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LECTURE NOTE IV

Chapter 5

Constrained Optimality Criteria

• Constrained optimum is not always a stationary point.

5.1 Equality-constrained problems

1 2min ( , , , )Nf x x x
x

L

subject to 1 2( , , , ) 0k Nh x x x =L (k=1,… ,K)

- Variable elimination method: Eliminate K variables using the equality constraints.

However, the equality constraints should be solved explicitly for a given set of

independent variables.

5.2 Lagrange Multipliers

1 2

1 1 2

min ( , , , )

subject to ( , , , ) 0

N

N

f x x x

h x x x =
x

L
L

⇒ 1min ( , ) ( ) ( )L x v f x vh x= −

L(x,v): Lagrangian function

v: Lagrange multiplier

- Suppose for a given fixed value of v*, if x* satisfies the constraint,
min ( , ) min ( )L x v f x=

- Challenge: How to find v* so that x* satisfies the constraint?

- Example :

2 2
1 2

1 1 2

min ( )

subject to ( ) 2 2 0

f x x

h x x

= +

= + − =
x

x

x
⇒ 2 2

1 2 1 2min ( , ) (2 2)L x v x x v x x= + − + −

1
1

2 2 0
L

x v
x

∂
= − =

∂
⇒ * *

1x v=

2
2

2 0
L

x v
x

∂
= − =

∂
⇒ * *

2 / 2x v=

1 22 2 0
L

x x
v

∂
= + − =

∂
⇒ 2 / 2 2v v+ = ⇒ * 4 / 5v = ⇒ * *

1 24 / 5 ,  2 / 5x x= =

cf) Hessian ofL:
2 0

0 2L

 
=  

 
H is positive definite and L is aconvex function.



Department of Chemical and Biological Engineering Korea University

ChE605 Engineering Optimization IV-2

5.3 Economic Interpretation of Lagrange multipliers

- If possible, x can be expressed as functions of v and v is adjusted to satisfy the constraints.

- Lagrange multiplier as shadow price:

1 2

1 1 2 1

min ( , )

subject to ( , )

f x x

h x x b=
x ⇒ 1 1min ( , ) ( ) [ ( ) ]L v f v h x b= − −x x

* *

* 1

1 1 1

0L f hv
x x x

   ∂ ∂ ∂= − =   ∂ ∂ ∂   
,

* *

* 1

2 2 2

0L f hv
x x x

   ∂ ∂ ∂= − =   ∂ ∂ ∂   
and * *

1 1 2 1( , )h x x b=

Thus, x* is a function of b1.
* * * * *

1 2
* *

1 1 1 2 1

f f x f x
b x b x b

∂ ∂ ∂ ∂ ∂= +
∂ ∂ ∂ ∂ ∂

and
* * * *
1 1 1 2
* *
1 1 2 1

1 0h x h x
x b x b

∂ ∂ ∂ ∂+ − =
∂ ∂ ∂ ∂

** * *2
* * *1

* *
11 1

j

j j j

xf f h
v v v

b x x b=

  ∂∂ ∂ ∂
= + − = 

∂ ∂ ∂ ∂  
∑

⇒ v* is the change in optimal value per unit increase in the right-hand-side constant of

the constraint.

5.4 Kuhn-Tucker Conditions

Nonlinear programming (NLP):

min ( )

subject to ( ) 0  ( 1, , )

( ) 0  ( 1, , )
k

j

f

h k K

g j J

= =
≥ =

x
x

x

x

L
L

Definition: The inequality constraints is said to be an active or binding constraint at the

point x if ( ) 0jg x = ; it is said to be inactive or nonbinding if ( ) 0jg x > .

- Kuhn-Tucker condition (KTC) for optimality

Assume f , gj, hk are differentiable.

1 1

( ) ( ) ( ) 0
J K

j j k k
j k

L f u g v h
= =

∂ = ∇ − ∇ − ∇ =
∂ ∑ ∑x x x
x

( )L∂ = ≥
∂

g x 0
u

(g(x) –s=0 and s≥0)

( )L∂ = =
∂

h x 0
v

ujgj(x)=0 for j=1,2,… ,J (complementary slackness condition)

u≥0  (Shadow price
I

f∂
=

∂
u

b
will not be negative for narrower feasible region.)
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- Kuhn-Tucker problem (KTP)

Find vectors x, u, v to satisfy KTC.

