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LECTURE NOTE II

Chapter 3

Function of Several Variables

e Unconstrained multivariable minimization problem:
min f(x), xeR"
X
where X is a vector of design variables of dimension N, and f is a scalar objective function.

.
- Gradient of f: Vf = ﬂ ﬂ ﬂ of
OX, OX, OX; OXy

- Possible locations of local optima

e points where the gradient of f is zero

¢ boundary points only if the feasible region is defined

e points where f is discontinuous

e points where the gradient of f is discontinuous or does not exist
- Assumption for the development of optimality criteria

f and its derivatives exist and are continuous everywhere

3.1 Optimality Criteria
- Optimality criteria are necessary to recognize the solution.
- Optimality criteria provide motivation for most of useful methods.

- Taylor series expansion of f

f(x)=f(X)+Vf(X) Ax +%AXTV2 f (X)Ax + O, (AX)

2
where X is the current expansion point, V2§ (X)= o f
- . . OX;0X
AX=X—X is the change in X, !
V?f(X) is the NxN symmetric Hessian matrix at X ,

O, (AX) is the error of 2nd-order expansion.

- In order for X to be local minimum
Af = f(x)- £(X)20 for [x-X|<5 (5>0)
- In order for X to be strict local minimum

Af = f(x)- £(X)>0 for [x—X|<5 (5>0)
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- Optimality criterion (strict)
Af = f(x)— f(X) = VI (X)" Ax +%AXTV2 f(X)Ax >0, V|Ax| <&

> Vi (X)=0and V> f(X)>0 (positive definite)

-For Q(z)=12"Az
A is positive definite if Q(z)>0, Vz#0
A is positive semidefinite if Q(z)>0, Vzand3z#0 32" Az=0
A is negative definite if Q(z)<0, Vz#0
A is negative semidefinite if Q(z)<0, Vzand3z#0 32 Az=0
A is indefinite if Q(z) > 0 for some z and Q(z) < 0 for other z
o Test for positive definite matrices
1. If any one of diagonal elements is not positive, then A is not p.d.
2. All the leading principal determinants must be positive.
3. All eigenvalues of A are positive.
o Test for negative definite matrices
1. If any one of diagonal elements is not negative, then A is not n.d.
2. All the leading principal determinant must have alternate sign starting from
D;<0 (D>>0, D3<0, Ds>0, ...).
3. All eigenvalues of A are negative.
o Test for positive semidefinite matrices
1. If any one of diagonal elements is nonnegative, then A is not p.s.d.
2. All the principal determinants are nonnegative.
o Test for negative semidefinite matrices
1. If any one of diagonal elements is nonpositive, then A is not n.s.d.
2. All the k-th order principal determinants are nonpositive if K is odd, and
nonnegative if K is even.
Remark 1: The principal minor of order k of NxN matrix Q is a submatrix of size kxk
obtained by deleting any n-k rows and their corresponding columns from the matrix Q.
Remark 2: The leading principal minor of order k of NxN matrix Q is a submatrix of
size kxk obtained by deleting the last n-k rows and their corresponding columns.

Remark 3: The determinant of a principal minor is called the principal determinant. For

NxN matrix, there are 2" —1 principal determinant in all.
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- The stationary point X isa

minimum if V*f(X) is positive definite,
maximum if V> f(X) is negative definite,

saddle point if V> f(X) is indefinite.

- Theorem 3.1 Necessary condition for a local minimum

For X to be local minimum of f(x), it is necessary that

Vi(x')=0 and V>f(x')=0

- Theorem 3.2 Sufficient condition for strict local minimum
If Vf (X*) =0 and V*f (X*) >0,

then X to be strict or isolated local minimum of f(X). Femed. S

Remark 1: The reverse of Theorem 3.1 is not true. (e.g., f(X)=x> at x=0)
Remark 2: The reverse of Theorem 3.2 is not true. (e.g., f(x)=x* at x=0)
3.2 Direct Search Methods
- Direct search methods use only function values.

- For the cases where VT is not available or may not exist.

