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LECTURE NOTE II 

Chapter 3 

Function of Several Variables 

 

 Unconstrained multivariable minimization problem: 

 min ( ),    N

x
f x x R  

 where x is a vector of design variables of dimension N, and f is a scalar objective function. 

- Gradient of f: 
1 2 3

  
T

N

f f f f
f

x x x x

    
       

  

- Possible locations of local optima 

 points where the gradient of f is zero 

 boundary points only if the feasible region is defined 

 points where f is discontinuous 

 points where the gradient of f is discontinuous or does not exist 

- Assumption for the development of optimality criteria 

f and its derivatives exist and are continuous everywhere 

 

3.1 Optimality Criteria 

- Optimality criteria are necessary to recognize the solution. 

- Optimality criteria provide motivation for most of useful methods. 

- Taylor series expansion of f 

2
3

1
( ) ( ) ( ) ( ) ( )

2
T Tf x f x f x x x f x x O x          

where  x  is the current expansion point, 

 x x x    is the change in x, 

 2 ( )f x  is the NxN symmetric Hessian matrix at x , 

 3( )O x  is the error of 2nd-order expansion. 

- In order for x  to be local minimum 

( ) ( ) 0  for  ( 0)f f x f x x x          

- In order for x  to be strict local minimum 

( ) ( ) 0  for  ( 0)f f x f x x x          

2
2 ( )

i j

f
f x

x x

 
   

   
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- Optimality criterion (strict) 

21
( ) ( ) ( ) ( ) 0,  

2
T Tf f x f x f x x x f x x x                

  2( ) 0 and ( ) 0f x f x     (positive definite) 

 

- For ( ) TQ z z Az  

A is positive definite if ( ) 0,   0Q z z    

A is positive semidefinite if ( ) 0,    and 0 0TQ z z z z Az       

A is negative definite if ( ) 0,   0Q z z    

A is negative semidefinite if ( ) 0,    and 0 0TQ z z z z Az       

A is indefinite if ( ) 0 for some  and ( ) 0 for other Q z z Q z z   

 Test for positive definite matrices 

1. If any one of diagonal elements is not positive, then A is not p.d. 

2. All the leading principal determinants must be positive. 

3. All eigenvalues of A are positive. 

 Test for negative definite matrices 

1. If any one of diagonal elements is not negative, then A is not n.d. 

2. All the leading principal determinant must have alternate sign starting from 

D1<0 (D2>0, D3<0, D4>0, … ). 

3. All eigenvalues of A are negative. 

 Test for positive semidefinite matrices 

1. If any one of diagonal elements is nonnegative, then A is not p.s.d. 

2. All the principal determinants are nonnegative. 

 Test for negative semidefinite matrices 

1. If any one of diagonal elements is nonpositive, then A is not n.s.d. 

2. All the k-th order principal determinants are nonpositive if k is odd, and 

nonnegative if k is even. 

Remark 1: The principal minor of order k of NxN matrix Q is a submatrix of size kxk 

obtained by deleting any n-k rows and their corresponding columns from the matrix Q. 

Remark 2: The leading principal minor of order k of NxN matrix Q is a submatrix of 

size kxk obtained by deleting the last n-k rows and their corresponding columns. 

Remark 3: The determinant of a principal minor is called the principal determinant. For 

NxN matrix, there are 2 1N   principal determinant in all. 
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- The stationary point x  is a  

minimum if 2 ( )f x  is positive definite, 

maximum if 2 ( )f x  is negative definite, 

saddle point if 2 ( )f x  is indefinite. 

 

- Theorem 3.1 Necessary condition for a local minimum 

For *x  to be local minimum of f(x), it is necessary that 

 * 2 *( ) 0  and  ( ) 0f x f x     

 

- Theorem 3.2 Sufficient condition for strict local minimum 

If * 2 *( ) 0  and  ( ) 0f x f x    , 

then *x  to be strict or isolated local minimum of f(x). 

 Remark 1: The reverse of Theorem 3.1 is not true. (e.g., f(x)=x3 at x=0) 

 Remark 2: The reverse of Theorem 3.2 is not true. (e.g., f(x)=x4 at x=0) 

3.2 Direct Search Methods 

- Direct search methods use only function values. 

- For the cases where f is not available or may not exist. 

