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LECTURE NOTE III 
Chapter 4 

Linear Programming 
 

Ref: Luenberger, D. G., "Linear and Nonlinear Programming,: 2nd Ed., Addison-Wesley, 1984 

 

- Objective function and constraints are linear. 
- Feasible region: the region that satisfies all constrains 
- Unique optimal solution vs. alternative (or multiple) optimal solution 

- Unbounded optimum: infinite objective function value (±∞) → due to insufficient constraints 

- An optimal solution to LP, if it exists, will be on one of the vertices generated by constraints 
 

Example: Let x1 and x2 denote the number of grade-1 and grade-2 inspectors assigned to inspection. The 
grade-1 inspector can inspect 200 pieces with error rate of 2% and 120 pieces with error rate of 
5% for grade-2 inspector, daily. The hourly wages are $4 and $3 for grade-1 and grade-2, 
respectively. The erroneous inspection costs $2 for each piece. Since the number of available 
inspectors in each grade is limited, we have following constraints: 

 1 8x   (grade-1) and  2 10x   (grade-2) 

 The company requires at least 1800 pieces be inspected daily. Formulate the problem to 
minimize the cost for the company. 

 <Solution> 
 Total cost for company (objective function): 

  

1

2

1 2

($4 / 8 $2 / 200 0.02)

      ($3/ 8 $2 / 120 0.05)

40 36

Z hr hr ea ea x

hr hr ea ea x

x x

    
    

 
 

 Constrains: 1 8x  , 2 10x  , 1 2200 120 1800x x   

   1 0x  , 2 0x   

 
Graphical interpretation:  
 feasible region: shaded area (satisfying all constraints) 

optimum point: at point A, (8, 1.6), the objective function Z has the minimum of 377.6. 
 optimum solution: x1=8, x2=1.6 (one of grade-2 inspector is utilized only 60%) 
   (If not possible choose x2=2.) 

 

I. Basic Properties 
1. Standard form: 

1 1 2 2min( )n n
x

c x c x c x    

subject to  

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

   
   

   









 

and  1 20,  0, ,  0nx x x   . 
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 Or in vector-matrix form, 

min T

x
c x  

A. subject to   and 0  Ax = b x  

    (Without loss of generality, let b ≥ 0) 

   where the coefficient matrix A is mxn,  
    the decision vector x is nx1,  
    the cost (profit) vector c is nx1, and  
    the requirement vector b is mx1. 
   (n optimization variables and m constraints with scalar objective function) 
 

  ▶ Conversion to the standard form for the different types of constraints 

  <Ex. 1> 

         
  and  

   
    

Ax b Ax s b

x 0 x 0 s 0
  

    (s : "slack variable") 
  <Ex. 2> 

         
  and  

   
    

Ax b Ax s b

x 0 x 0 s 0
 

     

    (s : "surplus variable") 
   cf) If slack or surplus variable is 0, the inequality constraint is active, and if they are positive, 

then the constraint is binding. 

 

  <Ex. 3> 

          
  and  


       

x u - v
x

u 0 v 0
  

    (replace x with u - v) 
  <Ex. 4> Maximization of Z is equivalent to minimization of (-Z).  
 

  <Ex. 5> 

   1 2 3max( 2 3 )
x

x x x   1 2 4 5min( 2 3 3 )
x

x x x x     

subject to  subject to 

 

1 2 3

1 2 3

1 2 3

7

2

3 2 5

x x x

x x x

x x x

  
  
   

 

1 2 4 5 6

1 2 4 5 7

1 2 4 5

7

2

3 2 2 5

x x x x x

x x x x x

x x x x

    
    

    
 

and 1 20,  0x x  . and  0  ( 1, 2, 4,5,6,7)ix i   

 
 2. Basic Feasible Solution 
  - Ax = b (constraints) 

    Let m nA R , nx R , and mb R . 

    ⇒ n variables with m equations: (n-m) degrees of freedom (n>m) 

  ⇒ Full rank assumption: m rows of A are linearly independent. 

   cf) if n=m, unique solution exists if rank(A)=m. 
   if n<m, it is a over-determined system and there is no solution if rank(A)>n. 
   if n>m, it is a under-determined system and there are many solutions. 
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    (select the optimal among many solutions) 
- Let A = [B  N]  and x = [x1  x2]T   
 where B is mxm, N is mx(n-m), x1 is mx1, and x2 is (n-m)x1. 

   Ax = Bx1 + Nx2  = b 

 

  - Only m variables can be fixed and others can have any values to satisfy the m-constraints. 
    By letting x2 = 0 and rearrange the variable indices so that the first m variables is xB, 

   
-1

1 B x B b x  (Basic variable) 

   2 0 N x x    (Nonbasic variable) 

    TBx x 0  (Basic solution) 

   If xB ≥ 0,   x = [xB 0 ]T is the basic feasible solution. 

   If some of the elements of xB are zero, x = [xB 0 ]T is the degenerate basic feasible solution. 

 

 3. The Fundamental Theorem of LP 

B. min T

x
c x  

C. subject to   and 0  Ax = b x  

 

  Assume  m nrank m A R , 

   i) if there is a feasible solution, there is a basic feasible solution; 
   ii) if there is an optimal feasible solution, there is an optimal basic feasible solution. 

   ⇒ It is sufficient to search only over the basic feasible solutions! 

    
!

No. of basic feasible solutions  
( )!

n n

m n m

 
   

  (some are not feasible) 

 
 4. Geometric Meaning of Basic Feasible Solutions 
  <Ex. 1> 
   x1 + x2 + x3  = 1   (m=1) 

   x1 ≥ 0,  x2 ≥ 0,  x3 ≥ 0 

   

1 0 0

0 ,  or 1 ,  or 0

0 0 1
B

     
           
          

x   

  <Ex. 2> 
   x1 + x2 + x3  = 1 
   2x1 + 3x2     = 1   (m=2) 

   x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 
     

   

1/ 2 0

0 ,  or 1/ 3

1/ 2 2 / 3
B

   
       
      

x  

   ⇒ Solution can be found among basic feasible solutions (vertices). 

 

  {x | Ax = b} ⇒ Linear variety, Affine space (Not a linear space → have not origin) 

  {x | Ax = b, x ≥ 0} ⇒ Convex polytope (has extreme points) 

 

Extreme points of  
the convex polyhedron 

Extreme points of 
the convex polyhedron 
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  Extreme point : A point x in a convex set C is said to be an extreme point of C if there are no two 

distinct point x1 and x2 in C such that 1 2(1 )x x x     for some 0 1  . 

  Theorem (Equivalence of extreme points and basic solutions): Let A be an mxn matrix of rank 
m and b an m-vector.  Let K be the convex polytope consisting of all n-vector x satisfying 

Ax = b, x ≥ 0.  A vector x is an extreme point of K if and only if x is a basic feasible solution 

of Ax = b, x ≥ 0. 

  Corollary 1: If the convex set K corresponding to Ax = b, x ≥ 0 is nonempty, it has at least one 

extreme point. 
  Corollary 2: If there is a finite optimal solution to a linear programming problem, there is a finite 

solution which is an extreme point of the constraint set. 

  Corollary 3: The constraint set K corresponding to Ax = b, x ≥ 0 possesses at most a finite 

number of extreme points. 

  Corollary 4: If the convex polytope K corresponding to Ax = b, x ≥ 0 is bounded, then K is a 

convex polyhedron, that is, K consists of points that are convex combinations of a finite number 
of points. 

 

 5. Searching the Basic Solution, Pivot Operation 
  Elementary row operation : Add the constant multiple of a row to another row  
   (Does not alter the solution of the linear system equation) 

   Let 

1

1

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

id 
 
 
 

  
 
 
 
  

E

 

 

     

 

     

 

 (mxm matrix) 

   E1Ax = E1b ⇒ Addition of d1i times of the i-th row to the first row 
 

  Pivot operation : Reduce the coefficient of a specific variable to unity in on of the equation and 

zero elsewhere. Let E = E1 E2 E3 … Em which will perform a pivot operation and 

consists of m-elementary row operations where 

    

1

2

1 0 / 0

0 1 / 0

0 0 1/ 0

0 0 / 1

q pq

q pq

pq

mq pq

a a

a a

a

a a

 
  
 

  
 
 
 

  

E

 

 

     

 

     

 

 (mxm matrix) 

       Then EAx = Eb will have a form that is pivoted by the pq-element. 
 