¢ Modified simplex search method (Nelder and Mead)
- In n dimensions, a regular simplex is a polyhedron composed of n+1 equidistant points

which form its vertices. (for 2-d equilateral triangle, for 3-d tetrahedron)
-Let X =(X5Xip»+5%,) (i=12,--,n+1) be the i-th vector point in R" of the
simples vertices on each step of the search.
Define  f(X,)=max{f(x );i=L---,n+1},
f(x,) =max{f(x,,);i=L---,n+1} and
f(x)=min{f(x );i=1---,n+1}.
Select an initial simplex with termination criteria. (M=0)

i) Decide X,, X,, X among (n+l) points in simplex vertices and let X, be the

g 9
centroid of all vertices excluding the worst point X;, .

n+l1
X, 1 DX =X,
n |45

ii) Calculate f(x,), f(X),and f(x,).If X is same as previous
one, then let M=M+1. If M>1.65n+0.05n%, then M=0 and go to vi).
iii) Reflection: X, = X, +a(X, —X,) (usually a=1)
If £(x)<F(x)<f(X,),thenset X, =X and go toi).
iv) Expansion: If f(x,)< f(x ), X, =X +7(X —X,)- ' (b) Exponsion (8= >1)
(28<y<3.0)If f(x,)< f(x,),thenset X, =X, and go to i). (e <t

(a) Normal Reflection (§=a=1)

0 gy <t
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v) Contraction: If f (X, )= f(X,), X =X +B(X, —X,). iéijj;;o*m
th) % o7
(04<B<0.6)Elseif f(x)>f(x), x =X —B(X —X%). : ‘
Then set X, =X, and go to i). $e) Costiociion (# 8 <01

o) 2 £

vi) If the simplex is small enough, then stop. Otherwise,

Reduction: X, =X, +0.5(x, =% ) for i=1,2,---,n+1.And goto ). m%’?}? -
x s

td) Contracticn (8 = 8>0)
Remark 1: The indices h and | have the one of value of i. 19 <Hixpey <t™

Remark 2: The termination criteria can be that the longest segment between points is
small enough and the largest difference between function values is small enough.
Remark 3: If the contour of the objective function is severely distorted and elongated,

the search can very inefficient and fail to converge.

e Hooke-Jeeves Pattern Search

8¢,

- It consists of exploratory moves and pattern moves. ,ff/,fii?g%\\%\\ ‘ m%‘%
Select an initial guess X'*, increment vectors A, for . if |“ [ [/ \‘\\\\\ ;e
i=1,2,---,n and termination criteria. Start with k=1. . ’L‘ 1 I'\ |\ I[/ 2 A \"‘\.\ “‘3 L

i) Exploratory search: -'°\\\\.‘“~\\'\ N R

() — (k=) h\ \\\ /) [
A. Leti=l and x* =x%". AN }(\H_ / ;,f_..'J
b 49-\4\%:\\\‘:j//;

B. Try x=x"+A . 1f f(x!))<f(x), then %
Xék) _ Xr(mk) ' igem 57 P e s o ke 32
C. Else,try X =xM—A . 1f f(x®)< f(x),then x{ =x".
D. Else, leti=i+1 and go to B until i >n.
ii) If exploratory search fails (Xék) = x* )
A If ||Ai || <g for i=12,---,n,then X = x*™ " and stop.
B. Else, A, =0.5A; for i=1,2,---,n and go to i).
iii) Pattern search:
A Let XS =x9 + (% —x ")
B.If f (Xg(“)) < f(x), then x® = XS() and go to 1).
C. Else, x* = Xék) and go to i).
Remark 1: HJ method may be terminated prematurely in the presence of severe
nonlinearity and will degenerate to a sequence of exploratory moves.
Remark 2: For the efficiency, the pattern search can be modified to perform a line search
in the pattern search direction.
Remark 3: The Rosenblock’s rotating direction method will rotate the exploratory search

direction based on the previous moves using Gram-Schmidt orthogonalization.
-Let &,4,,++,¢&, be the initial search direction.
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- Let «;be the net distance moved in &, direction. And
U =& + 0,8, +-+ a6,

U, =a,&, +-+a,é,

&=/ Jul

B j-1 _
& =W, /HWJH fori=2,3,---,n  wherew,; =u; _Z[(uj)Té:k]é:k
k=1

-Use &,,&,,-++,&, as anew search direction for exploratory search.

Remark 4: More complicated methods can be derived. However, the next Powell’s

Conjugate Direction Method is better if a more sophisticated algorithm is to be used.

e Powell’s Conjugate Direction Method
- Motivations

« It is based on the model of a quadratic objective function.

« If the objective function of n variables is quadratic and in the form of perfect square,

then the optimum can be found after exactly n single variable searches.
« Quadratic functions:

q(x)=a+b"x+0.5x"Cx

Similarity transform (Diagonalization): Find T with X=Tz so that
Q(X)=x"Cx=2"T'CTz=z'Dz (D is a diagonal matrix)
cf) If C is diagonalizable, T is the eigenvector of C.