5.5 Kuhn-Tucker Theorems

Theorem 5.1 (Kuhn-Tucker necessity theorem)

For NLP, let f, g, h be differentiable function and x* be a feasible solution to NLP. Let
I={j|gj(x

*)=0}. Furthermore, *( ) j I∇ ∀ ∈g x and *( )∇h x are linearly independent.

If x* is an optimal solution to the NLP, then there exists a (u*,v*) such that (x*,u *,v*)

solves KTP.
- Constraint qualification (CQ): “ *( ) j I∇ ∀ ∈g x and *( )∇h x are linearly independent”

The CQ (or Slater CQ) is always satisfied:

1. when all the inequality and equality constraints are linear

2. when all the inequality constraints are concave functions and the equality constraints

are linear and there exists at least one feasible x that is strictly inside the feasible

region of the inequality constraints.

If CQ is not met, there may not exist a solution to KTP.

Theorem 5.2 (Kuhn-Tucker sufficiency theorem )

For NLP, let f be convex, g be all concave functions, and h be linear. If there exists a

solution (x*,u *,v*) that satisfies KTC, then x* is anoptimal solution to the NLP.

Remark 1: For practical problems, the CQ will generally hold. If the functions are

differentiable, a Kuhn-Tucker point is a possible candidate for the optimum. Hence,

many of the NLP methods attempt to converge to Kuhn-Tucker point. (Recall the

analogy to the unconstraint optimization case wherein the algorithms attempt to

determine a stationary point.)

Remark 2: When the sufficiency conditions of Theorem 5.2 hold, a Kuhn-Tucker point
automatically becomes the global minimum. Unfortunately, the sufficiency condition

is difficult to verify, and often practical problems may not possess these nice

properties. Note that the presence of one nonlinear equality constraint is enough to

violate the assumptions of Theorem 5.2.

Remark 3: The sufficiency conditions of Theorem 5.2 have been generalized further to

nonconvex inequality constraints, nonconvex objectives, and nonlinear equality

constraints. These use generalizations of convex functions such as quasi-convex and

pseudo-convex functions.
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5.6 Saddle Point Conditions

Definition: A function f(x,y) is said to have asaddle point at (x*,y*) if f(x*,y)=f(x*,y*)=f(x,y*)

for all x and y.

- Example :

f(x,y)=x2–xy+2y and y=0 (x is unrestricted)

2 0
f

x y
x

∂
= − =

∂
and 2 0

f
x

y
∂

= − + =
∂

⇒ x*=2 and y*=4

f(x*,y)= 4–2y+2y=0, f(x,y*)= x2–4x+8=(x–2)2+4, and f(x*,y*)=4

Thus, f(2,y)=f(2,4)=f(x,4) and f possess a saddle point at (2,4).

- Kuhn-Tucker Saddle point Problem (KTSP)

Find (x*,u *) such that
* * * *( , ) ( , ) ( , )L L L≤ ≤x u x u x u for all x and u≥0

where ( , ) ( ) ( )j j
j

L f u g= − ∑x u x x .

Theorem 5.3 (Sufficient optimality theorem)

If (x*,u *) is a saddle point of a KTSP, then x* is an optimal solution to the NLP problem.
Pf) Since * * * *( , ) ( , ) ( , )L L L≤ ≤x u x u x u ,

* * * * * *( ) ( ) ( ) ( ) ( ) ( )j j j j j jf u g f u g f u g− ≤ − ≤ −∑ ∑ ∑x x x x x x for all u≥0

* * *( ) ( ) ( )j jf u g f− ≤∑x x x and u≥0 ⇒ g(x*) =0 (feasible)

* *( ) ( ) ( )j jf f u g≤ −∑x x x ⇒ *( ) ( )f f≤x x if g(x) =0 (minimum)

