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LECTURE NOTE I 

Chapter 1 

Introduction to Optimization 

 

“Of the evils, always choose the lesser.” 

Optimization: Selecting the best among the entire set by efficient quantitative methods. 

 

1.1 Requirements for the application of optimization method 

- Defining system boundaries 

Too small: easy to handle, but misleading 

Too large: real, but hard to handle 

- Performance criteria 

Defining “what the best is” 

(In terms of economic measure, operation measure, errors, and etc.) 

- Independent Variables 

What you can manipulate. (Optimization variables, system parameters) 

- System Model 

Relation between performance criteria and independent variables 

Equality and inequality constraints 

 

1.2 Application of optimization in engineering 

- Design of components or entire system 

- Planning and analysis of existing operation 

- Engineering analysis and data reduction 

- Control of dynamic systems 

-  

Example 1.1 Design of Oxygen supply system 
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Oxygen plant: production rate F (lb O2/hr) 

Compressor capacity: H (hp) 

Holder tank volume: V (ft3) 

Tank pressure constraint: 0 maxP P P   

P0 is the delivery pressure to BOF. 

If tank pressure is over the limit, then the extra oxygen will be vent in the air. 

Cyclic operation: low O2 demand period until t1 and then high demand period up to t2 

 

Operation objectives: Supply O2 to BOF as needed (demand) while maintaining holder 

tank pressure limits. If possible, minimize the energy consumption. 

 The holder tank should be large enough to handle the situation where the demand is 

larger while the supply is normal for the period between t1 and t2.. 

 

Feasibility: 2 0 1 1 2 1( )Ft D t D t t    (if not, expand the O2 plant production capacity) 

 

Objective function (J): Total cost 

 J=(annual cost of O2 plant)+(capital cost of tank)+(annual cost of compressor) 

 

Constraints: Plant model (tank pressure) 

 
0 1

1 1 1 1 2

( ) (0)              for 0

( ) if ( ) ,         ( )

( ) ( )( )     for 
max max

F D t P t t

P t P t P P t P

P t D F t t t t t





   
  
     

 

 where 
RT

z
MV

   

 0 1( ) min(( ) (0), )max
maxP t F D t P P    (automatically satisfied) 

 1 1 2 1 0( ) min( ( ), ) ( )( )min
maxP t P t P D F t t P      (inequality constraint) 

 2 0 1 1 2 1( )Ft D t D t t    (inequality constraint) 

 

Optimization variable: V, H, F 

System parameters: physical properties, plant design characteristics, etc. 

 Depending on the nature of project, i.e., designing plant or finding a better operating 

conditions, optimization variables will be chosen differently. 
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Example 1.4 Data fitting 

 
0.5 ( )

RT a
P

v b T v v b
 

 
 

Objectives: From the series of PvT measurements, find the parameters for semiempirical 

Redlich-Kwong equation 

 Then solve 

2

0.5,
1

min
( )

n
i

i
a b

i i i i i

RT a
P

v b T v v b

 
  

  
  

 

1.3 Structure of optimization problems 

- General form: constrained minimization 

min ( )

subject to  ( ) 0  ( 1, , )

                 ( ) 0  ( 1, , )

                    ( 1, , )

x

k

j

U L
i i i

f x

h x k K

g x j J

x x x i N

 
 

  







 

   - If J=K=0 and U L
i ix x     for i=1 to N, then the problem is unconstrained. 

 

1.4 Class of Optimization 

- One dimensional vs. multi-dimensional optimization 

- Unconstrained vs. constrained optimization 

- Based on the type of objective function and constraints 

LP (Linear Programming): linear objective function and linear constraints 

QP (Quadratic Programming): quadratic objective function and linear constraints 

NLP (NonLinear Programming): nonlinear objective function and nonlinear constraints 

IP (Integer Programming): LP with integer variables only 

MILP (Mixed Integer LP): LP with integer variables and continuous variables 

MINLP (Mixed Integer NLP): NLP with integer variables and continuous variables 
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Chapter 2 

Functions of a Single Variable 

Single variable: The variable is a scalar. (not a vector) 

 

2.1 Properties of single-variable functions 

- ( )y f x : y is a function of x. 

 y: dependent variable    x: independent variable 

y R    x S R   

If S=R, then f is an unconstrained function. 

- In optimization 

f: objective function (scalar) 

S: feasible region (constraint set, domain of interest of x) 

x: independent variable or optimization variable 

- Continuous: 
0 0

0 ,    lim ( ) lim ( )
x x x x

x S f x f x
  

    

1. A sums or products of a continuous function is continuous. 

2. The ratio of two continuous functions is continuous at all points where the denominator 

does not vanish. 