« For optimization, C of objective function is not generally available.

o adezon L,
7 TN S sttt I
NN
VI~ N\
wl (11 /7 N V] rEe
I " 1 A & 30.000
ll" f ."f LU ! II. H 35,000
H \I II 1 | 1 A0.000
B @ | ( |I ﬂa | | | I -'.. o e
1 \ | ~ [ |} II'
| \ "\ / I I
e \ / i
\\ \\__/ /7]
— 'y
\\ \ ) 'J,."I
NN/ //]]
~Lixg

Figare 19, A quadestic without c1o8s thnss.

- Conjugate directions
« Definition:

Given an nxn symmetric matrix C, the direction Si, S»,, ..., Sr (I <N ) are said to be

C conjugate if the directions are linearly independent and
5;Cs; =0 foralli=j.

Remark 1: If S'S ;=0 foralli= j they are orthogonal.
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Remark 2: If s; is the i-th column of a matrix T, then T'CT is a diagonal matrix.

- Parallel subspace property
For a 2D-quadratic function, pick a direction d and two initial points X; and X,.

///ff'\

Let Z; be the minimum point of mlin f(x,+Ad).

8/1 8X 8/1 x=2, orz

|
(b"+z/C)d =" +2,C)d=0=(z, -2,)'Cd =0 —\ ’--
". (2, —,) and d are conjugate directions. P 310 Contes e it

- Extended Parallel subspace property
For a quadratic function, pick n-direction si =e; (i =1,2,---,Nn) and a initial points Xo.
1) Perform a line search in S, direction and let the result be X;.
i) Perform n line searches for sy, S»,..., Sy starting from a last line search result.
Let the last point be z; after n line search.
iii) Then replace Si with Si+; (i=1,2,...n-1) and set Sp = (Z1-X1).
iv) Repeat ii) and iii) (n-1) times. Then Sy, Sy, ..., Sy are conjugate each other.

e

Flgore 311 Coujugacy from a single point.

in thece di

- Given C, find n-conjugate directions
A. Choose n linearly independent vectors, Ui, Uy,..., Un. Let 2;=u;.

JlT

z, forj=2,3,---,n
k=1 k

B. Recursive method (from an arbitrary direction z;)

T A2

z, A’z
z,=Az,—-| —=1z,

z, Az,
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zJTAzzj z}Azzj _
i, =AZj—| —— |2, | =——|2;, forj=2,3,---,n-1

j+l J T ] T
Z; Az; z; Az,

cf) Select b so that ZiT Az, = ZiT A(Az, +bz,)=0
- Powell’s conjugate direction method

Select initial guess X, and a set of n linearly independent directions (Si = €i).
i) Perform a line search in e, direction and let the result be X(()l) and x = Xél) (k=1).

i1) Starting at x® perform n line search in S; direction from the previous point of line

search result for i=1,2,---,n. Let the point obtained from the each line search be
(k)

X

iii) Form a new conjugated direction, Sn+1 using the extended parallel subspace property.

k k k k

Sp0 = 047 =X/ X = x|

) If ||Sn+1||<8,then X" =x% and stop.

v) Perform additional line search in Sy+1 direction and let the result be X

(k)

n+l*
vi) Delete s and replace s; with .1 for i =1,2,---,n. Thenset X*™ =x) and k=k+1
and go to ii).
Remark 1: If the objective function is quadratic, the optimum will be found after n* line
searches.
Remark 2: Before step vi), needs a procedure to check the linear independence of the
conjugate direction set.

A. Modification by Sargent

Suppose A, is obtained by mlin f(x“+4s..,). (x("“) =x® 4 /lksnﬂ)

Andlet £ ()~ F0) =max[ £ (x{)— £(x])]

j-1

Wy _ £ yky T
Check if W\{f(x )= X )}

fOad) = FOq7)

If yes, use old directions again. Else delete S, and add Sp+1.

B. Modification by Zangwill

n m-1

Let DY :[S1 S, =+ S ] and Hx(k) —x

‘ = maXHXEQ - X}k)H
j

‘ k) _ (k)”
X X
Check if Im™L "™

sl

If yes, use old directions again. Else delete S, and add Sp+1.

det(D¥)<¢

Remark 3: This method will converge to a local minimum at superlinear convergence
rate.
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e o
cf) Let lim-——=C where g™ =x® —x
k—>0 Hg(k)

If C<1, then it is convergent at r-order of convergence rate.
r=1: linear convergence rate

r=2 : quadratic convergence rate

r=1 and C=0 : superlinear convergence rate

= Among unconstrained multidimensional direct search methods, the Powell’s conjugate
direction method is the most recommended method.

