Mid-Term Exam.

Closed Book Exam. (Submit the problem sheet with your answer sheets.) 2003. 10. 29

- 1.(10) Answer briefly.
 - a) Compare feedback and feedforward controls.
 - b) What kinds of flow measurements are available?
 - c) Why the inherent and installed characteristics for a control valve are different?
 - d) Roughly draw the Bode plot for first-order transfer function.
- 2.(10) For PID controller,
 - a) Write down the PID controller equation in time domain.
 - b) How would you suggest to modify this equation to prevent the derivative kick?
 - c) What are the disadvantages and advantages of I mode?
 - d) What is bumpless transfer?
- **3.**(10) For second-order underdamped process, list the terms for characterization of a step response and explain each characteristic briefly.
- **4.**(20) Find y(t) for the followings.

a)
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = u(t)$$
 where $u(t) = \begin{cases} 1 & \text{for } 0 \le t \le 1 \\ 0 & \text{for } 0 > t, \ t > 1 \end{cases}$ $(y(0) = y'(0) = 0)$

b)
$$Y(s) = \frac{1}{[(s+1)^2+1](s+2)^2}$$

5.(20) Linearize the following ODE w.r.t. T, T_i , T_c and C_A around T_0 , T_{i0} , T_{c0} and C_{A0} . $(k=k_0\exp(-E/RT))$

$$V \rho C_p \frac{dT}{dt} = q \rho C_p (T_i - T) + (-\Delta H)Vkc_A + UA(T_c - T)$$

- **6.**(40) A drug is ingested into gastrointestinal tract (GIT) and distributed to blood stream (BS), and then it is absorbed by organs. Let u be the drug ingestion rate [mass/time], x_1 be the amount of drug in GIT [mass], x_2 be the amount of drug in BS [mass]. From the clinical experiments, it is found for a patient that the distribution rate from GIT to BS is k_1x_1 [mass/time] and the consumption rate by organ from BS is k_2x_2 [mass/time]. The patient is drug-free initially.
 - a) Construct a model to monitor the drug level in mass in GIT and BS.
 - b) Find the transfer functions related to drug levels of GIT and BS regarding drug ingestion rate.
 - If the patient ingested a drug tablet of 500mg, calculated the drug levels in GIT and BS with time for the following conditions.
 - k_1 =10 [mg/mg·min], k_2 =5 [mg/mg·min]