenuation of amplitude, 4/4

— Phase angle (¢ ): phase shift compared to input

— These two quantities are the function of frequency.
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BENEFITS OF FREQUENCY RESPONSE

* Frequency responses are the informative
representations of dynamic systems

— Audio Speaker

Elec. Signal;.ﬁjl Sound wave

— Equalizer

— Structure
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— Low-pass filter
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— In signal processing field, transfer functions are called “filters”.
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* Any linear dynamical system is completely
defined by its frequency response.
— The AR and phase angle define the system completely.

— Bode diagram
AR in log-log plot
* Phase angle in log-linear plot

— Via efficient numerical technique (fast Fourier transform,
FFT), the output can be calculated for any type of input.

* Frequency response representation of a system
dynamics is very convenient for designing a
feedback controller and analyzing a closed-loop
system.

— Bode stability
— Gain margin (GM) and phase margin (PM)
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« Critical frequency

As frequency changes, the amplitude ratio (AR) and the phase
angle (PA) change.

The frequency where the PA reaches —180° is called critical
frequency (@,).

The component of output at the critical frequency will have the
exactly same phase as the signal goes through the loop due to
comparator (-180 °) and phase shift of the process (-180 °).

For the open-loop gain at the critical frequency, K, (o) = 1

* No change in magnitude Sign
* Continuous cycling Y chan e/\/\N\
F — > T > T >
or Ky, (w.)>1 Ry B[ v
* Getting bigger in magnitude < c---0p >
« Unstable Sign/
change

For K, (v,)<1

* Getting smaller in magnitude
e Stable
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 Example

— If a feed is pumped by a peristaltic pump to a CSTR, will the
fluctuation of the feed flow appear in the output?

Casd

A
q;

t

dCA
VE = q;C4; — qc4 (g = constant)

Ca(s) (g Cai/q

— V=50cm3, g=90cm?>/min (so is the average of ¢,) 3.
e Process time constant=0.555min. |

— The rpm of the peristaltic pump is 60rpm.
e Input frequency=180rad/min (3blades)

— The AR=0.01 (wr=100)

If the magnitude of fluctuation of g, is 5% of nominal
flow rate, the fluctuation in the output concentration

q(s) Vs+q (V/Qs+1

wp = lir

Normalized \
amplitude 0.1F

ratio ARy

will be about 0.05% which is almost unnoticeable. T R T
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OBTAINING FREQUENCY RESPONSE

 From the transfer function, replace s with jo

S=jw

GT(S) — G( (f))
Transfer function Frequency response

— For apole, s=a+jo ,the response mode is e@+jox |
— If the modes are not unstable ( « <0 ) and enough time elapses,
the survived modes becomes e/»t. (ultimate response)
 The frequency response, ¢j») IS complex as a
function of frequency.

G(jw) = Re[G(jw)] + j Im[ G(jw)] —

Im A Nyquist
—— " diagram

%
k

— G(jw)

AR = |G(jw)| = Re[G(jw)]? + Im[ G (jw)]? Re

v

¢ = 2G(jw) = tan"'(Im[ G(jw)]/ Re[ G (jw)])

“sBode plot
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* Getting ultimate response
— For a sinusoidal forcing function Y(s) =G(s)

s? + w?
— Assume G(s) has stable poles b.. Decayed out at large ¢
Vis) = G Aw o - an {st+Da)
() = (S)sz+a)2_s+b1 s+b, s?+ w?

D C
G(ja))Aa)ija)+Da)=>G(ja))=Z+jZ=R+jI

C=IAD=RA = y,;=A(lcoswt+ Rsinwt) = Asin(wt + ¢)

.-.AR=AA/A:,/R2_|_12: IG(]a))l and ¢=tan_1(1/R)=Z$G(ja))

— Without calculating transient response, the frequency response
can be obtained directly from ¢(jw).

— Unstable transfer function does not have a frequency response
because a sinusoidal input produces an unstable output
response.
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Gls) = (zs+ 1)
609 = a7~ A+ 0t
ARy = 16(je)] = —
= w) = —
" N

¢ = 4G(jw) = —tan" 1 (wr)

K
(1252 + 2Qts + 1)

G(s) =

AR = |G(jw)| =

* First-order process

(1—-jwr)

 Second-order process

,Im(G(w))

V(1 — w?12)2 + (2{wT)?

¢ = 46(Jw) = tan”

Re(G(jw))
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* Process Zero (lead)

G(s) =145 +1
Gw) =1+ jwt,

ARy = |G(jw)| = /1 + w?t?