3.3 Gradient based Methods
- All techniques employ a similar iteration procedure:
XD = x4 5 00g(x0)
where ™ is the step-length parameter found by a line search, and
S(X(k)) is the search direction.
- The a™is decided by a line search in the search direction S(X(k)).
i) Start from an initial guess X'” (k=0).
ii) Decide the search direction S(x™®).
iii) Perform a line search in the search direction and get an improved point XD
iv) Check the termination criteria. If satisfied, then stop.

v) Else set k=k+1 and go to ii).

- Gradient based methods require accurate values of first derivative of f(x).

- Second-order methods use values of second derivative of f(x) additionally.

o Steepest descent Method (Cauchy’s Method)
f(x)= f(X)+Vf(X)" Ax+--- (higher-order terms ignored)
f(X)— f(x)=-Vf(X)" Ax
The steepest descent direction: Maximize the decent by choosing AX

AX" =arg max (—Vf (X)" AX) =—aVi(X) (a>0)

The search direction: $(X*)) = —a™VFf (x*)

Termination criteria:

[V () <., andior [0 x| [x) < e,

Remark 1: This method shows slow improvement near optimum. (- Vf (X) ~ 0)

Remark 2: This method possesses a descent property.
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VE(x*) s(x¥) <0

¢ Newton’s Method (Modified Newton’s Method)
VF(x) =V (X)+V* f(X)AX+--- (higher-order terms ignored)
The optimality condition for approximate derivative at X :
VI (X)=VI(X)+V* f(X)Ax =0
s AX ==V (X)'VE(X)
The search direction: S(X*)) =-V*f (x®)"'Vf (x*) (Newton’s method)
s(x*) = —a®V? f (x*) 'V (x*)) (Modified Newton’s method)

Remark 1: In the modified Newton’s method, the step-size parameter « ® s decided

by a line search to ensure for the best improvement.
Remark 2: The calculation of the inverse of Hessian matrix V* f (X(k) ) imposes quite
heavy computation when the dimension of the optimization variable is high.

Remark 3: The family of Newton’s methods exhibits quadratic convergence.

2
Hf;(km ‘ <C Hf;(k)u (C is related to the condition of Hessian V> f (Xx*)))

SR NCY)

.I:H(X(k))
[ £+ £ =x®) |- £/(x)
fﬂ(x(k))

X(k+1) _ X* — X(k) —X

f m(X(k))

- (X = xO) =k(x" = x®)?
f”(x(“)( )" =k( )

1
Also, if the initial condition is chosen such that Hg(o) H < E, the method will

converge. It implies that the initial condition is chosen poorly, it may diverge.

Remark 4: The family of Newton’s methods does not possess the descent property.
VE (X ) s(x) = =V (x*)T V£ (x*) 'V (x¥) <0 only if the Hessian
is positive definite.

e Marguardt’s Method (Marquardt’s compromise)

- This method combines steepest descent and Newton’s methods.

- The steepest descent method has good reduction in f when X% is far from Xx".

- Newton’s method possesses quadratic convergence near X .

- The search direction: $(x*)=-JH® + A“1]"'Vf (x®)

- Start with large 1'”, say 10* (steepest descent direction) and decrease to zero.
if f(x*)< f(x®), thenset A% =0.51% .
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Else set A&V =240

Remark 1: This is quite useful for the problems with objective function form of
f(xX)=f2(X)+ £/ (X)+---+ f2(X) (Levenberg-Marquardt method)

Remark 2: Goldstein and Price Algorithm

Let 0 (0 <0.5) and y be positive numbers.
i) Start from X with k=1. Let ¢(x)=Vf(x").

ii) Check if HVf (x"‘))H < &. If yes, then stop.

FOX) = (X = g,4(x*)
OV (XN p(x)
If g(x*,1)< 35, select 6, suchthat §<g(x*,0)<1-5.
Else, 6, =1.

iv)Let Q=[Q, Q, --- Q,] (approximation of the Hessian)

iii) Calculate g(x*,8,)=

VI 4y [VF (X e) -V (x)
Ve

If Q(x") issingularor VFf(x*) Q(x*)"'Vf(x*“) <o,
then @(x™)=VF(x®).Else #(x®)=0Q(x")"'Vf(x").

where Q, =

v) Set Xx* =x" —9 #(x™) and k=k+1. Then go to ii).

e Conjugate Gradient Method

- Quadratically convergent method: The optimum of a n-D quadratic function can be
found in approximately n steps using exact arithmetic.