- Smooth: differentiable indefinitely 

 

 

 

 

 

 

 

- A continuous function on a closed interval (compact set) has the minimum (absolute 

minimum) and the maximum (absolute maximum). 

- Piecewise continuous 

Discontinuous only at a finite number 

of points 

 

 

 

 

Piecewise 
continuous
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- Monotonic function 

1 2 1 2 1 2, ,  if  and ( ) ( ),  then  is a monotomic increasing function,x x S x x f x f x f   

1 2 1 2 1 2, ,  if  and ( ) ( ),  then  is a monotomic decreasing function,x x S x x f x f x f     

 

 

 

 

 

 

- Unimodality 

A function f(x) is unimodal on the interval a x b 
if and only if it is monotonic on either side of a single 

optimal point x* in the interval. 

 

 

 

 

 1 2 1 2

1 2 1 2

* ( *) ( ) ( )

* ( *) ( ) ( )

x x x f x f x f x

x x x f x f x f x

    
    

 

cf) bimodal, multimodal 

 

- Convex and concave functions 

1 2 1 1 2 2For ,  if ( ) is smaller than the value of line segment from ( , ( )) to ( , ( ))x x x f x x f x x f x 

then the function is convex. 

1 2 1 1 2 2For ,  if ( ) is larger than the value of line segment from ( , ( )) to ( , ( ))x x x f x x f x x f x 

then the function is concave. 

 

 

 

 

  

  

convex concave 

Monotonic 
increasing

Monotonic 
decreasing 
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1 2, ,  and 0 1x x S      

  The f(x) is convex if 1 2 1 2( (1 ) ) ( ) (1 ) ( )f x x f x f x          

  The f(x) is concave if 1 2 1 2( (1 ) ) ( ) (1 ) ( )f x x f x f x          

- All positive linear combination of convex function is convex. 

- If f(x) is convex on S, then a subset { ( ) ,  }C f x C x S      is also convex. 

- , ,x y S   f(x) is convex iff ( ) ( ) ( )( )f y f x f x y x    

(For x<y, f(y) is not smaller than the increased value from x with slope at x.) 

 

2.2 Optimality criteria 

- Global and Local optima 
** ** is the   iff ( ) ( ) .x S global minimum f x f x x S     
* * * * is a   iff ( ) ( ) [ , ].x S local minimum f x f x x x x        

1. By reversing the direction of the inequality, the equivalent definitions of global 

and local maxima can be obtained. 

2. Under the assumption of unimodality, the local optimum automatically becomes 

the global optimum. 

3. When the function is not unimodal, multiple local optima are possible and the 

global optimum can be found only by locating all local optima and selecting the 

best one. 
 

- Identification of single-variable optima 

* *

2 2
* *

32
( ) ( ) ( )

2!x x x x

df d f
f x f x O

dx dx

  
 

      

For minimum, with arbitrarily small   

 *( ) ( )f x f x  

 
2

* * * *
3( ) ( ) ( ) 0 ( ) 0 and ( ) 0

2!
f x f x O f x f x

           

 

- Theorem 2.1 

Necessary conditions for x* to be a local minimum (maximum) of f on the open interval 

(a, b), providing that f is twice differentiable, are that 

1. 
*

0
x x

df

dx 

  (Stationary point condition) 

2. 
*

2

2
0   ( 0)

x x

d f

dx


   

- Inflection (saddle) point: a stationary point that does not correspond to a local optimum. 

Inflection point
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- Theorem 2.2 

Suppose at a point x* the first derivative is zero and the first nonzero higher order 

derivative is denoted by n. 

1. If n is odd, then x* is a point of inflection 

2. If n is even then x* is a local optimum. Moreover, 

A. If that derivative is positive, then the point x* is a local minimum. 

B. If that derivative is negative, then the point x* is a local maximum. 

cf) For vector-matrix cases, the positive (negative) should be positive (negative) definite. 

  

- Global optimum for single-variable functions in bounded interval of x, [a, b]. 

Possible optima will reside at 

1. stationary points where f’(x)=0 

2. end points, f(a) and f(b) 

3. the points where f(x) is discontinuous 

4. the points where f’(x) is discontinuous 

Thus, the global optimum is located at one of the above candidates which has smallest 

(largest) function value. 