Theorem 5.4 (Necessary optimality theorem)
Let x* minimize f(x) subject to g(x) =0 and S∈x . Assume S is a convex set, f(x) is a

convex function, and g(x) are concave functions on S. Assume also that there exists a
point S∈x such that ( ) >g x 0 . Then there exists a vector of multipliers u*=0 such

that (x*,u*) is a saddle point of the Lagrangian function 

( , ) ( ) ( )j j
j

L f u g= − ∑x u x x

satisfying * * * *( , ) ( , ) ( , )L L L≤ ≤x u x u x u for all S∈x and u≥0

Pf) Since f(x)> f(x*), g(x*) =0, and uj
*gj (x

*)=0 for all j=1, … , J,

* * * * * *( ) ( ) ( ) ( ) ( )j j j jf u g f f u g− ≤ = −∑ ∑x x x x x ⇒ * * *( , ) ( , )L L≤x u x u

From Farkas Lemma, f(x)–f(x*)<0 and g(x) =0 with u* have no solution if

* *( ) ( ) ( ) 0j jf f u g− − ≥∑x x x ⇒ * * *( , ) ( , )L L≤x u x u
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Farkas Lemma: For NLP, we assume that the Slater CQ is satisfied. The inequality

system f(x)<0, g j(x) =0 (j =1,···,J) has no solution if and only if there exists a vector

u=0 such that

( ) ( ) 0j jf u g− ≥∑x x

T hese systems are called alternative systems, i.e., exactly one of them has a solution.

Theorem 5.5

A solution (x*,u*) with u*≥0 and * S∈x is a saddle point of a KTSP if and only if the
following conditions are satisfied:

i) x* minimizes L(x,u*) over all S∈x

ii) g(x) =0

iii) ujgj (x*)=0 for all j=1, … , J

5.7 Second -Order Optimality Conditions

min ( )

subject to ( ) 0  ( 1, , )k

f

h k K= =
x

x

x L

- The first-order KTC is
1

( ) ( ) 0
K

k k
k

f v h
=

∇ − ∇ =∑x x and h(x)=0.

- Let x* be a Kuhn-Tucker point. Using the Taylor series expansion,

* * * *
3( ) ( ) ( ) ( ) 0.5 T

ff f f f O∆ = + ∆ − = ∇ ∆ + ∆ ∆ +x x x x x x x H x

* * * *
3( ) ( ) ( ) ( ) 0.5 T

k k k k kh h h h O∆ = + ∆ − = ∇ ∆ + ∆ ∆ +x x x x x x x H x

* * * *
30.5 T

k k k k f k k
k k k

f v h f v h v O   ∆ − ∆ = ∇ − ∇ ∆ + ∆ − ∆ +   
   

∑ ∑ ∑x x H H x

For ( )+ ∆x x to be feasible, * 0kh∆ = and assuming the CQ is satisfied at x*, the KT

necessary condition implies that
* * 0k k

k

f v h∇ − ∇ =∑

* 0.5 0T
f k k

k

f v ∴∆ ≈ ∆ − ∆ ≥ 
 

∑x H H x for x* to be minimum.

Theorem 5.6 (Second-order necessity theorem)

For NLP with equality and inequality constraints, let f, g, h be twice differentiable

functions and x* be a feasible solution to NLP. Let I={j|gj(x
*)=0}. Furthermore,
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*( ) j I∇ ∀ ∈g x and *( )∇h x are linearly independent. Then the necessary conditions

that x* be a local minimum to the NLP are that

1. There exists (u*,v*) such that (x*,u*,v*) is a Kuhn-Tucker point.

2. For every vector y satisfying * 0jg j I∇ = ∀ ∈y and * 0kh k∇ = ∀y ,

* * *( , , ) 0T
L ≥y H x u v y where

1 1

( , , ) ( ) ( ) ( )
J K

j j k k
j k

L f u g v h
= =

= − −∑ ∑x u v x x x .

- Example :

For
2 2

1 2

2
1 2

min ( ) ( 1)

Subject to ( ) 0

f x x

g x x

= − +

= − + ≥

x

x
, is x*=(0,0) optimal?

1 2( ) [2( 1) 2 ]f x x∇ = −x , 2( ) [ 1 2 ]g x∇ = −x and I={1}

Since *( ) [ 1 0]Tg∇ = −x is linearly independent, the CQ is satisfied at x*. The first-

order KTC are:

1 12( 1) 0x u− + = , 2 2 12 2 0x x u− = , 2
1 1 2( ) 0u x x− + = and 1 0u ≥

The solution (x*,u *)=(0,0,2) satisfies these conditions and it is a Kuhn-Tucker point. (a
candidate as the optimal solution) Next, check the second-order necessary conditions to

test whether it is a local minimum to the NLP problem.