  By m-pivot operations (or by Gauss-Jordan elimination) for Ax = b 

1, 1 111 12 1 1 1 1 10

2, 1 221 22 2 2 2 2 20

, 11 2 0

1 0 0

0 1 0

0 0 1

m nn

m nn

m m mnm m mn n m n m

y ya a a x b x y

y ya a a x b x y

y ya a a x b x y







          
          
            
          
          

                   

 

 

             

  

 

  ⇒ Row Echelon Form, or Canonical Form 
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xN 

B-1N xB B-1b

  ⇒ Set xm+1 = xm+2 = … = xn = 0.  Then x1 = y10, x2 = y20, … xm = ym0,  

      10 0

T T

B my yx 0 0   (A basic Solution) 

 

  Alternatively, 

1, 1 111 12 1 1 1 1 10

2, 1 221 22 2 2 2 2 20

, 11 2 0

1 0 0

0 1 0

0 0 1

m nn

m nn

m m mnm m mn n m n m

y ya a a x b x y

y ya a a x b x y

y ya a a x b x y







           
                      
        
                           

 

 

             

 





 
 
 

 

   

  ⇒ Set x1 = x2 = … = xn-m = 0.  Then x m +1 = y'10, x m +2 = y'20, … xn = y' m 0,  

      10 0

T T

B my y 0 x 0   (An alternative basic solution) 

 

  ⇒ The ERO's are applied to both matrix A and vector b.  Therefore, apply ERO's for the 

following augmented matrix. 

   

11 12 1 1

21 22 2 2

1 2

n

n

m m mn m

a a a b

a a a b

a a a b

 
 
 
 
 
  





    



 

 

 6. Finding a Minimum Feasible Solution While Preserving Feasibility 
  Adjacent basic feasible solution: It is a basic feasible solution which differs from the present 

basic feasible solution in exactly one basic variable. (Adjacent vertex or extreme point 

which has different objective function value ⇒ could be better or worse) 

   ⇒ Select the better basic feasible solution (among mx(n-m) solutions at most) 

      (If no adjacent basic feasible solution is better than the present, optimal!) 

   ⇒ Exchange one variable in the basic variable set and on in nonbasic variable set in a 

way that the objective function value is improved. 

   ⇒ Once the variable to exchange is selected (p-th variable in the basic and q-th in the 

nonbasic), pivot by pq-th element! 

 

  ▶ Row echelon form 

   I xB + B-1N xN = B-1b (where xB = B-1b–B-1N xN and xN = 0) 
 

1, 1 111 12 1 1 1 1 10

2, 1 221 22 2 2 2 2 20

, 11 2 0

1 0 0

0 1 0

0 0 1

m nn

m nn

m m mnm m mn n m n m

y ya a a x b x y

y ya a a x b x y

y ya a a x b x y







          
          
            
          
          

                   

 

 

             

  

 

 

  ▶ Objective function 

   J = cB
T xB + cN

T xN = cB
T xB 

 

  ▶ Assume xq from nonbasic variables is changed from 0 to 1: Impact of xq on objective 

   xB = B-1b – B-1N xN = B-1b – dqxq = B-1b – dq,      (xq = 1) 
   where dq is q-th column of B-1N. 
   J' = cB

T (B-1b – dq) + cN
T xN = cB

T (B-1b – dq) + cq 
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  ▶ Improvement on objective by including xq in the basic (Inner product rule) 

   ΔJ =J' – J = [cB
T (B-1b - dq) + cq] – cB

T B-1b = cq – cB
T dq 

   
T

q q B qc c c d�  

   ⇒ relative cost (or profit) of the nonbasic variable xq  

   ⇒ should be negative for improvement in minimization problem 

   ⇒ should be positive for improvement in maximization problem 

   ⇒ For minimization, consider a new basic variable which has the most improvement on 

objective function. 
 

  ▶ Condition for optimality (Minimization) 

    0     ( 1, , )qc q q m n      

   (A local minimum is the global minimum since it is LP.) 
 

  ⇒ Determining variable to enter basis (min.): 

   Choose q so that min 0q j
j

c c      

 

  ▶ Selection of the leaving element from the basic variable set 

   ⇒ To achieve the greatest improvement on objective, the xq should increase the objective 

function as much as possible, but xB cannot be nonpositive in more than one element. 

   ⇒ Increase xq until any one of elements in xB becomes zero (xp = 0). 
 

    1
0 0    0    ( 1, )j j q j jq qjq

x y x y y x j m     B N   

 - If yjq is not positive, xj becomes more positive as xq increases. (cannot be nonbasic) 

- Choose p so that the maximum increase in xq without making more than one basic 

variable nonpositive. 
 

  ⇒ Determining variable to leave basis (min.): 

   Choose p so that (yj0 / yjq) is smallest 

    among yjq > 0 for j = 1, … , m. 

    (Minimum ratio rule) 
 

  ▶ Geometrical Interpretation of the basic feasible solution 

   Ax = b  ⇒  
1 1

2 2
1 2 n

n m

x b

x b

x b

   
   
   
   
   
      

a a a
 

 

   Choose  1 2   ma a a  as the basis so that 

      1

1 2B m

x a a a b   (xBi > 0) 

 

   Assume m=2 and n=4. 
    A feasible solution defines a representation 
    of b as a positive combination of ai 's. In this example,  
    {a1, a3}, {a2, a4} and {a3, a4} cannot result in basic feasible solution.  
 

a3 

a4 

a1 

a2 

b 
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relative (reduced) cost coeff. 

Objective function value 

II. SIMPLEX METHOD 
 

 Standard LP problem can be written as:     

   min T T
B B N N

x
Z  c x c x  

   Subject to B N Bx Nx b , B x 0  and N x 0  

If B is the basis for a basic feasible solution (xB = B-1b>0, xN = 0), 
 xB = B-1b – B-1N xN  
 Z = cB

T xB + cN
T xN = cB

T(B-1b – B-1N xN ) + cN
T xN  

 = cB
TB-1b + (cN

T – cB
TB-1N ) xN = cB

TB-1b + rT xN 

 

 1. Matrix Form of simplex method (Tableau form) 

  

1 1

1 1T TT T T T
B N N B B

 

 

   
            

B N bA b I B N B b

c c 0c 0 0 c c B N c B b
 (by ERO) 

 

  <Procedure> 
   1. Select m-initial basic variables. 
   2. Convert the tableau into the row echelon form by ERO's. 
   3. Choose a column which has the largest negative value of the reduced cost coefficient 

(Select q). 
   4. Choose a pivot element in the q-th column by the minimum ratio rule. 
   5. Include xq as a basic variable and xp becomes a nonbasic variable. 
   6. Repeat the step 2-6 until all the reduced costs are positive (Minimization problem) 

 

  ▶ Maximization problem 

   1. Replace Z with –Z. 
   2. Or, choose largest positive value of the relative profit coefficient in step 3 and repeat 

the procedure until all the reduced costs are negative. 

 

  ▶ Alternative Optima: If the reduced costs for nonbasic variables are not positive at the optimal 

solution, this indicates the alternative solutions which will not change the optimum 
value. 

 

  ▶ Unbounded Optimum: If the minimum ratio rule cannot be determined (all negative), this 

indicate the unbounded optimum. 

 

  ▶ Degeneracy: If a basic feasible solution contains zeros for one or more basic variables, this 

indicates the degenerate basic feasible solution.  It occurs if two or more rows tie for 
the minimum ratio, or one or more elements of the right-hand side in the constraints 
(bi’s) in original LP problem are zero. 

      → Perturb the pivot entry in the requirement vector (b) by a small amount ( ), then 

proceed as normal. 

  ▶ Cycling: If the degeneracy occurs (no improvement with new basic variable), no 

improvement in the objective function is achieved for a while. (Reducing calculation 
efficiency) If the iteration goes on indefinitely without improving the objective 
function value, it is called classical cycling or cycling. 

      → It is not likely in practice, but computer cycling may occur! 
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  Example:  

  1 2 3max 3 3Z x x x    

  subject to 

1 2 3

1 2 3

1 2 3

2 2

2 3 5

2 2 6

x x x

x x x

x x x

  
   
   

   0   ( 1,2,3)ix i   

  Introducing three nonnegative slack variables, the initial tableau 
a1 a2 a3 a4 a5 a6 b ai0/aij 
2 1 1 1 0 0 2 2/2 

1 2 3 0 1 0 5 5/1 

2 2 1 0 0 1 6 6/2 

rT -3 -1 -3 0 0 0 0  

 
  Select pivot element as 1st column and 1st row and perform ERO’s. 

a1 a2 a3 a4 a5 a6 b ai0/aij 
1 1/2 1/2 1/2 0 0 1 2 

0 3/2 5/2 -1/2 1 0 4 8/5 

0 1 0 -1 0 1 4 big 

rT 0 1/2 -3/2 3/2 0 0 3  
 
  Select pivot element as 3rd column and 2nd row and perform ERO’s. 

a1 a2 a3 a4 a5 a6 b ai0/aij 
1 1/5 0 2/5 -1/5 0 1/5  

0 3/5 1 -1/5 1/5 0 8/5  

0 1 0 -1 0 1 4  

rT 0 11/10 0 6/5 3/10 0 27/5  

 
   All the relative costs are positive: Optimal solution is obtained. 
    x1=1/5, x3=8/5, x2=0, x4=0, x5=0, x6=4, and Z= –27/5. 
 

III. TWO-PHASE SIMPLEX METHOD 
 

 - To start the simplex method, an initial feasible solution in canonical form is needed. 
 - Generally, the constraints are not given in the canonical form. 