 

2.3 Regional Elimination Methods 

- Theorem 2.3 

Suppose f is strictly unimodal on the interval a x b   with a minimum at x*. Let x1 

and x2 be two points in the interval such that 1 2a x x b   , 

1. If 1 2( ) ( )f x f x , then the minimum of f(x) does not lie in the interval (a, x1). In other 

words, *
1( , )x x b  

2. If 1 2( ) ( )f x f x , then the minimum of f(x) does not lie in the interval (x2, b). In other 

words, *
2( , )x a x  

cf) strictly unimodal: 1 2 1 2

1 2 1 2

* ( *) ( ) ( )

* ( *) ( ) ( )

x x x f x f x f x

x x x f x f x f x

    
    
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- Bounding Phase: An initial coarse search that will bound or bracket the optimum. 

 Swann’s method (minimization for strictly unimodal case) 

 For a given initial guess x0 and a step size parameter  , start with k=1. 

i) Decision of direction 

 If 0 0 0( ) ( ) ( )f x f x f x      , choose positive  . 

 If 0 0 0( ) ( ) ( )f x f x f x      , choose negative  , 

   and let 1 0x x     and 1 0x x   . 

 If 0 0 0( ) ( ) ( )f x f x f x      , conclude f is not unimodal and stop. 

 If 0 0 0( ) ( ) ( )f x f x f x      , then *
0 0x x x       and stop. 

 

ii) Test point generation: 
  k=k+1 
  1

1 2k
k kx x 

    
 If 1( ) ( )k kf x f x  , repeat step ii) 

 

iii) Termination of bracketting 

 If 1( ) ( )k kf x f x  , conclude that x* lies in between xk and xk-2 and stop. 

 

cf) If   is too small, it could take quite long to get the initial bracket and if   is 

too large, the initial bracket could be too wide. 

 

- Interval Refinement Phase: With the initial bracket (a, b) from bounding phase, locate the 

minimum in the reasonably small range. 

 Interval Halving method (three-point equal-interval search) 

i) Let xm=(a+b)/2 and L=b-a. Compute f(xm). 

ii) Set x1=a+L/4 and x2=b-L/4. Compute f(x1) and f(x2). 

iii) If f(x1)< f(xm), drop (xm, b) and let b= xm and xm = x1. Then go to vi). 

iv) If f(x2)< f(xm), drop (a, xm) and let a= xm and xm = x2. 

v) If f(x2) f(xm), drop (a, x1) and (x2, b) let a= x1 and b = x2. 

vi) Recompute L=b-a. 

vii) If L is small enough, conclude x* lies in (a, b) and stop. Else go to ii). 

 Remark 1: At each subsequent step, two function evaluations are needed. 

 Remark 2: After n function evaluations, / 2(0.5)new initial nL L . 

 Remark 3: Among equal interval searches (2-, 3-, 4-point search), the 3-point search 

is the most efficient method. 

 

 Golden Section method 

Golden section number: 

( 1 5) / 2 0.618       

(positive solution of 2 1   ) 
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 Start from k=1 and prespecified termination criterion  .. 

i) Let 1 ( )kx b b a    and 2 ( )kx a b a   . 

ii) Compute 1( )kf x  and/or 2( )kf x . 

iii) If 1 2( ) ( )k kf x f x , set 2
kb x , 2 1

1k kx x  , and 1
1 ( )kx b b a    . 

iv) If 1 2( ) ( )k kf x f x , set 1
ka x , 1 2

1k kx x  , and 2
1 ( )kx a b a    . 

v) If b a   ,  k=k+1 and go to ii). 

vi) Conclude that 

If 1 2
1 1( ) ( )k kf x f x  , * 2

1[  ]kx a x  . 

If 1 2
1 1( ) ( )k kf x f x  , * 1

1[  ]kx x b . 

If 1 2
1 1( ) ( )k kf x f x  , * 1 2

1 1[  ]k kx x x  . 

 Remark 1: At each subsequent step, only one function evaluation is needed. 

 Remark 2: After n function evaluations, 1( )new initial nL L   . 

 

 Fibonacci method 

Fibonacci numbers: 0 1 1F F  , 1 2 ( 2)n n nF F F n     (1, 1, 2, 3, 5, 8, 13, …) 

 Start from k=1 and predetermined N. 

i) Let 1
2( ) /k N k N kx a b a F F      and 2

1 2( ) /k N k N kx a b a F F      . 

ii) Compute 1( )kf x  and/or 2( )kf x . 

iii) If 1 2( ) ( )k kf x f x , set 2
kb x , 2 1

1k kx x  , and 1
1 1 1( ) /k N k N kx a b a F F       . 

iv) If 1 2( ) ( )k kf x f x , set 1
ka x , 1 2

1k kx x  , and 2
1 1( ) /k N k N kx a b a F F      . 

v) If k<N, k=k+1 and go to ii). 

vi) Conclude that 

If 1 2
1 1( ) ( )k kf x f x  , * 2

1[  ]kx a x  . 