 

 Modified simplex search method (Nelder and Mead) 

- In n dimensions, a regular simplex is a polyhedron composed of n+1 equidistant points 

which form its vertices. (for 2-d equilateral triangle, for 3-d tetrahedron) 

- Let 1 2( , , , )  ( 1, 2, , 1)i i i inx x x x i n      be the i-th vector point in Rn of the 

simples vertices on each step of the search. 

Define  ( ) max{ ( ); 1, , 1}h if x f x i n   , 

( ) max{ ( ); 1, , 1}g i hf x f x i n    and 

( ) min{ ( ); 1, , 1}l if x f x i n   . 

Select an initial simplex with termination criteria. (M=0) 

i) Decide hx  , gx  , lx  among (n+1) points in simplex vertices and let cx   be the 

centroid of all vertices excluding the worst point hx . 
1

1

1 n

c i h
j

x x x
n





 
  

 
  

ii) Calculate ( )hf x , ( )lf x , and ( )gf x . If lx is same as previous 

one, then let M=M+1. If M>1.65n+0.05n2, then M=0 and go to vi). 

iii) Reflection: ( )r c c hx x x x    (usually  =1)  

If ( ) ( ) ( )l r gf x f x f x  , then set h rx x  and go to i). 

iv) Expansion: If ( ) ( )r lf x f x , ( )e c r cx x x x   . 

 ( 2.8 3.0  ) If ( ) ( )e rf x f x , then set h ex x  and go to i). 
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v) Contraction: If ( ) ( )r hf x f x , ( )t c h cx x x x   . 

 ( 0.4 0.6  ) Else if ( ) ( )r gf x f x , ( )t c h cx x x x   . 

Then set h tx x  and go to i). 

vi) If the simplex is small enough, then stop. Otherwise, 

Reduction: 0.5( )i l i lx x x x   for 1, 2, , 1i n  . And go to i). 

 

Remark 1: The indices h and l have the one of value of i.  

Remark 2: The termination criteria can be that the longest segment between points is 

small enough and the largest difference between function values is small enough. 

Remark 3: If the contour of the objective function is severely distorted and elongated, 

the search can very inefficient and fail to converge. 

 

 

 

 Hooke-Jeeves Pattern Search  

- It consists of exploratory moves and pattern moves. 

Select an initial guess (0)x , increment vectors i  for 

 1, 2, ,i n   and termination criteria. Start with k=1. 

i) Exploratory search:  

A. Let i=1 and ( ) ( 1)k k
bx x  . 

B. Try ( ) ( )k k
n b ix x    . If ( ) ( )( ) ( )k k

n bf x f x  , then 
( ) ( )k k
b nx x . 

C. Else, try ( ) ( )k k
n b ix x   . If ( ) ( )( ) ( )k k

n bf x f x , then ( ) ( )k k
b nx x . 

D. Else, let i = i +1 and go to B until i >n. 

ii) If exploratory search fails ( ( ) ( 1)k k
bx x  ) 

A. If i i   for 1, 2, ,i n  , then * ( 1)kx x   and stop. 

B. Else, 0.5i i    for 1, 2, ,i n   and go to i). 

iii) Pattern search:  

A. Let ( 1) ( ) ( ) ( 1)( )k k k k
p b b bx x x x     

B. If ( 1) ( )( ) ( )k k
p bf x f x  , then ( ) ( )k k

px x  and go to i). 

C. Else, ( ) ( )k k
bx x  and go to i). 

Remark 1: HJ method may be terminated prematurely in the presence of severe 

nonlinearity and will degenerate to a sequence of exploratory moves. 

Remark 2: For the efficiency, the pattern search can be modified to perform a line search 

in the pattern search direction. 

Remark 3: The Rosenblock’s rotating direction method will rotate the exploratory search 

direction based on the previous moves using Gram-Schmidt orthogonalization. 

- Let 1 2, , , n   be the initial search direction. 
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- Let i be the net distance moved in i  direction. And 

1 1 1 2 2

2 2 2

n n

n n

n n n

u

u

u

     
   

 

   
  








 

  Then  

1 1 1
ˆ /u u   

1

1

/   for 2,3, ,     where [( ) ]
j

T
j j j j j j k k

k

w w i n w u u  




     

- Use 1 2, , , n   as a new search direction for exploratory search. 

