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Process Models
• Transfer function models

– Fixed order and structure
– Parametric: few parameters to identify
– Need very high order model for unusual behavior

• Convolution models
– Continuous form

– Discrete form

– Many parameters, but easily obtained from the step or impulse 
response 
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Step Response Model

• From open-loop step test
– Sampling time: 
– Step response coefficients: ai

– Read the values of the unit
step response

• FSR model
– Finite step response (FSR)

– Using superposition principle for arbitrary input changes
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• After             , the step response reaches steady 
state at least 99%

– If there is a delay, the FSR coefficients during the delay will be 
zero.
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Impulse Response Model

• Impulse response coefficients
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Matrix Form of the Predictive Model

• Horizons
– Model horizon: T (number of model coefficients)
– Control horizon: U (number of control moves)
– Prediction horizon: V (number of predictions in the future)

– A: Dynamic matrix
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Single-Step Prediction

• From the FIR model

• Corrected prediction based on the measurement
– Assume the error between the model prediction and the 

measurement will present in the future with same magnitude
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Multi-Step Prediction
• From the single-step prediction (j-step prediction)

• Matrix form when V≥U
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where 

– Sj: the incremental effect of the past (previously implemented) 
movements of input on the (n+j)-th future output prediction 
(where n is current time) 

– Pi: the projection which includes future prediction of y based 
on all previously implemented input changes.

– Pi and Sj depend only on past input changes.

• If the past information is known, then the future 
input changes will affect the future outputs and 
the future outputs can be adjusted by carefully 
selecting the future inputs.
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• Currently, n is current time and yn is measured.
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Controller Design Method (DMC)

• Objective
– Minimize errors between future set points and predictions

where

• Solution

*
1 1

*
2 2

*

( )

n n

n n
n

n V n V

r y
r y

y

r y

 

 

 

 
            
 
 

  

E r A u e P A u E
 



1 1

2 2

n n

n n

n V n V

r y P
r y P

r y P







  
    
 
 

   

E


 Open-loop prediction error 
based only on past control 
action

Closed-loop prediction error 
based only on current and future 
control action

* 1      ( )       A u E 0 u A E
 

Some inverse of  A



Korea University III -12

• If U=V and A is invertible,

• If U<V (A is not invertible),

• Optimization concept
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• Adjustable parameters of MPC (Tuning parameters)
– Weighting matrices

• If W1>>W2, the most important objective is to minimize error of the 
process outputs and inputs will move quite freely.

• If W1<<W2, the most important objective is to minimize the input 
movements and controller cares much less the errors. (almost no 
control)

• Otherwise, it depends on the relative size of the weighting matrices.
– If W1>W2, aggressive action will be taken to reduce the error.
– If W1<W2, conservative action will be taken to reduce the input 

movements while reduce the error if the action is not too aggressive.
• The W2 is called input penalty or input move suppression factor.
• Typically, use W1=I and W2=f2I and adjust f.
• If a different weighting for outputs or inputs is required, use diagonal 

matrix as the weighting matrix.
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– Horizons
• Model horizon (T)

– Select T such that             
– T is typically 20 to 70.

• Prediction horizon (V)
– Increasing V results in more conservative control action, a stabilizing 

effect, and more computational burden.
– An important tuning parameter

• Control horizon (U)
– Suitable first guess is to choose U so that  
– The larger the value of U is, the more computation time is required. 
– Too large a value of U results in excessive  control action
– Smaller value of U leads to a robust controller that is relatively 

insensitive to model error.

(open-loop settling time)T t 

60U t t 



Korea University III -15

MIMO Extension

• 2x2 case

where 

• General case
– Extend the vectors and matrices in the same manner.
– If the MPC is formulated in a different form such as state-

space model, different form of MIMO extension is more 
convenient.
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Constraints Handling

• Formulate and solve the MPC in an optimization 
framework

• Solve this optimization problem in QP
– DMC by DMCC used LP
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Identification of Models

• FSR or FIR models: use step or pulse test
– Assume operation at steady state
– Make change in input       (or     )

• If       is too small, output change may not noticeable
• If       is too large, linearity may not hold

– Measure output at regular intervals 
• The       should be chosen so that T is 20-70,typically 40.

– Perform multiple experiments and average them and 
additional experiments for verification

– High frequency information may not be accurate for step test.
– Ideal pulse is hard to implement.
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• Least Squares Identification
– Get the output using PRBS (Pseudo Random Binary Signal)

– Get the FIR model 

– Minimize the error between measurements
and output, 
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• Discussions
– Random input testing, if appropriately designed, gives better 

models than the step or pulse testing does since it can equally 
excite low to high frequency dynamics of the process.

– If UTU is singular, the inverse doesn't exist and identification 
fails. (Need persistent excitation condition)

– When the number of coefficients is large, UTU can be easily 
singular (or nearly singular). To avoid the numerical, a 
regularization term is added the the cost function. (ridge 
regression)
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Data Treatments

• The data need to be processed before they are 
used in identification.

• Spike/Outlier Removal
– Check plots of data and remove obvious outliers (e.g., that are 

impossible with respect to surrounding data points). Fill in by 
interpolation.

– After modeling, plot of actual vs. predicted output (using 
measured input and modeling equations) may suggest 
additional outliers. Remove and redo modeling, if necessary.

– But don't remove data unless there is a clear justification.
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• Bias Removal and Normalization
– Compute the data average and subtract it to create deviation 

variables, i.e.,

– Use the given steady-state values of the variables instead to 
compute the deviation variables, i.e., 

where yss and uss represent a priori given steady-state values of 
the process output and input respectively.

– The input/output data can be biased by the nonzero steady 
state and also by load disturbance effects. To remove the (time-
varying) bias, differencing can be performed for the 
input/output data.

– In all cases, the process data are conditioned by scaling before 
using in identification.
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• Prefiltering
– If the data contain too much frequency components over an 

undesired range and/or if we want to obtain a model that fits 
well the data over a certain frequency range, data prefiltering 
(via digital filters) can be done.