- This method generates conjugate directions using gradient information.
- For a quadratic function, consider two distinct points, X'” and x".

Let g(xX?)=Vi(x?)=Cx” +b and

g(x")=vi(x?)=Cx" +b.

AgX) = g(x") - g(x”) = C(x" -x®) = CAX

(Property of quadratic function: expression for a change in gradient)
- Iterative update equation: X" = x® +a"s(x®)

of (x**)
oa™

=sT(b+Cx®)+s¥TCa®s® =0

7 k)
s" VI (x
Lo (x*)

- and Vf(X*™) s® =0 (optimality of line search)
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k-1
- Search direction: s* = —g“‘) aF 27(')3(') with s = _g(o)
i=0

- In order that the ™ is C-conjugate to all previous search direction
) T
i) Choose 7 suchthat s Cs® =0

where sV =—g® + 4P = g @ g®
=[g" +7"g”T"Ag =0 (property of quadratic function)

o AgTg" _(g" -lg¥ gg>| <1>I Hg(“u
AgTg” (g7 —g") g¥ g0 g Hg(o)u

.. T .
ii) Choose 7” and 7" suchthat s Cs"” =0 and s Cs” =0.
where s =-g® —y©@g® V(g +yg)

I |
=y?=0 and .. py" —W

i1) In general, st = —g(” +7(k)8(k_1)

k
s =—_g®4 u s (Fletcher and Reeves Method)
Jo T
Remark 1: Variations of conjugate gradient method
i) Miele and Cantrell (Memory gradient method)
¥ = _Vf (x9) 4 gD
where 7/(1) is sought directly at each iteration such that S(k)T Cs“P=0.
cf) Use when the objective and gradient evaluations are very inexpensive.
ii) Daniel
SV EC)VE () o

0 — _vf (x®) 4+
> ( ) S(k nT VZf(X(k))S(k 1)

1ii) Sorenson and Wolfe

Ag(x") g(x®) (kD
Ag(x‘k’)T S(kfl)

s = _vf(x®)+

iv) Polak and Ribiere

S(k) vf (X(k))+ Ag(X(k)) g(x(k)) S(k 1)
Jocxt [
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Remark 2: These methods are doomed to a linear rate of convergence in the
absence of periodic restarts to avoid the dependency of the directions.
> Set s® =—g(x®) whenever ‘g(x“‘))T g(x(k’”)‘ > O.ZHg(X(k))H2 or
every N iterations.
Remark 3: The Polak and Ribiere method is more efficient for general functions
and less sensitive to inexact line search than the Fletcher and Reeves.

¢ Quasi-Newton Method

- Mimic the Newton’s method using only first-order information

- Form of search direction: s(x*)) = -A®Vf (x*))
where A is an nxn matrix call the metric.

- Variable metric methods employ search direction of this form.

- Quasi-Newton method is a variable metric method with the quadratic property.
Ax=C"Ag

- Recursive form for estimation of the inverse of Hessian

AR = AW 4 Agk) (Agk) is a correction to the current metric)

SIf AW approaches to H™' =V?f(x")™", on additional line search will produce the

minimum if the function is quadratic.
-Assume H' = BA® Then AX" = SANAQY ~ ANV AGM

— A(ck)Ag(k) = Ax® /ﬂ—A(k)Ag(k)

Family of solutions

= A

(y and z are arbitrary vectors)

©p\y'ag® ) ZAg®

- DFP method (Davidon-Fletcher-Powell)
Let f=1, y=Ax"® and z=A%Ag".

- :i(Ax(k)yT j_ A(k)Ag(k)ZT

Ax(k*I)AX(kfl)T A(k*I)Ag(k*I)Ag(kfl)T A(kfl)
T | T N =
AX(k 1) Ag(k 1) Ag(k 1) A(k I)Ag(k 1)

=AY =AY 4

oIf AVis any symmetric positive definite, then A™® will be so in the absence

of round-off error. (A” =T is a convenient choice.)