Remark 4: More complicated methods can be derived. However, the next Powell’s 

Conjugate Direction Method is better if a more sophisticated algorithm is to be used. 

 

 Powell’s Conjugate Direction Method  

- Motivations 

 It is based on the model of a quadratic objective function. 

 If the objective function of n variables is quadratic and in the form of perfect square, 

then the optimum can be found after exactly n single variable searches. 

 Quadratic functions: 

 ( ) 0.5T Tq x a b x x x   C  

 Similarity transform (Diagonalization): Find T with x=Tz so that  

( ) T T T TQ x x x z z z z  C T CT D  (D is a diagonal matrix) 

cf) If C is diagonalizable, T is the eigenvector of C. 

 For optimization, C of objective function is not generally available. 

 

 

 

 

 

 

 

 

 

- Conjugate directions 

 Definition: 

Given an nxn symmetric matrix C, the direction s1, s2,, …, sr ( r n ) are said to be 

C conjugate if the directions are linearly independent and  

 0  for all T
i js s i j C . 

Remark 1: If 0  for all T
i js s i j   they are orthogonal. 
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Remark 2: If si is the i-th column of a matrix T, then TTCT is a diagonal matrix. 

 

- Parallel subspace property 

For a 2D-quadratic function, pick a direction d and two initial points x1 and x2. 

 Let iz  be the minimum point of min ( )if x d


 . 

 
1 2 or 

( ) 0T T

x z z

f f x
b x d

x  

  
   

  
C  

 1 2 1 2( ) ( ) 0 ( ) 0T T T T Tb z d b z d z z d      C C C  

 1 2 ( ) and z z d  are conjugate directions. 

- Extended Parallel subspace property 

For a quadratic function, pick n-direction si =ei ( 1, 2, ,i n  ) and a initial points x0. 

i) Perform a line search in sn direction and let the result be x1. 

ii) Perform n line searches for s1, s2,…, sn starting from a last line search result. 

Let the last point be z1 after n line search. 

iii) Then replace si with si+1 (i=1,2,…n-1) and set sn = (z1-x1). 

iv) Repeat ii) and iii) (n-1) times. Then s1, s2, …, sn are conjugate each other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Given C, find n-conjugate directions 

A. Choose n linearly independent vectors, u1, u2,…, un. Let z1= u1. 

1

1

  for 2,3, ,
Tj
j k

j j kT
k k k

u Az
z u z j n

z Az





 
   

  
   

B. Recursive method (from an arbitrary direction z1) 

2
1 1

2 1 1
1 1

T

T

z A z
z Az z

z Az

 
  

 
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2 2

1 1
1 1

for 2,3, , -1
T T
j j j j

j j j jT T
j j j j

z A z z A z
z Az z z j n

z Az z Az 
 

   
         

   
  

   cf) Select b so that 1 ( ) 0T T
i i i i iz Az z A Az bz     

 

- Powell’s conjugate direction method 

Select initial guess 0x  and a set of n linearly independent directions (si = ei). 

i) Perform a line search in en direction and let the result be (1)
0x  and (1) (1)

0x x  (k=1).  

ii) Starting at ( )kx , perform n line search in si direction from the previous point of line 

search result for 1, 2, ,i n  . Let the point obtained from the each line search be 
( )k
ix . 

iii) Form a new conjugated direction, sn+1 using the extended parallel subspace property.
( ) ( ) ( ) ( )

1 ( ) /k k k k
n n ns x x x x    . 

iv) If 1ns   , then * ( )kx x  and stop. 

v) Perform additional line search in sn+1 direction and let the result be ( )
1

k
nx  . 

vi) Delete s1 and replace si with si+1 for 1, 2, ,i n  . Then set ( 1) ( )
1

k k
nx x
  and k=k+1 

and go to ii). 

Remark 1: If the objective function is quadratic, the optimum will be found after n2 line 

searches. 

Remark 2: Before step vi), needs a procedure to check the linear independence of the 

conjugate direction set. 

A. Modification by Sargent 

Suppose *
k  is obtained by ( )

1min ( )k
k nf x s


  .  ( 1) ( )

1
k k

k nx x s
   

And let ( ) ( ) ( ) ( )
1 1( ) ( ) max ( ) ( )k k k k

m m j j
j

f x f x f x f x       

Check if 

0.5( ) ( 1)
*

( ) ( )
1

( ) ( )

( ) ( )

k k

k k k
m m

f x f x

f x f x






 
   

 

If yes, use old directions again. Else delete sm and add sn+1. 