If 1 2
1 1( ) ( )k kf x f x  , * 1

1[  ]kx x b . 

If 1 2
1 1( ) ( )k kf x f x  , * 1 2

1 1[  ]k kx x x  . 

 Remark 1: (N+1) Fibonacci numbers have to be generated initially. 

 Remark 2: At each subsequent step, only one function evaluation is needed. 

 Remark 3: After N function evaluations, 1/new initial
NL L F   . For 1% accuracy 

N=11 (F12=144) and for 0.1% N=17 (F11=1577). 

 Comparison of the regional elimination methods 

 

 

 

 

 

 

2.4 Polynomial Approximation or Point-estimation methods 

- Quadratic equation 
2y az bz c    

Given data: 1 1( )y y z , 2 2( )y y z , 3 3( )y y z  ( 1 2 3z z z   WLOG) 
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By Cramer’s rule, 

 For 

2
1 1 1
2
2 2 2
2
3 3 3

1

1

1

x x a y

x x b y

x x c y

    
        

        

 (Let the matrix be A.) 

 
1 1

2 2

3 3

1
1

1
det( )

1

y x

a y x
A

y x

 , 

2
1 1
2
2 2
2
3 3

1
1

1
det( )

1

x y

b x y
A

x y

 , 

2
1 1 1
2
2 2 2
2
3 3 3

1

det( )

x x y

c x x y
A

x x y

  

  
2 2 2 2 2 2
2 3 3 2 1 3 3 1 1 2 2 1

1 2 2 3 3 1

det( ) ( ) ( ) ( )

( )( )( )

A x x x x x x x x x x x x

x x x x x x

     
    

 

2 3 1 3 1 2 1 2 3

1 2 2 3 3 1

2 2 2 2 2 2
2 3 1 3 1 2 1 2 3

1 2 2 3 3 1

( ) ( ) ( )

( )( )( )
 

( ) ( ) ( )

( )( )( )

z z y z z y z z y
a

z z z z z z

z z y z z y z z y
b

z z z z z z

    


   


    


  

    

 Check that if a>0. If not, the minimum does not exist. 

The minimum point of the quadratic equation: *2 0
2

dy b
az b z

dz a
       

- Powell’s method 

Start from x1 and step size   and termination criteria x  and f . 

i) Find three points using bracketing method in bounding phase of regional elimination. 

(The middle point has the lowest value and let 1 2 3x x x  .) 

ii) Find the minimum using the formula: 
2 2 2 2 2 2

* 2 3 1 3 1 2 1 2 3

2 3 1 3 1 2 1 2 3

( ) ( ) ( )1

2 ( ) ( ) ( )

z z y z z y z z y
x

z z y z z y z z y

    


    
 

iii) If *
2 xx x    and *

2( ) ( ) ff x f x   , then stop and the minimum is *x . 

iv) Else, let *
2 1 2 3arg min{ ( ), ( ), ( ), ( )}x f x f x f x f x  and x1 and x3 are the left and 

right points of x2 and go to ii). 

 

- Equally-spaced quadratic approximation method 
2

2 2( ) ( )y a z z b z z c      

Given data: 1 1( )y y z , 2 2( )y y z , 3 3( )y y z  (𝑧ଵ ൅ ℎ ൌ 𝑧ଶ ൌ 𝑧ଷ െ ℎ) 

  2 2
1 1 2 1 2 2 2( ) ( )y a z z b z z y ah bh y         

2 2
3 3 2 3 2 2 2( ) ( )y a z z b z z y ah bh y         
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2
1 3 2( 2 ) /(2 )a y y y h    and 3 1( ) /(2 )b y y h   

* 1 3
2

1 3 2

( )

2 2( 2 )

h y yb
z z

a y y y


    

 
 

Start from x1 and step size   and termination criteria x  and f . 

i) Find three points using bracketing method in bounding phase of regional elimination.  

ii) From the last point, back out by a half of the last step size. (4 equally-spaced points) 

iii) Let the minimum point be x2 and choose x1 and x3 as the left and right points of x2 

iv) Find the minimum using the formula: 

* 1 3
2

1 3 2

( )

2( 2 )

h y y
x x

y y y


 

 
 

v) If *
2 xx x    and *

2( ) ( ) ff x f x   , then stop and the minimum is *x . 

vi) Starting from the best point, repeat the procedure. 

 

2.5 Methods requiring derivatives 

These methods are for continuous. The differentiability helps the efficiency of the algorithms. 

The derivative can be obtained either analytically or numerically. 