  → Need to solve the linear equation to find a basic feasible solution 

 

 1. Artificial Variable 
  If basic variables are not readily available from each constraint, add new artificial variable for 

each constraints to form a basic solution. 
  <Example> 
   min Z = –3x1 + x2 + x3 

   s. t.    x1 – 2x2 +  x3 ≤ 11 

    –4x1 + 2x2 + 2x3 ≥ 3 

      2x1     –  x3 = –1 ,      x1≥0, x2≥0, x3≥0  

   ⇒ To standard form (with slack/surplus variable) 

      x1 – 2x2 +  x3 + x4      = 11  
    –4x1 + 2x2 + 2x3      – x5  = 3 

    –2x1      +  x3          = 1 ,   x1 ~ x5≥0 

    → x4 can be a basic variable.  Need two more basic variables! 

   ⇒ Add 2 artificial variables (x6, x7) 
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      x1 – 2x2 +  x3 + x4              = 11  
    –4x1 + 2x2 + 2x3  – x5 + x6     = 3 

    –2x1      +  x3   + x7 = 1 ,   x1 ~ x7≥0 

   ⇒ Basic feasible solution : x4 =11, x6 = 3, x7 = 1,  x1 ~ x3, x5 = 0 

    (It is not feasible to original problem since x6 and x7 are not zero.) 

  ⇒ Need to make x6 and x7 zero ASAP for the feasible solution to original problem!! 

 

 2. Two-Phase Simplex Method 
  <Phase I> To remove all the artificial variables, set an artificial objective function. 
   min w = x6 + x7 

   s. t.   x1 – 2x2 +  x3 + x4            = 11  
    –4x1 + 2x2 + 2x3      – x5 + x6    = 3 

    –2x1      +   x3            + x7 = 1 ,   x1 ~ x7≥0 

 

   → If w becomes zero by simplex method (x6 = 0 and x7 = 0), then the solution is a basic 

feasible solution of the original problem. If not, the original problem is infeasible. 
   → Start the initial tableau calculating reduced costs by making the reduced costs for 

artificial variables zero. 
 
  <Phase II> Find the optimum of the original problem with the solution from the Phase I without 

any artificial variables. 
 

3. Variables With Upper Bounds 

  
min

Subject to   and 

T

 
x

c x

Ax = b 0 x h
 

 <Method 1> Change the problem to standard form 

  
min

Subject to  ,   and ,  

T

  
x

c x

Ax = b x y = h x 0 y 0
 

- The size of coefficient matrix is changed from mxn to (m+n)x2n. 
- This transformation requires more memory and computation time. 

 
<Method 2> 

Definition: An extended basic feasible solution corresponding to the problem for the 
variables with upper bounds is a feasible solution for which (n-m) variables are equal 
to either their lower (zero) or their upper bound; and the remaining m basic variables 
correspond to linearly independent column of A. 

- If there is no extended basic feasible solution with m basic variables, then the constraints 
are too tight and there is no solution. 

- Assume that every extended basic feasible solution is nondegenerate. 
- A variable at its lower bound can only be increased, and an increase will be beneficial if 

the corresponding relative cost coefficient is negative. 
- A variable at its upper bound can only be decreased, and the decrease will be beneficial 

if the corresponding relative cost coefficient is positive.  
- Theorem (Upper bound optimality): An extended basic feasible solution is optimal for 

the upper bound problem if for the nonbasic variables xj  

  
0  if  0

0  if  

j j

j j j

r x

r x h

 

 
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- Define new variables, i ix x  (previously xi was at lower bound) and i i ix h x    

(previously xi was at upper bound). 
- Extended tableau 

    

1, 1 1 10

2, 1 2 20

, 1 0

1   0

1 2 1

1 0 0

0 1 0

0 0 1

0 0 0     

  

m n

m n

m m mn m

m n

m m n

y y y

y y y

y y y

r r Z

e e e e e













 

 

       

 

 

 

 

- The ei is either + or – depending on the current solution, ix  or ix . 

- Strategy: 

1. Determine a nonbasic variable je
jx  for which rj<0. If no such variable exists, stop; 

the current solution is optimal. (j-th column is selected for basic) 

2. Based on the three numbers, a) jh , 0
, 0

b) min /
ij

i ij
i y

y y


, 0
, 0

c) min( ) /
ij

i i ij
i y

y h y


 , 

follow the update strategy according to which number is smallest. 
Case a) The variable xj goes to its opposite bound: Subtract hj times column j from 
last column and change signs of column j. The basis does not change and no pivot 
is required. 
Case b) The i-th basic variable returns to its old bound: Pivot on the ij-th element. 
Case c) The i-th basic variable goes to its opposite bound: Subtract hi from yi0 and 
change signs of yii and ei. Pivot on the ij-th element. 

3. Return to step 1. 
 
 

- Example: 

  

1 2 3 4 5

1 3 4 5

2 3 4 5

1 2 3 4 5

min 2 3 2 10

Subjec to  2 5

                 2 2 9

0 7,  0 10,  0 1,  0 5,  0 3

Z x x x x x

x x x x

x x x x

x x x x x

    
   
   

         

 

Original tableau is 
 a1 a2 a3 a4 a5 b a) b) c) 

 1 0 1 -1 2 5 
hj=5

- (5-7)/(-1)=2

 0 1 2 2 1 9 9/2 - 

rT 0 0 -1 -2 5 -19    

ei + + + + +  j=4 i=2 i=1 

 r3=3–1x2-1x1= –1, r4= –2+1x2–2x1= –2, r5=10–2x2–1x1= 5  
 
 

The c) is the minimum. Case c) should be applied. Before pivoting, 
 a1 a2 a3 a4 a5 b a) b) c)

 -1 0 1 -1 2 -2    

 0 1 2 2 1 9    

rT 0 0 -1 -2 5 -19    

ei - + + + +     

  bi= 75= 2 
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After pivoting, 
 a1 a2 a3 a4 a5 b a) b) c) 

 1 0 -1 1 -2 2 
hj=1

- (2-

 -2 1 4 0 5 5 5/4 - 

rT 2 0 -3 0 1 -15    

ei - + + + +  j=3 i=2 i=4

   

The a) has the minimum. Case a) should be applied. (b=b hja3, a3=a3, no pivot.) 

 a1 a2 a3 a4 a5 b a) b) c)

 1 0 1 1 -2 3    

 -2 1 -4 0 5 1    

rT 2 0 3 0 1 -    

ei - + - + +  j=3   

 
There is no ri<0 for nonbasic variables. The optimum is obtained! 

2 20 1x y  , 4 40 3x y  , 1 1 17 ( )x h e     

3 3 31 ( )x h e    , and 5 50 ( )x e    

 

IV. REVISED SIMPLEX METHOD 
 

-  For large size problem (>5000 constraints), there are problems in memory and computation time, 
- For efficient computer implementation, some modifications of the simplex method are needed. 
- Other columns besides pivot column are not explicitly used. (if n>>m, waste of computation) 
- The pivoting will be applied to B-1 and yq, not the whole tableau. 

 

 <Procedure> (Minimization case) 
  Given a current basis B-1 and the current solution xB = y0 = B-1b, 

1. Calculate current reduced cost coefficients:    T T T
N N  c c N  ( 1T T

B  c B ) 

  If 0T
N c , the optimal solution is obtained! (STOP) 

2. Determine which aq is to enter the basis by selecting the most negative reduced cost coeff. 
and calculate the column to be pivoted yq = B-1aq. 

3. If no yiq > 0, stop! (The problem is unbounded.)  Otherwise, calculate xBi /yiq for yiq > 0 to 
determine which vector is to leave the basis by minimum ratio rule. 

4. Update B-1 and xB = B-1b, then return to step 1. 
 
Example: 

  1 2 3max 3 3Z x x x    

  subject to 

1 2 3

1 2 3

1 2 3

2 2

2 3 5

2 2 6

x x x

x x x

x x x

  
   
   

   0   ( 1,2,3)ix i   

 
  The original tableau: 

a1 a2 a3 a4 a5 a6 b
2 1 1 1 0 0 2 

1 2 3 0 1 0 5 

2 2 1 0 0 1 6 

-3 -1 -3 0 0 0 0 

 

cT 
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Start with initial basic feasible solution and corresponding B-1. 
var B-1 xB yq xBi/yiq

4 1 0 0 2 2 2/2 

5 0 1 0 5 1 5/1 

6 0 0 1 6 2 6/2 

1 [ 3 1 3] [0 0 0]T T T
N N B

      c c c B I  (nonbasic index: IN=[1 2 3]) 

Update the tableau by pivoting with new basis y1=B-1a1=[2  1  2]. 
var B-1 xB yq xBi/yiq

1 1/2 0 0 1 2→1  

5 -1/2 1 0 4 1→0  

6 -1 0 1 4 2→0  

1[ 1 3 0] [ 3 0 0] [1/ 2 3 0]T
N

      c B  (nonbasic index: IN=[2 3 4]) 

Update the tableau with new basis y3=B-1a3=[1/2  5/2  0]. 
var B-1 xB yq xBi/yiq

1 1/2 0 0 1 1/2 2/1 

3 -1/2 1 0 4 5/2 8/5 

6 -1 0 1 4 0 big 

After pivoting, 
var B-1 xB yq xBi/yiq

1 3/5 -1/5 0 1/5 1/2→0  

3 -1/5 2/5 0 8/5 5/2→1  

6 -1 0 1 4 0→0  

1[ 1 0 0] [ 3 3 0] [1/ 5  3 / 5  0]T
N

     c B  (nonbasic index: IN=[2 4 5]) 

No nonpositive relative cost! ⇒ The optimal solution is obtained. 

x1=1/5, x2=0, x3=8/5, x4=0, x5=0, x6=4 and Z= –3x1/5–3x8/5= –27/5. 