1

2 0
0 2 2L u

 
=  − 

H and * * 2 0
( , )

0 2L x u
 

=  − 
H

Consider only vectors y satisfying *
1 2[ 1  0] 0 [0  ]g y∇ = − = ⇒ =y y y , verify if

[ ] 2
2 2

2

02 0
0 2 0

0 2
y y

y
  

= − ≥  −   

However, this condition is not satisfied unless y2=0 and this point is not a local

minimum for the NLP.

Theorem 5.7 (Second-order sufficiency theorem )

For NLP with equality and inequality constraints, let f, g, h be twice differentiable

functions and x* be a feasible solution to NLP. Let I={j|gj(x
*)=0}. Then the sufficient

conditions thatx* be a local minimum to the NLP are that

1. There exists (u*,v*) such that (x*,u*,v*) is a Kuhn-Tucker point.

2. For every nonzero vector y satisfying
* * *

10 { | ( ) 0, 0}j j jg j I j g x u∇ = ∀ ∈ = = >y
* * *

20 { | ( ) 0, 0}j j jg j I j g x u∇ ≥ ∀ ∈ = = =y ( 1 2I I I∪ = )
* 0kh k∇ = ∀y ,

* * *( , , ) 0T
L >y H x u v y where

1 1

( , , ) ( ) ( ) ( )
J K

j j k k
j k

L f u g v h
= =

= − −∑ ∑x u v x x x .
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Remark 1: The conditions on *
jg∇ y is equivalent to

* 0f∇ ≤y and * 0jg j I∇ ≥ ∀ ∈y .

Remark 2: The vector y is in the tangent plane of equality constraints. ( * 0kh k∇ = ∀y )

Remark 3: When the functions are differentiable and the constraints satisfy the CQ, the
KTC is the necessary conditions.

Remark 4: When the objective function is convex, the inequality constraints are
concave, and the equality constraints are linear, the KTC becomes the sufficient

conditions for global optima.

Remark 5: If the functions were not differentiable, the saddle point optimality

conditions can be applied.

Remark 6: Since there can be several Kuhn-Tucker points, the second-order optimality

conditions should be applied, which impose additional restrictions.

Remark 7: The second-order sufficiency conditions do not require the convexity of the

function and the linearity of the equality constraints.
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Chapter 6

Transformation Methods

• NLP problem

min ( )     ( )

subject to ( ) 0  ( 1, , )

( ) 0  ( 1, , )

N

k

j

L U

f R

h k K

g j J

∈

= =

≥ =

≤ ≤

x
x x

x

x

x x x

L
L

• Main idea:

- Solve a constrained optimization problem by solving a sequence of unconstrained

optimization problems, and in the limit, the solutions of the unconstrained
problems will converge to the solution of the constrained problem.

- Use an auxiliary function that incorpor ates the objective function together with
“penalty ” terms that measure violations of the constraints .

• Transformation methods

- The original constrained problem is transformed into a sequence of unconstrained problem

via the penalty function.

- If only one unconstrained optimization is required, the penalty function is exact.

- Interior point method: the sequence x(k) contains feasible points. (Barrier method)

- Exterior point method: the sequence x(k) contains infeasible points. (Penalty method)

- Mixed point method: the sequence x(k ) contains both feasible and infeasible points.

6.1 The Penalty Concept

• T he penalty function

( , ) ( ) ( , ( ), ( ))P f= + Ωx R x R g x h x

- R: a set of penalty parameters

- Ω : penalty term

- 0Ω = if g(x)=0 and h(x)=0 and 0Ω > if g(x)<0 and/or h(x)? 0.

• The transformation methods to be useful:

- The subproblem solution should approach a solution of NLP, that is,

( ) *lim k

k T
x x

→ <∞
=
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- The problem of minimizing P(x,R) should be similar in difficultyto minimizing f(x).