B. Modification by Zangwill 

Let  ( )
1 2   k

nD s s s   and ( ) ( ) ( ) ( )
1 1maxk k k k

m m j j
j

x x x x     

Check if 

( ) ( )
1 ( )

1

det( )
k k

m m k

n

x x
D

s





  

If yes, use old directions again. Else delete sm and add sn+1. 

Remark 3: This method will converge to a local minimum at superlinear convergence 

rate. 
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 cf) Let 

( 1)

( ) ( ) *

( )
lim   where 

k

k k
rk k

C x x








    

  If C<1, then it is convergent at r-order of convergence rate. 

  r=1 : linear convergence rate 

  r=2 : quadratic convergence rate 

  r=1 and C=0 : superlinear convergence rate 

 Among unconstrained multidimensional direct search methods, the Powell’s conjugate 

direction method is the most recommended method. 

 

 

3.3 Gradient based Methods 

- All techniques employ a similar iteration procedure: 
( 1) ( ) ( ) ( )( )k k k kx x s x    

where  ( )k is the step-length parameter found by a line search, and 

 ( )( )ks x  is the search direction. 

- The ( )k is decided by a line search in the search direction ( )( )ks x . 

i) Start from an initial guess (0)x  (k=0). 

ii) Decide the search direction ( )( )ks x . 

iii) Perform a line search in the search direction and get an improved point ( 1)kx  . 

iv) Check the termination criteria. If satisfied, then stop. 

v) Else set k=k+1 and go to ii). 

 

- Gradient based methods require accurate values of first derivative of f(x). 

- Second-order methods use values of second derivative of f(x) additionally. 

 

 Steepest descent Method (Cauchy’s Method) 

 ( ) ( ) ( )  (higher-order terms ignored)Tf x f x f x x     

 ( ) ( ) ( )Tf x f x f x x     

 The steepest descent direction: Maximize the decent by choosing x  

   * arg max ( ) ( )   ( 0)T

x
x f x x f x 


         

 The search direction: ( ) ( ) ( )( ) ( )k k ks x f x    

 Termination criteria:  

( )( )k
ff x   and/or ( 1) ( ) ( )/k k k

xx x x     

Remark 1: This method shows slow improvement near optimum. ( ( ) 0)f x   

Remark 2: This method possesses a descent property. 
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 ( ) ( )( ) ( ) 0k T kf x s x   

 

 Newton’s Method (Modified Newton’s Method) 

 2( ) ( ) ( )  (higher-order terms ignored)f x f x f x x      

 The optimality condition for approximate derivative at x : 

  2( ) ( ) ( ) 0f x f x f x x      

  2 1( ) ( )x f x f x     

 The search direction: ( ) 2 ( ) 1 ( )( ) ( ) ( )k k ks x f x f x    (Newton’s method) 

  ( ) ( ) 2 ( ) 1 ( )( ) ( ) ( )k k k ks x f x f x      (Modified Newton’s method) 

Remark 1: In the modified Newton’s method, the step-size parameter ( )k  is decided 

by a line search to ensure for the best improvement. 

Remark 2: The calculation of the inverse of Hessian matrix 2 ( )( )kf x  imposes quite 

heavy computation when the dimension of the optimization variable is high. 

Remark 3: The family of Newton’s methods exhibits quadratic convergence. 

 
2( 1) ( )k kC     (C is related to the condition of Hessian 2 ( )( )kf x ) 

     

( ) *
( 1) * ( ) *

( )

( ) ( ) * ( ) *

( )

( )
* ( ) 2 * ( ) 2

( )

( ) ( )

( )

( ) ( )( ) ( )

( )

( )
( ) ( )

( )

k
k k

k

k k k

k

k
k k

k

f x f x
x x x x

f x

f x f x x x f x

f x

f x
x x k x x

f x

   
     

         
 

 
        

 

 Also, if the initial condition is chosen such that (0) 1

C
  , the method will 

converge. It implies that the initial condition is chosen poorly, it may diverge. 