 

  <Modifications> 
- Not to choose most negative reduced cost in step 2, but to choose first negative cost  

 → more major iterations but less computing time in total. 

- If we start with I as B-1 (basis), then the tableau of k-th iteration can be expressed as ET 
where E is an ERO's matrix involves all the pivoting operations and T is the initial tableau. 

 B-1 = ET = Ek Ek-1 … E2 E1 I 

 in Step 1, λT= cB
TB-1 = cB

TEk Ek-1 … E2 E1 

 in Step 2, yq = B-1aq   = Ek Ek-1 … E2 E1 aq 

 in Step 4, xB = B-1b   = Ek Ek-1 … E2 E1 b 

⇒ The B-1 can be incorporated in the tableau and updated by the recursive form : (B-

1)k = Ek (B-1)k-1 

- It is not sensible to store whole E. It requires only to know yq and p to reconstruct E. 

    

1

2

1 0 / 0

0 1 / 0

0 0 1/ 0

0 0 / 1

q pq

q pq

pq

mq pq

y y

y y

y

y y

 
  
 

  
 
 
 

  

E

 

 

     

 

     

 

  (mxm matrix) 

 
 

- If the iteration goes on, there could be some accumulation of truncation error.  

⇒ Check BxB - b periodically and if it is not near zero, then calculate the inversion of B 

and set xB = B-1b. (reinversion) 
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- Revised simplex method can be reformulated using B instead of B-1. 

⇒ Instead of using B-1, solve linear equations three times. 

     By0 = b, λTB = cB
T,  Byq = aq  for y0, λ,  yq 

 

    1 2 m B a a a LU  (initially obtained) 

  where  1 2 mU u u u  (upper triangular) 

   Let B is the new basis where a column ak is replaced with aq.  

  1 1 1k k m q    B a a a a a LU   

  

1 1 1 1 1 1
1 1 1

1
1 1 1

k k m q

k k m q

     
 


 

    
   

H L B L a L a L a L a L a

u u u u L a

 

 
 

(Non-upper triangular! It has some subdiagonals after (k-1)th column.) 

⇒ H  can be constructed without additional computation, since ui‘s are known 

and L-1aq is a by-product in the computation of yq. 
cf) Solving linear equation by LU decomposition 

i) Ax=b=LUx ⇒ L(Ux)=Ly=b: Since L is a lower triangular matrix, 

y1=b1/l11, 
y2=(b2–l21 y1)/l22,  
y3=(b3–l31 y1– l32 y2)/l33, and so on. 

ii) Ux=y: Since U is a upper triangular matrix,  
xn=yn/unn= yn, 
xn-1=(yn-1–u(n-1)n xn)/ u(n-1) (n-1),  
xn-2=(yn-2 – u(n-2) (n-1) xn-1– u(n-2)n xn)/ u(n-2) (n-2), and so on. 

 

   Reduction of H  to upper diagonal matrix: 

1 0 0

0 1 0 0

0

  for , 1, , -11 0

1

0

0 0 0 1

i

i

i k k m

m

 
 
 
 
    
 
 
 
  

M



   





 



 

 where mi = obtained from the Gaussian elimination to convert non-upper triangular 
matrix to triangular matrix form. (mi = -h(i+1)i / hii) 

1 2m m k U M M M H  (upper triangular matrix with unit diagonals) 

1 1 1
1 1k k m

  
  B LH LM M M U  

1 1 1
1 1k k m

  
 L LM M M  

( 1
i
M  is simply iM  with the sign of the off-diagonal term reversed.) 

cf) For the sake of storage convenience, U will be decomposed as a upper diagonal 
matrix with unit diagonals in LU decomposition. 
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V. DANTZIG-WOLFE DECOMPOSITION METHOD 

  
min

Subject to   and 

TZ 


x

c x

Ax = b x 0
 

- If A has the special block-angular structure,  

   

1 2

1

2

N

N

 
 
 
 
 
 
  

L L L

A

A A

A





 

It becomes 

1

0
1

min

Subject to  ,

                   and      ( 1, 2, , )

N
T
i i

i

N

i i
i

i i i i i N





 





x
c x

L x = b

A x = b x 0 

 

⇒ Divisions into N subproblems with a linking constraint of dimension m. 
 

Let the constraint set for the i-th subproblem be Si = {xi : Aixi = bi, xi≥0} and assume that each 

of the polytopes Si (i = 1, …, N) is indeed bounded and hence a polyhedron (by placing 

artificial large upper bounds on each xi). And let the extreme points of Si be {xi1, xi2,…, xiKi}. 

Then, 
1

iK

i ij ij
j




x x  where 
1

1
iK

ij
j




  and 0ij   for j=1, …Ki (linear combination) 

and the original problem becomes: 

  
1 1 1 1 1 1 1

   ( )
i i iK K KN N N N

T T T T
i i i ij ij i ij ij ij ij ij i ij

i i j i j i j

Z p p  
      

        c x c x c x c x  

  0
1 1 1 1 1 1 1

=     ( )
i i iK K KN N N N

i i i ij ij i ij ij ij ij ij i ij
i i j i j i j

  
      

       L x L x L x q b q L x  

-  

 

<Master problem> 

  
min

Subject to   and 

T




  

p

Q = g 0
 

  where 
1 111 1 21 2[ ]

N

T
K K NK        ,  g = [b0

T, 1, 1, … ,1] T, 

   
1 21 11 1 1 2 21 2 2[ ]

N

T T T T T T
K K N NKp c x c x c x c x c x    

   

1 211 1 21 2

1 1 0 0 0

0 0 1 1 0

0 0 0 0 1

NK K NK 
 
 
 
 
 
  

q q q q q

Q

  

  

  

       

  
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A1 

A2 

L1

L2

λT 
  Minimum relative cost:  * * 1

[1, , ] [1, , ]
min min ( )

i

T
i ij B ji N j K

r r p 

 
     p B N

 
 

This procedure will calculate even for the relative costs of basic variables that will be zero. But 
it does not affect the results of the procedure. 

 *
0 1 0 1

[1, , ] [1, , ]
min ( ) min ( )

i i

ijT T T T
i i ij m i ij i ij m

j K j K
i

r      

 
       

 

q
c x c x L x

e 
 

 where 0  is the vector made up of first m elements of  . (The xij’s are in Si and they 

satisfy Axi=bi.) 
 
<The i-th subproblem> 

  
0min( )

Subject to   and 
i

T T
i i i

i i i i




x

c L x

A x = b x 0
 

⇒ Solve the i-th subproblem to get *
ix  and calculate *

ir  in the procedure of solving master 

problem. 
 
Example: 

 

1 2 3 4

1 2 3

2 3 4

1 2

1 2

3

min 2 4 3

Subject to  2       4

                          3

                2                4

                                 2

                                

Z x x x x

x x x

x x x

x x

x x

x x

    
  

  
 
 

 4

3 4

 2

                              3 2 5x x


 

 and 0  ( 1, 2,3, 4)ix i   

 Slack variables will be added, but the number of decision variables in the master problem 
will be same as those of the original problem. 

 <Master problem: 6 variables and 4 constraints> 

  

11 11 12 12 21 21 22 22

1
11 1 11 12 1 12 21 2 21 22 2 22

2

11 12 21 22

11 12 21 22 1 2

min( )

4
Subject to 

3

                 1,  1

                 and  , , , , , 0

p p p p

s

s

s s


   

   

   
   

  

   
       

  
   



L x L x L x L x
 

  where p11 =[–1 –2]x11, p12 =[–1 –2]x12, p21 =[–4 –3]x21, p22 =[–4 –3]x22. 

A starting basic feasible solution can be 1 2 11 21[ , , , ] [4 3 1 1]s s     (Thus, it 

requires only x11 and x21 for revised simplex method.) and the convenient extreme 
points of the subsystems are x11=0 and x21=0. To select the nonbasic variable to be 
basic variable, solve the two subproblems. 

1 0 1 1

1 2

1 2

1 2

min( )

s.t   2 4

         2

         0, 0

T T

x x

x x

x x


 
 
 

c L x

  and   

2 0 2 2

3 4

3 4

3 4

min( )

s.t     2

       3 5

         0, 0

T T

x x

x x

x x


 
 
 

c L x
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where 1 [ 1  2]T   c , 2 [ 4  3]T   c , and 0 [0  0]  . Then, find the 

minimum relative price among two subproblem solutions (x1=[0 2]T, x2=[1 1]T and 
r1=([–1 –2] –0)x1–0= –4, r2=([–4 –3] –0)x2–0= –7) in order to get the nonbasic 

variable to enter as basic ( 22  for x22=[1 1]T) and find the basic variable to be 

nonbasic using minimum ratio rule ( 21 ). Iterate the procedure until optimum is 

obtained. 
 