That is, the method will be less than useful if the unconstrained problems are

excessively difficult to solve, no matter how strong the theoretical basis of convergence.

- R(k+1)=F(R(k )) should be simple. It seems reasonable to hope that the calculation

overhead associated with updating the penalty parameters should be small compared to

the effort associated with solving the unconstrained subproblems. (Note: This may in

fact not be desirable for problems with very complex objective and constraint functions.

In this case, considerable effort updating the penalty parameters may be justified.)

• The various penalty terms

- For equality constraints (penalty methods)

1. Parabolic penalty (quadratic-loss penalty): exterior

( ) ( )TRΩ = h x h x or ( )
l

RΩ = h x (R>0, l=0)

- Initially, use small R so that the initial subproblem can be solved easily.

- Gradually increaseR so that the violation gets penalized.

2. Infinite penalty: exterior
if ( ) 0

0  if ( )=0
Ω

∞ ≠
= 



h x

h x

- Simplest form but discontinuous along the boundary

- Practically, assign large number instead of infinity

Remark:Approximation of Lagrange multiplier from penalty method

Lagrange multiplier: ( ) / ( )j jv f h= ∇ ∇x x
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Penalty function: 2

1

( , ) ( ) 0.5 [ ( )]
J

j
j

P R f R h
=

= + ∑x x x

1

( , ) ( ) ( )[ ( )] 0
J

j j
j

P R f R h h
=

∇ = ∇ + ∇ =∑x x x x

lim ( ( ))j jR
v Rh R

→∞
⇒ = − x

Example:

1 2

1 2

min ( )

subject to ( ) 2 4 0

f x x

h x x

= −

= + − =

x

x

Using parabolic penalty function
2

1 2 1 2min ( ) 0.5 ( 2 4)P x x R x x= − + + −x

2 1 2
1

( )
( 2 4) 0

P
x R x x

x
∂

= − + + − =
∂

x

1 1 2
2

( )
2 ( 2 4) 0

P
x R x x

x
∂

= − + + − =
∂

x

1 2

8 4
( )  and ( )

4 1 4 1

R R
x R x R

R R
⇒ = =

− −

1 2

4
( ) ( ) 2 ( ) 4  

4 1
h R x R x R

R
⇒ = + − =

−
If R → ∞ , x1=2 and x2=1 (Solution to constrained problem)

(Lagrange multiplier:
4( ) ( ( )) 1

4 1
Ru R Rh x R

R
= − = − = −

−
)

- For inequality constraints

1. Logarithmic barrier function (Logarithmic penalty) : interior

ln ( )  (0 ( ) 1)j j
j

R g gΩ = − < <∑ x x otherwise, 0  ( ( ) 1)jgΩ = >x

2. Inverse barrier function (Inverse penalty) : interior

[1/ ( )]  ( ( ) 0)j j
j

R g gΩ = >∑ x x

- Start at a feasible solution so that inequalities are not violated

- Discontinuous near the boundary
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- Recovery procedure is needed if the search point is an exterior point

- Initially, use large R so that the initial subproblem can be solved easily.

- Gradually, decrease R monotonically toward zero so that the penalty term

for violation becomes zero at the optimal solution.

Remark : Why not use small R from the beginning?
- No matter how small the R is, the solution of the penalty function is not the

optimal solution and it is very difficult to solve

- Start from large R (easier to solve) and decrease R and repeatedly solve the

subproblem by using the previous solution.

Remark:Approximation of Lagrange multiplier from logarithmic barrier method

Lagrange multiplier: ( ) / ( )j ju f g= ∇ ∇x x

Penalty function:
1

( , ) ( ) ln[ ( )]
J

j
j

P R f R g
=

= + ∑x x x

1

( , ) ( ) (1/ ( ))[ ( )] 0
J

j j
j

P R f R g g
=

∇ = ∇ + ∇ =∑x x x x

0
lim / ( ( ))j jR

v R g R
→

⇒ = x

Example:

1 2

2
1 1 2 2 2

min ( ) 2

subject to ( ) 1 2 0 and ( ) 0

f x x

g x x g x

= −

= + − ≥ = ≥

x

x x

Using logarithmic barrierfunction
2

1 2 1 2 2min ( ) 2 [ln(1 2 ) ln( )]P x x R x x x= − − + − +x
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2
1 1 2