Remark 4: The family of Newton’s methods does not possess the descent property. 
( ) ( ) ( ) 2 ( ) 1 ( )( ) ( ) ( ) ( ) ( ) 0k T k k T k kf x s x f x f x f x        only if the Hessian 

is positive definite. 

 

 Marquardt’s Method (Marquardt’s compromise) 

- This method combines steepest descent and Newton’s methods. 

- The steepest descent method has good reduction in f when ( )kx  is far from *x . 

- Newton’s method possesses quadratic convergence near *x . 

- The search direction: ( ) ( ) ( ) 1 ( )( ) [ ] ( )k k k ks x f x    H I  

- Start with large (0) , say 104 (steepest descent direction) and decrease to zero. 

If ( 1) ( )( ) ( )k kf x f x  , then set ( 1) ( )0.5k k   . 
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Else set ( 1) ( )2k k   . 

Remark 1: This is quite useful for the problems with objective function form of 

 2 2 2
1 2( ) ( ) ( ) ( )mf x f x f x f x     (Levenberg-Marquardt method) 

Remark 2: Goldstein and Price Algorithm 

Let ( 0.5)    and   be positive numbers. 

i) Start from (0)x  with k =1. Let (0) (0)( ) ( )x f x   . 

ii) Check if ( )( )kf x   . If yes, then stop. 

iii) Calculate  

If ( )( ,1)kg x  , select k  such that ( )( , ) 1k
kg x     . 

Else, 1k  . 

iv) Let 1 2[    ]nQ Q QQ   (approximation of the Hessian) 

where 

( ) ( 1) ( )

( 1)

( ( ) ) ( )

( )

k k k
i

i k

f x f x e f x
Q

f x









   



 

If ( )( )kxQ  is singular or ( ) ( ) 1 ( )( ) ( ) ( ) 0k T k kf x Q x f x   , 

then ( ) ( )( ) ( )k kx f x   . Else ( ) ( ) 1 ( )( ) ( ) ( )k k kx Q x f x   . 

v) Set ( 1) ( ) ( )( )k k k
kx x x     and k=k+1. Then go to ii). 

 

 Conjugate Gradient Method  

- Quadratically convergent method: The optimum of a n-D quadratic function can be 

found in approximately n steps using exact arithmetic. 

- This method generates conjugate directions using gradient information. 

- For a quadratic function, consider two distinct points, (0)x  and (1)x . 

Let (0) (0) (0)( ) ( )g x f x x b   C  and  
(1) (1) (1)( ) ( )g x f x x b   C . 

(1) (0) (1) (0)( ) ( ) ( ) ( )g x g x g x x x x      C C   

(Property of quadratic function: expression for a change in gradient) 

- Iterative update equation: ( 1) ( ) ( ) ( )( )k k k kx x s x    
( 1)

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

( )
( )

( ) 0

k
T k k T k k k

k

k T k k T k k

f x
b s s x s

s b x s s







  


   

C

C C

 

( ) ( )
( )

( ) ( )

( )
Tk k

k
Tk k

s f x

s s
 

  
C

 and ( 1) ( )( ) 0k T kf x s   (optimality of line search) 

( ) ( ) ( )
( )

( ) ( )

( ) ( ( ))
( , )

( ) ( )

k k k
k k

k k T k
k

f x f x x
g x

f x x

 
 

 



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- Search direction: 
1

( ) ( ) ( ) ( )

0

k
k k i i

i

s g s




    with (0) (0)s g   

- In order that the ( )ks is C-conjugate to all previous search direction 

i) Choose (0)  such that (1) (0) 0
T

s s C   

where (1) (1) (0) (0) (1) (0) (0)s g s g g         
(1) (0) (0) (0)[ ] [ / ] 0Tg g C x      (0) (0)( )x s   
(1) (0) (0)[ ] 0Tg g g     (property of quadratic function) 

2(1)(1) (1) (0) (1) (1) (1)
(0)

2(0) (0) (1) (0) (0) (0) (0)

( )

( )

TT T

TT T

gg g g g g g g

g g g g g g g g
  

     
 

 

ii) Choose (0)  and (1)  such that (2) (1) 0
T

s s C  and (2) (0) 0
T

s s C . 

where (2) (2) (0) (0) (1) (1) (0) (0)( )s g g g g        

(0) 0   and 

2(2)

(1)
2(1)

g

g
   

ii) In general, ( ) (1) ( ) ( 1)k k ks g s     

2( )