 

VI. DUALITY 
 

  Primal LP   Dual LP  

  min cTx   max λTb 

  s. t. Ax ≥ b   s. t. λTA≤cT 

   x ≥ 0    λ ≥ 0  

  (Symmetric form) 
 

-  Consider a standard LP problem 

  

min

s. t. 

       

T




c x

Ax b

x 0

    ⇔   

min

s. t. 

       

       

T






c x

Ax b

Ax b

x 0

   ⇔    

min

s. t. 

       

T

   
       



c x

A b
x

A b

x 0

 

  Its dual is: 

   

max( )

s. t.  

        ,   

T T

T T T



 
 

u b v b

u A v A c

u 0 v 0

 

max

s. t.  

(  is free)

T

T T






  u v

b

A c  

   (Asymmetric form)  
 

  Lemma 1: Weak Duality Theorem 

   If x and λ are feasible for the asymmetric primal and its dual problems, respectively, 

then  cTx ≥ λTb. 

   pf) λTA ≤ cT, x≥0 and Ax=b  ⇒ cTx ≥ λTAx = λTb. 

   Remark: A feasible vector to either problem yields a bound on the objective function 
value of the other problem. 

 
  Corollary:  

If x0 and λ0 are feasible for the asymmetric primal and its dual problems, respectively, 

and if cTx0 =λTb0, then x0 and λ0 are optimal for their respective problems. 
 

  Theorem: Duality Theorem of LP 
If either of the asymmetric primal and its dual problems has a finite optimal solution, so 
does the other, and the corresponding values of the objective functions are equal. If either 
problem has an unbounded objective, the other is not feasible. 

 

- Relations between the primal and dual problems 
Let A=[B N]. If a basic feasible solution xB=B-1b is optimal, the relative cost vector r must 
be nonnegative in each component. 
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a3

a4 

a1 

a2 b 

a3

a4 

a1 

a2 b 

 1 10   T T T T T
N N B N B

     r c c B N c c B N  

Let 1T T
B  c B  (simplex multiplier). Then, at the optimal solution 

 1T T T T T T T T
B B B N                A B N c c B N c c c  

 1T T T T
B B B   b c B b c x c x  

 

  Theorem: Alternative Duality Theorem of LP 
Let the LP of the asymmetric primal problem have an optimal basic feasible solution 

corresponding to the basis B. Then the vector 1T T
B  c B  is an optimal solution to its 

dual problem and the optimal values of both problems are equal. 
 

- Geometric interpretation 

 

1 2 3 4

1 2 3 4

1 2 4

1 2 3 4

min 18 12 2 6

s. t.   3 2 2

           3        2

          0,  0,  0,  0

Z x x x x

x x x x

x x x

x x x x

   
   
  
   

 

In primal space, find a positive linear combination of 
ai’s to yield resource vector b. (unique in this case) 
 

 

1 2

1 2

1 2

1

1 2

max 2 2

s. t.   3 18

         3 12

    2         2

           6

Z  
 
 

 

 
 
 

 
 

 

In dual space, the dual feasible region is determined 
by the orthogonal lines to each ai’s of which location is 
determined by the elements of the resource vector cT. 
 

- Simplex Multipliers 
1T T

B  c B  

▶ The λj is a synthetic price as a linear combination of the original costs. 

▶ This vector is not a solution to dual problem unless B is an optimal basis for primal. 

▶ Nevertheless, it has economic interpretation (related to relative cost, shadow price). 

▶ If the primal problem is to produce m-products b at the minimum cost of cTx by n-

facilities x with the production rate of each product A, then the dual problem is to 

maximize the product purchase (λTb) not by manufacturing while the purchase price (λ
Tai) at the same production rate of each facility should be less than the production cost 

(λTai≤ci or λTA≤cT).  

 
-   Complementary slackness 

   1. Asymmetric case (standard LP form, Ax = b): 

    From the duality theorem, λTb = cTx  ⇒ (λTA – cT)x = 0  

        xi > 0  implies  λTai = ci (si = 0) 

       λTai < ci implies  xi = 0 (si > 0). 
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obj. fn

x1 

x2 
obj. fn 

x2 

x1

   2. Symmetric case (nonstandard LP form, Ax ≥ b): 

    From the duality theorem, λTb = cTx  ⇒ (λTA – cT)x ≥ 0  

        xi > 0  implies  λTai ≥ ci ⇒ λTai = ci (sλi = 0) 

       λTai < ci implies  xi ≤ 0.  ⇒ xi = 0 (sxi = 0) 

    From the duality theorem, λTb = cTx  ⇒ λT(Ax –b) ≤ 0  

       λj > 0  implies  ajx ≤ bj ⇒ ajx = bj (sxi = 0) 

       ajx > bi implies   λj  ≤ 0  ⇒ λj  = 0.  

       (where aj is the j-th row of A) 
 

-  Physical meaning of λ in terms of sensitivity 

   Let x = [xB 0]T be the optimal basic feasible solution and B be the corresponding optimal 

basis. We know that xB = B-1b and λT = cB
TB-1. Assume the requirement vector b is 

changed to b +Δb. The optimal solution is then [xB+ΔxB 0]T where ΔxB = B-1Δb. 

 

   The corresponding increment in the cost objective will be 

    ΔZ = cB
TΔxB = cB

TB-1Δb = λTΔb   

    or   λi=Δz/Δbi 

   ⇒ Sensitivity of the optimal cost with respect to b. (Marginal price) 
 

VII. SENSITIVITY (POST-OPTIMALITY) ANALYSIS 
 - By changing input coefficients (resource or constraints coefficients), the optimal value can be 

improved considerably → Then, it should be considered to change the situation. 

 - Decide the importance of the data coefficients which enables to re-estimate the important data 

coefficients  → Improve the accuracy, reliability of the model. 
 

 ▶ Ranging of the Coefficients 

- Objective function coefficient (ci): within some ranges of each coefficient, the optimal solution 

will not change even though the optimal value will change by xi
*Δi (the slope of the 

objective function will change). 

  1T T T
N N B

 r c c B N   where Bi Bi ic c    ( 0 for )j j i    

 For the optimal solution to be same, the new relative costs for nonbasic variable should 
be nonnegative despite the change in cost coefficient ci. 

  1( ) 0,  Nj Nj i ijr r j   B N  (Minimization) 

- Resource coefficient (bi): within some ranges of each resource coefficient, the optimal mix will 

not change even though the optimal solution and value will change (λi
*Δi). 

   
* 1
B

x B b  where i i ib b   ( 0 for )j j i    

 For the optimal mix to be same, the new optimal solution should be positive despite the 
change in cost coefficient bi. 

  1( ) 0,  Bj Bj ji ix x j    B  

 
 
 
 
 
 
 
 

   (no change in obj. fn value)     (x2 will not exist if it goes further) 
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 ▶ Simultaneous Variations in Parameters 

  - 100% rule (For objective function coefficients) 

   Let jc  be the actual decrease (increase) in the objective function coefficient of 

variable xj and jc  be the maximum decrease (increase) allowed by the 

sensitivity analysis.  

   If 1j

j j

c

c




  satisfies, the optimal solution will not change.  The change in objective 

function value will be *
j j

j

Z c x  .  

  Remark: The failure of the 100% rule for objective function coefficients does not imply that the 
optimal solution will change. 

 
  - 100% rule (For resource coefficient) 

   Let ib  be the actual decrease (increase) in the resource coefficient of the i-th constraint 

and ib  be the maximum decrease (increase) allowed by the sensitivity analysis.  

   If 1i

i i

b

b




  satisfies, the optimal product mix and the shadow prices will not change. 

The change in objective function value will be *
i i

i

Z b   .  

 ▶ Adding more variables 

Suppose xn+1 is added with constraint coefficient vector an+1 and the cost cn+1. 

 1 1 1 1[  ]T T T T
N N n n n nr c        r c N a a   where 1[ ; ]N N nc c c . 

If the rn+1 is nonnegative, the xn+1 should remain as a nonbasic variable that is zero. Thus,  

 1 1 10 T
n n nr c      a  

Then, the new variable can be a basic variable that can have nonzero value and adding a 
new variable is meaningful. 

 
Example: 

A factory can produce four products denoted by P1, P2, P3 and P4. Each product must be 
produced in each of two workshops. The processing time (in hours per unit produced) are 
given in the following table. 400 hours of labor are 
available in each workshop. The profit margins are 4, 6, 
10 and 9 dollars per unit of P1, P2, P3 and P4 produced, 
respectively. Everything produced can be sold. Thus, the 
maximizing profit, the following linear program can be used. 
  Max 4x1+6x2+10x3+9x4  

  Subject to  3x1+4x2+8x3+6x4≤400 

   6x1+2x2+5x3+8x4≤400 

   x1≥0, x2≥0, x3≥0, x4≥0 
Introducing slack variables s1 and s2, and applying 
the simplex method, we get the final tableu: 

(a) How many units of P1, P2, P3 and P4 should be produced in order to maximize profits? 
(b) Assume that 20 units of P3 have been produced by mistake. What is the resulting decrease 

in profit? 
(c) In what range can the profit margin per unit of P1 vary without changing the optimal basis? 
(d) In what range can the profit margin per unit of P2 vary without changing the optimal basis? 