¢ = 4G(jw) = tan" I (wty)
 Unstable pole

R )

1—jw)=1+1'2w

1
V1 + w?T?

Im(G(w))
Re(G(jw))

G(jw) =

AR = |G(jw)| =

¢ =4G(jw) = tan”

5 1+ jw)

tanlwrt
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* Integrating process

1 . 1
G(S)—A—S G(ja))—jA—a)——M
ARy = |G(jw)| = !

b = 46(jw) = tan"! (- ) = 2

 Differentiator
G(s) = As G(jw) = jAw

ARy = |G(jw)| = Aw
= 4G(jw) = tan™! LT
¢ = 46(jw) = tan~ () = 5

* Pure delay process
G(s) =e 9
G(jw) = e 199 = cosOw — jsinf w

AR = [G(jw)| = 1
¢ =4G(jw) =—tan ' tanf w = —Ow
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SKETCHING BODE PLOT

G(s) = Ga(8)Gp(5)G(S) - 6iw) = G,(j@)Gp(jw)G.(jw) -
- GGG - 6L(jw)Gy(jw)G3(jw) -
Gw)| = |Ga j)11Gp )G (w)] -

|G ()G (Jw) |Gz (fw)] -+

4G (jw) = 4G, (jw) + 46y (jw) + 26, (jw) + -
—46,(jw) — 4G;(jw) — 4G3(Jw) — -

 Bode diagram
— AR vs. frequency in log-log plot

— PA vs. frequency in semi-log plot
— Usetul for

* Analysis of the response characteristics

 Stability of the closed-loop system only for open-loop stable
systems with phase angle curves exhibit a single critical frequency.
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 Amplitude Ratio on log-log plot

— Start from steady-state gain at o = 0. If G, includes either
integrator or differentiator it starts at o or 0.

— Each first-order lag (lead) adds to the slope —1 (+1) starting at
the corner frequency.

— Each integrator (differentiator) adds to the slope —1 (+1)
starting at zero frequency.

— A delays does not contribute to the AR plot.

 Phase angle on semi-log plot
— Start from 0° or -180° at @ = 0 depending on the sign of steady-
state gain.

— Each first-order lag (lead) adds 0° to phase angle at @ = 0, adds
-90° (+90°) to phase angle at @ = oo, and adds -45° (+45°) to
phase angle at corner frequency.

— Each integrator (differentiator) adds -90° (+90°) to the phase
angle for all frequency.

— A delay adds —fw to phase angle depending on the frequency.
CHBE320 Process Dynamics and Control Korea University 9-15



1.

CHBE320 Process Dynamics and Control

G(s)

K

Examples

T (10s+1)(5s +1)(s +1)

G, G, G,
1 —TTTT
1G3|
0.1 > S |Gl
AR 0.01 (Gl
N
0.001 \ 3
1 AL L1 il i 1 A 1 - u:
0.0001 c57 0.1 1 10
w {rad/min)
0 vans T
ZGy
£Go
-90 Py LGI T
¢ '/ Gy
(deg)
—-180 \
_27(] 1 1) iaaig L L than 1y piiit
0.01 0.1 1 10
w (rad/min)

2.

G(s) =

G

G,

(0.55+1)e

G;

2

G

(2gs +1)(4s +1)

100 T Ty T T ¥ TTTV
1G4l
10 1G] Sl
. - NGl ) |Gs|
AR N
0.1 G2 %
0.01 x\\
0.0ol d At 1tidl i 1 FRNIT] Al i dual \lllll
0.01 0.1 1 10 100
w (rad/min)
+90 YT y'—
AG‘; B
. Gl
¢ g0 %;
{d 1 G
eg) L6 y 2
-180 Ge
-270 [T SRR BN
0.01 0.1 1 10 100
w (rad/min)
Korea

University 9-16



1
3.Pl: co=re(1+— 5. PID: 6 =kc(1+—+1ps

TS 1y

100 TTTTIT IRRRALLLL T T T 1T IIERLA
1000 T T T1T0T ULLLEE Nope=-1 Slop 3=+1 3
Amplitde 100 High-frequency asymptote AR 10k E
ratio = E =
AR 10 B l E _
E Low-frequency asymptote -
E - L i —I 1 [ 4 |'
1 I %0 - ——
¢} Natch
. frequency | =
Phase I
angle -90 ¢ 0
¢ (deg) Wy (deg) /| .
_180 { IIIIILJ ] Jl]LLI,Il 1 llll[m_,uw L [ -
0.001 0.01 0.1 1 10 100 |
- ) ) . : a0 TEENET Toand b ool a1l
Frequency (radians/time) =39 501 0.01 o.1 1 10
Frequency {radians/time)
— o
wp =1/t;at ¢ = —45
=——at¢ =0°
WNotch = -
%))
4. PD: G(S) :KC(1+TDS) IOOEI lllllHI T IIHIII’ T TTIT T TTTT]
= Slope=+1
N Low-frequency asymptote
AR 10 t
ggh—f requency asymptote\ 3
1
o 90
(Ub=1/TDat(l)=45 i / |
]
_90 Lo L LALLL L4 1 2illt lI Lt il 1 14 i1l
0.001 0.01 0.1 «wp 1 10

Frequency {radians/time)

CHBE320 Process Dynamics and Control Korea University 9-17



NYQUIST DIAGRAM

« Alternative representation of frequency response
* Polar plot of ¢(w) (wis implicit)

Im A Nyquist
G(jw) =Re[G(w)] +jIm[G(w)] diagram
— Compact (one plot) ya. Re,
— Wider applicability of stability '& '
analysis than Bode plot P O
— High frequency characteristics will be

shrunk near the origin.
* Inverse Nyquist diagram: polar plot of 1/G(w)

— Combination of different transfer function components is not
easy as with Nyquist diagram as with Bode plot.
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