( ) 1
1 0

(1 2 )
P

R
x x x

∂
= − =

∂ + −
x

2
2

2 1 2 2

( ) 2 1
2 0

(1 2 )
P x

R R
x x x x

∂
= − + − =

∂ + −
x

2
2 2 2 22 2 / 0 and x / 2 0x R x x R⇒ − + − = − − =

2 1( ) (1 1 2 )/2 and ( ) (3 1 1 2 ) / 2x R R x R R R⇒ = + + = − + +

If 0R → , x1=0 and x2=1 (Solution to constrained problem)

1 10 0
( ) lim / ( ) lim2 /[2 (3 1 1 2 ) (1 1 2 )] 1

R R
v R R g R R R R R R

→ →
= = + − + + − + + + =

2 20 0
( ) lim / ( ) lim2 /(1 1 2 ) 0

R R
v R R g R R R

→ →
= = + + =

3. Bracket penalty (quadratic-loss penalty) : mixed
20.5 [min( ( ),0)]  j

j

R gΩ = ∑ x

- First derivative continuous, but second derivative is discontinuous (not

suitable for Newton type optimization)

- Initially, choose R as small positive and

- Gradually increaseR so that the violation gets penalized.

• T he convergence

- Consider only the barrier methods (penalty methods can be analyzed in a similar way)

applied to the problem

min ( )

subject to ( ) 0

f

g ≥
x

x

Let S and S0 denote, respectively, the feasible regionand its interior, i.e.
{ | ( ) 0, 1, }iS g i m= ≥ =x x L

0 { | ( ) 0, 1, }iS g i m= > =x x L  

Assumptions
1) f and all g i (i=1,… ,m) are continuous. Ω is a continuous function

on S0, and Ω →+∞  when x approaches the boundary of S .
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2) For anyα , the set { | , ( ) }x x S f x α∈ ≤ is bounded.

3) S0 is not empty.

4) Any y∈S  can be approached by a sequence {xk} in xk →y, xk∈ S0.

- Theorem (Convergence of the Barrier Methods)

Let 1 2( , ) ( ) ( );  lim 0kk
P R f R R R RΩ

→∞
= + ≥ ≥ ≥ =x x x L and

xk is aglobal minimizer of problem
0

min ( , )kx S
P x R

∈
. Then, fork =1, 2, ...,

a) 1 1( , ) ( , )k k k kP x R P x R+ + ≤
b) 1( ) ( )k kx xΩ Ω+ ≥

c) 1( ) ( )k kf x f x+ ≤

d) *( ) ( ) ( , )k k kf x f x P x R≤ ≤

e) If the subsequence {xk | k∈K} converges to x), then x)must be an optimal

solution of the inequality constrained problem.
Pf)

a) Since xi is a global minimizer of problem
0

min ( , )i
x S

P x R
∈

,

1 1 1 1 1 1( , ) ( ) ( ) ( ) ( )

( ) ( ) ( , )
k k k k k k k k

k k k k k

P x R f x R x f x R x

f x R x P x R

Ω Ω

Ω
+ + + + + += + ≤ +

≤ + =
(Rk=R k+1)

b) Summing 1 1( ) ( ) ( ) ( )k k k k k kf x R x f x R xΩ Ω+ ++ ≤ + and

1 1 1 1( ) ( ) ( ) ( )k k k k k kf x R x f x R xΩ Ω+ + + ++ ≤ + , then by rearranging

1 1 1( ) ( ) ( ) ( )k k k k k kR R x R R xΩ Ω+ + +− ≤ −

1( ) ( )k kx xΩ Ω +≤ (R k-R k+1 =0)

c) From a), 1 1 1 1( ) ( ) ( ( ) ( )) ( )k k k k k kf x f x R x x f xΩ Ω+ + + +≤ + − ≤

d) *( ) ( ) ( ) ( ) ( , )k k k k k kf x f x f x R x P x RΩ≤ ≤ + =

e) Let x) be the limit of {xk} that satisfies constraints. For any 0ε > , there exist

x) such that *( ) ( )f x f xε+ ≥ )
for 0x S∈ .