 P1 P2 P3 P4

Workshop 1 3 4 8 6

Workshop 2 6 2 5 8

 x1 x2 x3 x4 s1 s2 b 

 0.75 1 2 1.5 0.25 0 100

 4.5 0 1 5 –0.5 1 200

rT 0.5 0 2 0 1.5 0 600
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(e) What is the marginal value of increasing the production capacity of Workshop 1? 
(f) In what range can the capacity of Workshop 1 vary without changing the optimal basis? 
(g) Management is considering the production of a new product P5 that would require 2 hours 

in Workshop 1 and 10 hours in Workshop 2. What is the minimum profit margin needed 
on this new product to make it worth producing? 

Answers:  
(a) From the final tableau, we read that x2=100 is basic and x1= x3= x4=0 are nonbasic. So 100 

units of P2 should be produced and none of P1, P3 and P4. The resuting profit is $600 and 
that is the maximum possible, given the constraints.  

(b) The reduced cost for x3 is 2 (found in Row 3 of the final tableau). Thus, the effect on profit 
of producing x3 units of P3 is –2x3. If 20 units of P3 have been produced by mistake, then 
the profit will be 2x20=$40 lower than the maximum stated in (a).  

 (making the coefficient for x3 one and replace b2=20 and perform ERO for r3 to be zero) 

(c) Let 4+Δ be the profit margin on P1. The reduced cost remains nonnegative in the final 

tableau if 0.5–Δ≥0 since x1 is nonbasic. That is Δ≤0.5. Therefore, as long as the profit 

margin on P1 is less than 4.5, the optimal basis remains unchanged.  

(d) Let 6+Δ be the profit margin on P2. Since x2 is basic, we need to restore a correct basis. 

This is done by adding Δ times Row 1 to Row 3. This effects the reduced costs of the 

nonbasic variables, namely x1, x3, x4 and s1. All these reduced costs must be nonnegative. 
This implies: (sign change in relative cost for maximization) 

  1
1( ) 0,  Nj Nj jr r j    B N  (Since x2 is the first basic variable) 

  0.5+0.75Δ≥0 

  2+2Δ≥0 

  0+1.5Δ≥0 

  1.5+0.25Δ≥0 

Combining all these inequalities, we get Δ≥0. So, as long as the profit margin on P2 is 6 

or greater, the optimal basis remains unchanged.  

(e) The marginal value of increasing capacity in Workshop 1 is *
1 1.5  .  

  

1

1 4 0 1 01
[6  0] [6  0] [1.5  0]

2 1 2 44
T T

B


    
         

c B  

(f) Let 400+Δ be the capacity of Workshop 1. The resulting RHS in the final tableau will be: 

100+0.25Δ in Row 1, and 200–0.5Δ in Row 2. The optimal basis remains unchanged as 

long as these two quantities are nonnegative. Namely, –400≤Δ≤400. So, the optimal basis 

remains unchanged as long as the capacity of Workshop 1 is in the range 0 to 800.  

  ( 1 1 1 2 2 1(1/ 4) 0 and ( 1/ 2) 0B B B Bx x x x          ) 

(g) The effect on the optimum profit of producing x5 units of P5 would be  

  * * *
5 1 2 5(2) (10) 1.5(2) 0(10) 3

T
c       a .  

If the profit margin on P5 is sufficient to offset this, then P5 should be produced. That is, we 
should produce P5 if its profit margin is at least $3.  
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VIII. OTHERS 
 

 ▶ Dual Simplex Method  

If a certain linear programming is solved, then a new problem is constructed by changing the 
resource vector, b. In this case, the solution may not be feasible to the new problem, but 

the solution is a basic feasible solution for the dual problem (satisfying λTai≤ci). 

The basis B satisfies λT = cB
TB-1.  However, xB = B-1b, called a dual feasible solution, may not 

satisfy xB≥0 and some xBi’s are negative. 

From the complementary slackness for asymmetric case, xi>0 implies λTai = ci 

 λTaj= cj  for j = 1, …, m  

 zj =λTaj < cj  for j = m+1, …, n  

The new marginal price vector is obtained by the exchange of one variable (i-th). Then λTai 

should be less than ci (ci–ε, ε>0) and one of λTaj among j = m+1, …, n should be ci. Let 

the i-th row of B-1 be ui. and yij be uiaj. Then, 

 λTaj= cj  for j = 1, …, m ( j i ) 

 λTai= ci–ε 

 λTaj= zj–εyij  for j = m+1, …, n  

Therefore, choose ε so that the only one of (zj–εyij)’s becomes cj. Since zj<cj and ε>0, the yij 

should be negative. 
 
  <Procedure> 

1. Given a dual feasible solution xB, if xB≥0, then it is the optimal! If xB is not nonnegative, 

select an index i such that the i-th component of xB, xBi<0. 

2. If yij = (B-1N)ij ≥ 0 for j = 1, 2, …, n, then the dual has no maximum.  If yij < 0 for 

some j, then let 

  0 min : 0j jk k
ij

j
ik ij

z cz c
y

y y


      
  

 

3. Form a new basis B by replacing ai by ak.  Using this basis determine the 
corresponding basic dual feasible solution xB and return to step 1. 

 

   ⇒ It does not require an initial basic feasible solution for x. 

 

 ▶ Primal-Dual Algorithm 

 

min

s. t. 

       

T




c x

Ax b

x 0

  

max

s. t.  

(  is free)

T

T T






 

b

A c  

Given a feasible solution λ to the dual problem, let P={ i | i=1,2,…,m}. 

 ,  T
i ic i P   a  (basic) 

  ,  T
i ic i P   a  (nonbasic) 

Associated restricted primal and dual problems:  

 

min

s. t. 

       ,

T

 


1 y

Ax y b

x y 0

  
max

s. t.  [   ] [   ]

T

T




u b

u A I 0 1
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Theorem: (Primal-Dual optimality theorem) 

Suppose the λ is feasible for the dual and that y=0 and xB is the optimal for the associated 

restricted primal. Then x=[xB; 0] and λ are optimal for the original primal and dual 

problem, respectively. 
 
  <Procedure> 

1. Given a feasible solution λ0 to the original dual problem, set up the associated restricted 

primal problem. 
2. Optimize the associated restricted primal. If the minimal value of this problem is zero, 

the corresponding solution is optimal for the original primal problem by the primal-dual 
optimality theorem. 

3. If the minimal value of the associated restricted primal is strictly positive, obtain the 
solution u0 of the associated restricted dual from the final simplex of the associated 
restricted primal. If there is no j for which u0

Taj>0, conclude the primal has no feasible 

solutions. Else, define the new dual feasible vector λ= λ0+ε0u0 

where 
00

0 0
0 0

min : 0
TT

j j Tk k
jT Tj

k j

cc 


      
  

aa
u a

u a u a
 

Then go back to Step 1 using this λ. 

 

 ▶ Reduction of Linear Inequalities 

1. Redundant equations: Corresponding to the system of linear constraints Ax=b, x≥0, the 

system is said to have redundant equations if there is a nonzero m-vector w satisfying  
  wTA=0 and wTb = 0. 

→ rank(A)<m: imposes unnecessary computation 

→ It can be detected and eliminated in Phase I (if the tableau has zero rows). 
 

2. Null variables: A variable xi in the system of linear constraints Ax=b, x≥0 is said to be a 

null variable if xi = 0 in every solution. 

   → Eliminate the null variables and i-th column of A from the system. 
 

Null Variable Theorem: If the feasible region S is not empty, the variable xi is a null 

variable if and only if there is a nonzero m-vector w such that wTA≥0 and wTb = 0 and 

the i-th component of wTA is strictly positive. 
cf) If is a null variable the following LP has the zero optimal value. 

 

min( )

s. t. 

       

i




e x

Ax b

x 0

  
max

s. t.  

T

T i






 

b

A e
 

 Thus, with w = –λ, wTb = 0, wTA≥0 and so on. 
 

  3. Nonextremal variables: A variable xi in the system of linear constraints Ax=b, x≥0 is 

nonextremal if the inequality xi ≥ 0 is redundant. 

   → Treat them as free variables and eliminate them by using equations where they are 

expressed in terms of other variables 

   → If the inequality, xi ≥ 0 can be composed of a linear combination of the inequalities, 

Ax≥b, then xi is a nonextremal variable. 
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Nonextremal Variable Theorem: If the feasible region S is not empty, the variable xi is 

a nonextremal variable if and only if there is m-vector w and n-vector d such that wTA=dT 

and wTb≤0 where dj = –1 and di≥0 ( i j ). 

cf) Let   ( 0)T    w b  and jx  . 

 

min

s. t. 

   ( )

j

i

x

x i j


 
Ax b

0

  

max

s. t.  0 ( )

       1

T

T
i

T
j

i j







  



b

a

a

 

 Since min( )jx  , 0T  b  and. Thus, with w = –λ,  

 wTA=dT and wTb≤0. 