( ) ( ) ( 1)
2( 1)

k

k k k

k

g
s g s

g





 
   
 
 

 (Fletcher and Reeves Method) 

Remark 1: Variations of conjugate gradient method 

i) Miele and Cantrell (Memory gradient method) 
( ) ( ) ( ) ( 1)( )k k k ks f x s     

where (1) is sought directly at each iteration such that ( ) ( 1) 0
Tk ks s  C . 

cf) Use when the objective and gradient evaluations are very inexpensive. 

ii) Daniel 

( 1) 2 ( ) ( )
( ) ( ) ( 1)

( 1) 2 ( ) ( 1)

( ) ( )
( )

( )

Tk k k
k k k

Tk k k

s f x f x
s f x s

s f x s




 

 
  


 

iii) Sorenson and Wolfe 
( ) ( )

( ) ( ) ( 1)
( ) ( 1)

( ) ( )
( )

( )

k T k
k k k

k T k

g x g x
s f x s

g x s





  


 

iv) Polak and Ribiere 

( ) ( )
( ) ( ) ( 1)

2( 1)

( ) ( )
( )

( )

k T k
k k k

k

g x g x
s f x s

g x






    

0 
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Remark 2: These methods are doomed to a linear rate of convergence in the 

absence of periodic restarts to avoid the dependency of the directions. 

 Set ( ) ( )( )k ks g x    whenever 
2( ) ( 1) ( )( ) ( ) 0.2 ( )k T k kg x g x g x    or 

every n iterations. 

Remark 3: The Polak and Ribiere method is more efficient for general functions 

and less sensitive to inexact line search than the Fletcher and Reeves. 

 Quasi-Newton Method  

- Mimic the Newton’s method using only first-order information 

- Form of search direction: ( ) ( ) ( )( ) ( )k k ks x f x  A  

where A is an nxn matrix call the metric. 

- Variable metric methods employ search direction of this form. 

- Quasi-Newton method is a variable metric method with the quadratic property. 
1x g  C  

 

- Recursive form for estimation of the inverse of Hessian 

( 1) ( ) ( )k k k
c

  A A A   ( ( )k
cA  is a correction to the current metric) 

- If ( )kA  approaches to 1 2 * 1( )f x  H , on additional line search will produce the 

minimum if the function is quadratic. 

- Assume 1 ( )k H A . Then ( ) ( ) ( ) ( 1) ( )k k k k kx g g      A A  

( ) ( ) ( ) ( ) ( )/k k k k k
c g x g     A A  

( ) ( ) ( )
( )

( ) ( )

1 k T k k T
k

c T k T k

x y g z

y g z g
  

     

A
A  (y and z are arbitrary vectors) 

- DFP method (Davidon-Fletcher-Powell) 

Let 1  , ( )ky x   and ( ) ( )k kz g A . 

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
( ) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

T Tk k k k k k
k k

T Tk k k k k

x x g g

x g g g

     


    

    
         

A A
A A

A
 

 If (0)A is any symmetric positive definite, then ( )kA  will be so in the absence 

of round-off error. ( (0) A I  is a convenient choice.) 

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
( ) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

2 ( 1) 2
1/ 2 1/ 2( 1) ( 1) ( 1)

( 1) ( 1)

( ) ( )
  where ,  

T TT k k T k k k k
T k T k

T Tk k k k k

T T k
T k k k

TT k k

z x x z z g g z
z z z z

x g g g

a b z x
a a a A z b A g

b b x g

     


    


  

 

    
        


     

 

A A
A A

A
 

Family of solutions 
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i) ( 1) ( 1) ( 1) ( ) ( 1) ( 1) ( 1) ( 1)T T T Tk k k k k k k kx g x g x g x g              

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)( ) 0
T Tk k k k k kx g g g          A  

ii)     2
0T T Ta a b b a b   (Schwarz inequality) 

iii) If a and b are proportional (z and ( 1)kg   are too),  

    2
0T T Ta a b b a b  . 

 but  ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) 0
T T Tk k k k k k kx z c x g c g g            A  

0Tz z A  

 This method has the descent property. 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 0k T k k T k kf f x x f x f x        A  for ( ) 0k   

 

- Variations 

 McCormick (Pearson No.2) 

 
( 1) ( 1) ( 1) ( 1)