  

 Newton-Raphson method (assume twice differentiable) 

- It can be used to find the root or the minimum of a function.  

  * * *( ) ( ) ( )( ) ( ) / ( )k k k k k kf x f x f x x x x x f x f x        
* * *( ) ( ) ( )( ) ( ) / ( )k k k k k kf x f x f x x x x x f x f x           

 

Start from x0 (k=0) and the termination criteria x  and f . 

i) 1 ( ) / ( )k k k kx x f x f x     

ii) If 1k k xx x     and 1( ) ( )k k ff x f x    , then stop and the minimum is 1kx  . 

iii) k=k+1 and go to step i). 

  

Remark 1: If the initial guess is bad, the algorithm may diverge.  

 Robustness problem to initial guess (Sensitive to initial guess) 
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 Bisection method (Bolzano search) 

Start from x0 (k=1) and the termination criterion  . 
i) Find the (a, b) for minimum using bracketting so that ( ) 0f a   and ( ) 0f b  . 

ii) Let ( ) / 2kx a b   and evaluate ( )kf x . 

iii) If ( )kf x   , then step and xk is the optimum point. 

iv) If ( ) 0kf x  , a=xk and if ( ) 0kf x  , b=xk and go to ii). 

 

 

 Secant method  

Start from x0 (k=1) and the termination criterion  . 

v) Find the (a, b) for minimum using bracketting so 

that ( ) 0f a   and ( ) 0f b  . 

vi) Let ( ) ( ) /( ( ) ( ))kx b b a f b f b f a        and 

evaluate ( )kf x . 

vii) If ( )kf x   , then step and xk is the optimum 

point. 

viii) If ( ) 0kf x  , a=xk and if ( ) 0kf x  , b=xk and go to ii). 

 

 

 Cubic search method  

- Cubic equation 
3 2

1 1 1( ) ( ) ( )    ( 0)y a z z b z z c z z d a         

Given data: 1 1( )y y z , 2 2( )y y z , 1 1( )y y z  , 2 2( )y y z   (z1<z2) 

  1( )d y z    1( )c y z  

  3 2
2 2 1 2 1 1 2 1 1( ) ( ) ( )y a z z b z z y z z y        

2
2 2 1 2 1 13 ( ) 2 ( )y a z z b z z y       

3 2
2 1 1 2 12 1 2 1

2
2 12 1 2 1

( )( ) ( )

3( ) 2( )

y y y z zaz z z z

y ybz z z z

       
            

 

𝑎 ൌ
ଶሺ௬భି௬మሻାሺ௭మି௭భሻሺ௬′భା௬

′
మሻ

ሺ௭మି௭భሻయ
  𝑏 ൌ െ

ଷሺ௬భି௬మሻାሺ௭మି௭భሻሺଶ௬′భା௬
′
మሻ

ሺ௭మି௭భሻమ
 

𝑧∗ ൌ 𝑧ଵ ൅
െ𝑏 ൅ √𝑏ଶ െ 3𝑎𝑐

3𝑎
ൌ 𝑧ଶ െ ሺ𝑧ଶ െ 𝑧ଵሻ

𝑢ଶ െ 𝑢ଵ ൅ 𝑦′ଶ
2𝑢ଶ െ 𝑦′ଵ ൅ 𝑦′ଶ

 

where  1 1 2 1 2 2 13( ) /( )u y y y y z z       

  𝑢ଶ ൌ ሺ𝑢ଵ
ଶ െ 𝑦′ଵ𝑦

′
ଶሻ
଴.ହ 

 

     Remark 1: This equation does not apply if 1 2 1 2 and y y y y    . 

     Remark 2: If 2 3 0b ac  , the minimum does not exist. 
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Start from x0 (k=1) and the termination criterion  . 
i) Find the (a, b) for minimum using bracketting so that ( ) 0f a   and ( ) 0f b  . 

ii) Let kx  from the above cubic approximation and evaluate ( )kf x . 

iii) If ( )kf x   , then step and xk is the optimum point. 

iv) If ( ) 0kf x  , a=xk and if ( ) 0kf x  , b=xk and go to ii). 

 

2.6 Comparison of the methods 

- For very high accuracy, polynomial approximation methods are superior. 

- For strongly skewed or possibly multimodal functions, Powell’s search has been known to 

converge at a much slower rate than regional-elimination methods. 

- For reliability, choose golden-section method is an ideal choice. 

- Cubic search usually shows faster convergence at the cost of computation. 

- It is recommended that the Powell-type search method generally be used along with a 

golden-section search to which the program can default if it encounters difficulties in 

the course of iterations. 

 

 