 

 ▶ Karmarka’s Algorithm (1984) for large-scale problem (Interior point method) 

- Search in the strict interior of the convex feasible region. 
- Karmarkar's algorithm is usually more efficient if the problem size is very large 

 

min ( )

s. t. 

       

Tf 




x c x

Ax b

x 0

 

<Procedure> 

1. Start at the centroid (xk) of the simplex comprising Akxk=b (feasible solutions) and project 

( )f  x c  onto the intersection of the equality constraints. 

 1 1( ) ( )
T Tk k k k k k k k k k       x x P c x I A (A A ) A c  

2. Find  so that only one element of 1kx  becomes zero. And use slightly less value of  , 

i.e. 0.98 , so that the point lies strictly inside the feasible region. 

3. Rescale the variables and transfer 1kx  back to the rescaled centroid. (Primal affine scaling) 

 1 1k k
k

 x D x , 1k k
k

 c D c , and 1k k
k

 A A D  

 where Dk is a diagonal matrix with the elements of 1kn x  as diagonals. 

4. If ( )  P c  and 1 ) 0T  (AA ) A c  (Lagrange multiplier), then stop. Else, go to 

Step 1. (For active constraints, λi=0 and for inactive, λi>0)  

 
cf) Karmarkar actually used a nonlinear transformation 

 
1

1
1

k
k k

T k
k

n 



D x

x
e D x

 where e is an n-dimensional vector of 1’s. 
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Example:  

  

min ( ) [1 2 3]

s. t.   [1 1 1] 1

         

f 




x x

x

x 0

 

1. Centroid= 0 =[1/3 1/3 1/3]Tx , ( ) [ 1  2  3]Tf    x  

  1

1 2 / 3 1/ 3 1/ 3

1 (3) 1 1 1 1/ 3 2 / 3 1/ 3

1 1/ 3 1/ 3 2 / 3



    
          
       

P I  

  1 0 ( ) 1/ 3 1/ 3 1/ 3
T

f       x x P ( 1/ 3 0.98     ) 

 For feasibility and x to be strict interior,  1 1.98 / 3 1/ 3 0.02 / 3
Tx  

2. Choose scaling matrix Dk=diag([1.98  1  0.02]), then  

 xk → xk+1 = Dk
-1xk =[0.168  0.333  16.67]T,  

 Ak → Ak+1 =AkDk=[1.98  1  0.02],  

 c k → ck+1 =Dkck=[ 1.98  2  0.06]T 

3.  Go to Step 1 after checking termination criteria. 
 
<Primal-dual method> 
From the constrains of primal and dual problems and the complementary slackness, 

 ,   0,   ,   0,   0 ( 1, , )T
j jAx b x A s c s x s j n         

Main idea of the method is to move through a sequence of strictly feasible primal and dual 
solutions that come increasingly closer to satisfying the complementary slackness conditions. 

 ,   0,   ,   0,    ( 1, , )T
j jAx b x A s c s x s j n          

The duality gap: T T Tc x b x s n     

Thus, starting from some value of  , decrease it satisfying the constraints as finding the 

solution for changes in x, y, and s. 

0,   0,   0,   0,    ( 1, , )T
j j j j j jA x x A s s s x x s x s j n                

The complementary slackness becomes S x X s e XSe      where S and X are the 

diagonal matrices whos diagonals are elements of s and x, respectively. 
Then, 

 

1 1 1

1 1

( ) ( )

( ) ( )

T

T

AS XA AS e XSe

s A

x S e XSe S X s

 





  

 

   

   

    

 

and  

 
max

max

0

0

j j

j j

x x

s s





  

  
 for all j.  Then max min( , )primal dual    

where 

 
0

min
j

j
primal

x
j

x

x


 

 
    

 and 
0

min
j

j
dual

s
j

s

s


 

 
    

 (ratio test) 

 Simplex method 
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QUADRATIC PROGRAMMING 
Reklaitis G. V., A. Ravindran, and K. M. Ragsdell, "Engineering Optimization : Method and 

Application," John Wiley and Sons, NY, 1983. (Section 11.2) 

 

I. BASIC PRINCIPLES 
 

 ▶ Problem Statement 

  min f(x) = cTx + 0.5 xTQx  

  subject to  g(x) = x ≥ 0 

    h(x) = Ax – b = 0 

 

 ▶ Lagrangian function and Lagrangian multiplier 

 Above problem can be rewritten as 

  min L(x, μ, λ) = f(x) – μTg(x) – λTh(x) 

  subject to  μ ≥ 0  (λ is unspecified) 

  where L(x, μ, λ) is called the Lagrangian function, μ and λ are called Lagrange 

multipliers. 

 

 ▶ Kuhn-Tucker Conditions (KTC) 

  Assume f, g and h are differentiable. 

  The vectors x(Nx1), μ(Jx1), λ(Kx1) become a candidate for the optimal solution if 

   i) ( ) ( )T TL
f  

      
 x x xg x h x 0
x

  

   ii) ( )
L

g



  


x s 0  ⇒ g(x) ≥ 0 (use surplus variable s) 

   iii) ( )
L




 


h x 0  ⇒ h(x) = 0 

   iv) μ ≥ 0   (λ is unspecified) 

   v) μjgj(x) = 0   for j=1, 2, …, J (complementary slackness condition). 

 

  For complementary slackness condition, if the j-th inequality constraint is binding (active) 

gj(x) = 0 and if j-th inequality constraint is nonbinding (inactive), μj = 0. 

 

  ⇒ Solving i) to v) : Kuhn-Tucker problem 

 

  - K-T necessary condition for optimality 
   Let f, g and h be differentiable, x* be a feasible solution. 
   Assume that g(x*) for active constraints and h(x*) are linearly independent.  

cf) Define the effective constraints by hE(x) = {hi(x): hi(x*) = 0, i = 1, …, m}, where hE(x) 
is a (mE1) vector, mE being the number of effective constraints, with mE < n.  Then, 
the constraint qualification becomes: 

 constraint qualification (CQ): rank[hE(x*)/x] = mE.  
 → It is the regularity conditions on the feasible region and difficult to verify.  

However, it is generally acceptable in practice. The CQ states that, at x*, the mE 
effective constraints are "linearly independent around x*". This guarantees that the 
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implicit function theorem can be used to solve the effective constraints for mE of the 
x variables and the result substituted back into the objective function. 

 
   Then, x* and some (μ*, λ*) satisfy the Kuhn-Tucker condition. 

   ⇒ When the constraint qualification is not met at the optimum, there may not exist a 

solution to Kuhn-Tucker problem. 

 

  - K-T sufficient condition for optimality 
   Let f be convex, g be all concave, and h be linear. 

   Then (x*, μ*, λ*) which satisfy the Kuhn-Tucker condition is an optimal solution. 

 
The Kuhn-Tucker condition provides some new information. 
 They endogenously treat the constraints which are binding (or non-binding). From the 

complementary slackness condition, if the j-th constraint is non-binding, gj(x*)>0, then 
the corresponding Lagrange multiplier must be zero, j

* = 0, j = 1, …, m. And if the j-th 
Lagrange multiplier is positive, j

* > 0, then the corresponding constraint must be binding, 
gj(x*) = 0, j = 1, …, n.  

 The Lagrange multipliers are now restricted to be non-negative: *  0. This reflects the 
fact that we now have inequality constraints. Indeed, we have seen that the Lagrange 
multiplier can be interpreted as the marginal value of the constraints. Relaxing an 
inequality constraint means increasing the feasible set, generating a non-decreasing value 
of the indirect objective function, and thus a non-negative marginal value of the 
constraints. In this context, a positive and large Lagrange multiplier means that the 
corresponding constraint is "very binding" and identifies significant resource scarcity. 
Alternatively, a small Lagrange multiplier identifies little resource scarcity, as the 
corresponding constraint is "barely binding." A Lagrange multiplier reaches its lower 
bound (j

* = 0) when the j-th constraint is non-binding and becomes irrelevant to the 
decision.  

 
  ⇒ When Q is positive definite or positive semidefinite for quadratic programming problem, it 

is sufficient to solve the Kuhn-Tucker conditions to find an optimal solution to the 
quadratic problem. 