_ T _ _ T ke
ZTAX(k I)Ax(k 1) 7 ZTA(k I)Ag(k I)Ag(k 1) A(k l)Z
N _ - T 4 (k- _

Ax(k 1) Ag(k 1) Ag(k 1 A(k I)Ag(k b}
(aTb)Z (ZTAX(kfl))Z
b'b AX(k—l)TAg(k—n

7TANz=7TAK Dz 4

_1hl/2 _1l/2 _
—a'a- where a = A«1"?z, b= AK D IAgE
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. T _ T nT _ -nT _
-nT _ _ T _ _
o AXED Ag(k D= —(—a(k 1)g(k DTAK l)g(k l))>0

ii) (aT a) (bT b) - (aT b)2 >0 (Schwarz inequality)

iii) If a and b are proportional (zand Ag®*™"

(aTa)(bTb)—(aTb)2 =0.

are t0o),

T nr _ _ nT _ _
but AX* z=cAx* P Ag*T) = —ca® Vg AK gD %0

= 7"Az>0

¢ This method has the descent property.
Af = VI (X)) Ax = —a®VE (x0T AYVE(x¥) <0 for a® >0

- Variations
o McCormick (Pearson No.2)

(Ax("") _ A““”Ag (k-1) )Ax(k—l)T
AX(k—l)T Ag(k’”

AR = AKD 4

e Pearson (Pearson No.3)

(Ax("‘” _ A(k—wAg(k—l))Ag(k—l)TA(k—l)
Ag(k—nTA(k—l)Ag(k—l)

AR = AKD 4

¢ Broydon 1965 method (not symmetric)

_ _ _ N
(Ax(" D_ Ak ”Ag(k ")Ax“‘ DT A (D
Ax(k—nTA(k—l)Ag(k—l)

A® = AKD 4
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¢ Broydon symmetric Rank-one method (1967)
(Ax(k—]) _ A(k—l)Ag(k—l))(AX(k—l) _ A(k—l)Ag(k—l))T
(Ax(kfl) _ A(kfl)Ag(kfl))T Ag(kfl)

A(k) =A(k—1) +

e Zoutendijk

A“‘")Ag““”Ag("‘”TA““”

AR = AKD _
Ag<k—1)T AkD Ag(k—l)

o BFS method (Broydon-Fletcher-Shanno, rank-two method)

T
200 _ | _ ax®Dag® D) eony [ ax®oDagdT] | axtobaxon”
Ax*=1T gg-1) 2Ax®k=DT gg=1) Ax =0T ggk=1)

e Invariant DFP (Oren, 1974)

_ T _ _ nT _ _ nT
AX(k I)Ag(k 1) A(k—l) A(k I)Ag(k I)Ag(k 1 A(k 1 . AX(k I)Ax(k D

A® =
Ag<k—1>T AkD Ag(k—l) Ag(k—l)T AkD Ag(k’” AX(k—l)T Ag(k’”

e Hwang (Unification of many variations)

AW = AKD +[Ax““” A(k‘”Ag“‘")]B("") [Ax“‘“) A(k—1>Ag<k—1>]T
where B is 2x2 and B*™ [AX(H) A% Ag(k_l)]T Ag* Y =[w -17T".

Remark: If @=1and B® =diag(1/Ax® Ag®,—1/Ag® A©AG®) , this

method will be same as DFP method.

Remark 1: As these methods iterate, A® tends to become ill-conditioned or nearly

singular. Thus, they require restart. (A(k) =1: loss of 2™-order information)

cf) Condition number= ratio of max. and min. magnitudes of eigenvalues of A.
Ill-conditioned: if A has large condition number
Remark 2: The size of A% s quite big if n is large. (computation and storage)
Remark 3: BFS method is widely used and known that it has decreased need for restart
and it is less dependent on exact line search.
Remark 4: The line search is the most time-consuming phase of these methods.
Remark 5: If the gradient is not explicitly available, the numerical gradient can be
obtained using, for example, forward and central difference approximations. If
the changes in x and/or f between iterations are small, the central difference

approximation is better at the cost of more computation.
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3.4 Comparison of Methods
- Test functions

e Rosenblock’s function: f(X)=100(X, —x7)* +(1—X,)’

1+ . X X; +100

(%)

1
e Fenton and Eason’s Function: f(X)= 0 12+ +

f(X)=100(X, —X)* +(1=X%)> +90(x, =% )* +(1-X%,)’
+10.1[ (%, = 1) +(X, = 1) [+19.8(x, = 1)(x, ~1)

e Wood’s function:

- Test results
e Himmelblau (1972): BFS, DFP and Powell’s direct search methods are superior.
e Sargent and Sebastian (1971): BFS among BFS, DFP and FR methods
e Shanno and Phua (1980): BFS
e Reklaitis (1983): FR among Cauchy, FR, DFP, and BFS methods
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