( ) ( 1)

( 1) ( 1)

( )
Tk k k k

k k
Tk k

x g x

x g

   


 

   
 

 

A
A A  

 Pearson (Pearson No.3) 

 
( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( 1)

( 1) ( 1) ( 1)

( )
Tk k k k k

k k
Tk k k

x g g

g g

    


  

   
 

 

A A
A A

A
 

 Broydon 1965 method (not symmetric) 

 
( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( 1)

( 1) ( 1) ( 1)

( )
Tk k k k k

k k
Tk k k

x g x

x g

    


  

   
 

 

A A
A A

A
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 Broydon symmetric Rank-one method (1967) 

 
( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( 1)
( 1) ( 1) ( 1) ( 1)

( )( )

( )

k k k k k k T
k k

k k k T k

x g x g

x g g

     


   

     
 

   
A A

A A
A

 

 Zoutendijk  

 
( 1) ( 1) ( 1) ( 1)

( ) ( 1)

( 1) ( 1) ( 1)

Tk k k k
k k

Tk k k

g g

g g

   


  

 
 

 

A A
A A

A
 

 BFS method (Broydon-Fletcher-Shanno, rank-two method) 

 𝑨ሺ௞ሻ ൌ ቈ𝑰 െ
௱௫ሺೖషభሻ௱௚ሺೖషభሻ

೅

௱௫ሺೖషభሻ
೅
௱௚ሺೖషభሻ

቉ 𝑨ሺ௞ିଵሻ ቈ𝑰 െ
௱௫ሺೖషభሻ௱௚ሺೖషభሻ

೅

௱௫ሺೖషభሻ
೅
௱௚ሺೖషభሻ

቉
்

൅
௱௫ሺೖషభሻ௱௫ሺೖషభሻ

೅

௱௫ሺೖషభሻ
೅
௱௚ሺೖషభሻ

 

 Invariant DFP (Oren, 1974) 

 

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
( ) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

T T Tk k k k k k k k
k k

T T Tk k k k k k k k

x g g g x x

g g g g x g

       


       

      
   
       

A A
A A

A A

 Hwang (Unification of many variations) 

 ( ) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) Tk k k k k k k k kx g x g                  A A A B A  

 where B is 2x2 and ( 1) ( 1) ( 1) ( 1) ( 1) [  -1]
Tk k k k k Tx g g          B A . 

Remark: If 1   and ( ) ( ) ( ) ( ) ( ) ( )(1/ , 1/ )
T Tk k k k k kB diag x g g g     A  , this 

method will be same as DFP method. 

 

Remark 1: As these methods iterate, ( )kA  tends to become ill-conditioned or nearly 

singular. Thus, they require restart. ( ( )k A I : loss of 2nd-order information) 

 cf) Condition number= ratio of max. and min. magnitudes of eigenvalues of A. 

    Ill-conditioned: if A has large condition number 

Remark 2: The size of ( )kA  is quite big if n is large. (computation and storage) 

Remark 3: BFS method is widely used and known that it has decreased need for restart 

and it is less dependent on exact line search. 

Remark 4: The line search is the most time-consuming phase of these methods. 

Remark 5: If the gradient is not explicitly available, the numerical gradient can be 

obtained using, for example, forward and central difference approximations. If 

the changes in x and/or f between iterations are small, the central difference 

approximation is better at the cost of more computation. 
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3.4 Comparison of Methods 

- Test functions 

 Rosenblock’s function: 2 2 2
2 1 1( ) 100( ) (1 )f x x x x     

 Fenton and Eason’s Function: 
 

2 2 2
2 2 1 2
1 42

1 1 2

1 1 100
( ) 12

10

x x x
f x x

x x x

       
  

 

 Wood’s function: 

2 2 2 2 2 2
2 1 1 4 3 3

2 2
2 4 2 4

( ) 100( ) (1 ) 90( ) (1 )

10.1 ( 1) ( 1) 19.8( 1)( 1)

f x x x x x x x

x x x x

       

        
 

 

- Test results 

 Himmelblau (1972): BFS, DFP and Powell’s direct search methods are superior. 

 Sargent and Sebastian (1971): BFS among BFS, DFP and FR methods 

 Shanno and Phua (1980): BFS 

 Reklaitis (1983): FR among Cauchy, FR, DFP, and BFS methods 

 