 

 ▶ Lagrangian function with equality constraints only 

   min f(x) + λT(–Ax + b) 

 

  Optimality condition if Q is positive definite 

     f’(x) –ATλ = 0 and –Ax + b = 0  

     f’(x) = c + Qx 

   ⇒ 
0

T


      

     
    

x cQ A

bA
 ⇒ 

1*

* 0

T




      

     
    

cx Q A

bA
 

 

  By Frobenius-Schur inversion formula 

   

1 1 1 1 1 1 1 1 1

1 1 1 1 1

( ) ( )

( ) ( )

        

    

    
         

A B A A B D CA B CA A B D CA B

C D D CA B CA D CA B
 

   

* 1 1 1 1 1 1 1 1

* 1 1 1 1 1

( ) ( )

( ) ( )

T T T T

T T

       

    

      
     

    

cx Q Q A AQ A AQ Q A AQ A

bAQ A AQ AQ A
 

   Let * 1 1 1( )T  A AQ A AQ  and * 1 1 *T  H Q Q A A . 
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* * *

* * 1 1( )

T

T  

         
      

cx H A
bA AQ A

 

 

   cf) When A and D are invertible, 

   -1 -1 -1 -1 -1 -1 -1(A + BCD) = A - A B(C + DA B) DA  

   

1 1 1 1 1 1

1 1 1 1 1

( ) ( )

( ) ( )

     

    

    
         

A B A BD C A BD C BD

C D D CA B CA D CA B
 

 

 ▶ Recursive formula   

  For a basic feasible solution x0, –Ax0 + b = 0 and f’(x0) = c + Qx0 

  
0 0( ) ( )

T T
f      * * * * * *x H c A b H Q A A x H x   

  

1 1 0 0

1 1 1 0 0 0

( ) ( ( ) ) ( )

( ( ) ( ) ) ( ) ( )

T T

T T

f

f f

  

  

     

     

* * * *

* *

A c AQA b A Q AQA A x A x

AQA AQ Q AQA A x A x A x
  

 

 

II. FLETCHER'S QP ALGORITHM 
 

 ▶ QP Algorithm (Fletcher, 1971) 

  min f(x) = cTx + 0.5 xTQx   (n decision variables) 

  subject to ATx ≥ b   (m inequality constraints) 

    x ≥ 0  

 <Procedure> 
  1. A feasible solution x0 is given, and q-constraints are tight. 
    Let Aq be the constraints coefficient matrix with q-active constraints. 

    Calculate * 1 1 1( )T
q q q q

  A A Q A A Q  and * 1 1 *T
q q q

  H Q Q A A  and set k=0. 

  2. Compute ( 1) * ( )( )k k
q f   s H x .  If s(k+1)= 0, go to step 4. 

  3. If s(k+1)≠ 0, compute x(k+1)= x(k) + α*(k) s(k+1)  and ( 1)( )kf  x  

    where α*(k)  = min {1, αp
(k) }, 

    
( )

( ) ( 1)
( 1)

min ;  0  ( 1, , )
T k

k T ki i
p iT k

i

b
i q m 



 
     

 

a x
a s

a s
  

     If α*(k) <1, then add p-th column of A (ap
(k)) to H*

q and A*
q,  

   

* *
* *

1 *

TT
q p p q

q q T
p q p

  
H a a H

H H
a H a

 

   

** *
*

1 *0 1

TT
p qq q p

q T
p q p



   
    
   

a HA A a
A

a H a
 

   and set k=k+1, q=q+1 and go to step2. 

     If α*(k) =1, then set k=k+1 and go to step2. 

  4. Calculate ( ) * ( )( )k k
q f  A x  and  ( ) ( )min ;  1, 2, ,k k

r i i q    . 
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     If ( ) 0k
r   (i.e. all elements of ( )k  are nonnegative), Stop (optimum). 

     If ( ) 0k
r  , delete r-th row of A*

q (ar) from H*
q and A*

q, and set q=q–1 and go to step2. 

   * *
1

T
r r

q q T
r r

  
a a

H H
a Qa

 

   

**
*1

0

T
q r rq

q T
r r

 
  

 

A Qa aA
A

a Qa
 

 

 

III. COMPLEMENTARY PIVOT PROBLEMS (LEMKE, 1965) 
 

 ▶ Problem Statement 

  min f(x) = cx + xTQx   (n decision variables) 

  subject to Ax ≥ b   (m inequality constraints) 

    x ≥ 0  

  Assume Q is symmetric and is positive definite or positive semidefinite. 
  KTC optimality condition to the above convex quadratic program:  

   c + xT(Q + QT) –μT –λTA = 0    ⇒ μ = 2Qx – ATλ + cT 

   s = Ax – b 

   x, μ, λ, s≥ 0  

   μTx + sTλ = 0 

 

  Let 
 

  
 

w
s

, 
 

   

x
z , 

2 T 
  
 

Q A
M

A 0
 and 

 
   

c
q

b
. 

  Then,  w = Mz + q and wTz = 0 with w, z≥0. 

     ⇒ Complementary problem 

 

  - M is positive semidefinite since Q is positive definite or positive semidefinite. 
  - If Q is set to zero, it becomes an LP. 

 

  Definitions: 
   1. A nonnegative solution (w, z) to the system of the equation w = Mz + q is called a 

feasible solution to the complementary problem 
   2. A feasible solution (w, z) to the complementary problem that also satisfies the 

complementarity condition is called a complementary solution. 

 

  - wTz = 0 ⇔ wizi = 0 for all i 

  - The variables wi and zi for each i is called a complementary pair of variables. 
  - If the element of the vector q are nonnegative, then there exists an obvious complementary 

solution given by w = q and z = 0. (Trivial solution) 
  - If some elements of the vector q are negative, then complementary solution given by w = q and 

z = 0 would be infeasible. → Introduce a sufficiently large artificial variable z0 so 

that (qi + z0) become nonnegative. 

     ⇒ A basic feasible solution is given by 

    wi = qi + z0 , zi = 0 for all i = 1, 2, …, n 
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    z0 = –min (qi) 

    (But w = Mz + q is not met.) → called almost complementary solution 

 

  <Procedure> 
   1. To determine the initial almost complementary solution, the variable z0 is brought into 

the basis, replacing the basis variable with the most negative value. (Let qs = 
min qi < 0)  That is, z0 replaces ws from the basis by pivoting.  

    w – Mz – z0e = q  

    w, z, z0 ≥0 and wTz = 0 

    e(nx1) = [1, 1, …, 1]T  

    T =[I  –M  –e  q] (initial tableau) 

   2. In order to maintain the complementarity, either one of ws and zs should remain as a 
basic variable. So in the next tableau, the complement of the basic variable that just 
left the basis in the last tableau should become a basic variable. (complementary rule)  
In order to maintain the nonnegativity of the basic feasible solution, use minimum 
ratio test to determine the variable to leave the basis. 

    min ;  1,2, ,  and 0k i
is

ks is

q q
i n m

m m

 
   

 
   

    That is, zs replaces wk from the basis by pivoting.  
4. Since wk left the basis, the variable zk is brought into the basis by the complementary rule 

and the basis changes as before.  If the minimum ratio is obtained in row s, and z0 leaves 
the basis, the resulting basic solution after performing the pivot operation is the 
complementary solution.  If the minimum ratio test fails, since all the coefficients in the 
pivot column are nonpositive, this implies no solution to the complementary problem 
exists.  In this case, we say that the complementary problem has a ray solution. (the given 
linear or quadratic program has no solution) 

 
Example: 

min f(x)= –6x1+2x1
2 –2x1 x2+2x2

2 

subject to   –x1–x2≥–2 and x1, x2≥0 

 
For f(x)= cx + xTQx, c=[–6  0]T, Q=[2  –1; –1  2]. 

For Ax ≥ b, A=[–1  –1], b= –2, w=[μ1  μ2  s] T, z=[x1  x2  λ] T. 

4 2 1

2 4 1

1 1 0

 
   
   

M  and 

6

0

2

 
   
  

q  

Basis w1 w2 w3 z1 z2 z3 z0 q 

w1 1 0 0 -4 2 -1 -1 -6 

w2 0 1 0 2 -4 -1 -1 0 

w3 0 0 1 1 1 0 -1 2 

An almost complementary solution is obtained by replacing w1 by z0. 
Basis w1 w2 w3 z1 z2 z3 z0 q 

z0 -1 0 0 4 -2 1 1 6 

w2 -1 1 0 6 -6 0 0 6 

w3 -1 0 1 5 -1 1 0 8 

From the complementarity, z1 has to be a basic since w1 became nonbasic. 
The ratio test: qi/msi = 6/4, 6/6, 8/5. Therefore choose w2. 
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Basis w1 w2 w3 z1 z2 z3 z0 q 

z0 -1/3 -2/3 0 0 2 1 1 2 

z1 -1/6 1/6 0 1 -1 0 0 1 

w3 -1/6 -5/6 1 0 4 1 0 3 

From the complementarity, z2 has to be a basic since w2 became nonbasic. 
The ratio test: qi/msi = 2/2, -1/1, 3/4. Therefore choose w3. 

Basis w1 w2 w3 z1 z2 z3 z0 q 

z0 -1/4 -1/4 -1/2 0 0 1/2 1 1/2

z1 -5/24 -1/24 1/4 1 0 1/4 0 7/4

z2 -1/24 -5/24 1/4 0 1 1/4 0 3/4

From the complementarity, z3 has to be a basic since w3 became nonbasic. 
The ratio test: qi/msi = 1, 7, 3. Therefore choose z0. 

Basis w1 w2 w3 z1 z2 z3 z0 q 

z3 -1/2 -1/2 -1 0 0 1 2 1 

z1 -1/12 -1/12 1/2 1 0 0 -1/2 3/2

z2 -1/12 -1/12 1/2 0 1 0 -1/2 1/2

Since z0 left the basis, the complementary solution is obtained. 

z1= x1=3/2, z2= x2=1/2, z3=λ=1, w1= w2= w3=0 and f(x*)= –11/2. 

 

 

 