* *( ) ( ) ( ) ( ) lim ( , ) ( )k kk
f x R x f x R x P x R f xε Ω Ω∞ ∞ →∞

+ + ≥ + = ≥) ) )

* * *( ) lim ( , ) ( )  ( 0) lim ( , ) ( )k k k kk k
f x P x R f x P x R f xαε α

→∞ →∞
+ ≥ ≥ > ⇒ =

Since *( ) ( )f x f x≤ ) and

* *lim ( , ) ( ) ( ) ( ) ( ) ( )  ( ( ) 0)k k k kk
P x R f x R x f x f x f x R xΩ Ω

→∞
= + = ⇒ ≤ ≥) ) ) )∵

* * *( ) ( ) ( ) ( ) ( )f x f x f x f x f x∴ ≤ ≤ ⇒ =) )
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• Exact Penalty Method
The idea in an exact penalty method is to choose a penalty function ( )xΩ and a

constant R so that the optimal solution x* of P(x,R) is also an optimal solution of the

original problem.

Theorem:

Suppose a constrained optimization problem is a convex program for which the

Karush-Kuhn-Tucker conditions are necessary.

Suppose that
1 1

( ) min( ( ),0) ( )
J I

j i
j i

x g x h xΩ
= =

= +∑ ∑
Then as long as R is chosen sufficiently large, the sets of optimal solutions of P(x,R )

and the original problem coincide. In fact, it suffices to choose R > max(uj
*;vi

*) ,

where (u*,v*) is a vector of Karush-Kuhn-Tucker multipliers.

Remark: Unfortunately, the resulting problem with exact penalty (large penalty

parameter) generates quite ill-conditioned problem which is verydifficult to solve.

6.3 Method of Multipliers (MOM)
• T he standard penalty approach generates progressively ill-conditioned subproblems which

limits the utility of the method for practical applications.

• The fixed parameter penalty methods has been suggested

• Huard’s method of centers:

1

( , ) [ ( )] ( )
J

j
j

P x R R f x g x
=

= − ∏
where R is a moving truncation at each maximization stage, say, 1( )k kR f x −= .

This is equivalent to parameterless penalty form for minimization

1
1

( ) ln[ ( ) ( )] ( )
J

k j
j

P x f x f x g x−
=

= − − −∑ (Parameter-free method)

• MOM

{ }

{ }

( ) ( ) ( ) 2 ( ) 2

1

2 2( ) ( )

1

( , , ) ( ) min( ( ) ,0) [ ]

( )

J
k k k k

j j j
j

I
k k

i i i
i

P x f x R g x

R h x

σ τ σ σ

τ τ

=

=

= + + −

   + + −   

∑

∑

where ( 1) ( ) ( )min( ( ) ,0)   ( 1, , )k k k
j j ig x j Jσ σ+ = + = L

( 1) ( ) ( )( )    ( 1, , )k k k
i i ih x i Iτ τ+ = + = L

- R is constant for each iteration.

- The method will terminate if x(k) fails to change.
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Remark :

1. ( ) *lim k

k K
x x

→ <∞
= (a Kuhn-Tucker point)

2. Minimization ofP(x) is similar in difficulty to min f(x) fro reasonable value of R.

3. The updating rules for σ and τ are simple, requiring essentially no

additional calculation.

Example:
2 2

1 2

1 2

min ( ) ( 4) ( 4)

subject to ( ) 5 0

f x x x

h x x x

= − + −

= + − =

2 2 2 2
1 2 1 2

1 1
( ) ( 4) ( 4) ( 5 )P x x x x x

R R
τ τ= − + − + + − + −

1 1 2
1

2
2( 4) ( 5 ) 0

P
x x x

x R
τ

∂
= − + + − + =

∂

2 1 2
2

2
2( 4) ( 5 ) 0

P
x x x

x R
τ

∂
= − + + − + =

∂

1 2

5 4

2

R
x x

R

τ+ −
⇒ = =

+

For convenience, choose R =1 to get 1 2 3
3

x x
τ

⇒ = = −

Start with (0) 0τ = , (1) (0)(3,3) 1hτ τ= + = ,
(2) (1)(2.6667,2.6667) 1.333hτ τ= + =
(3) (2)(2.5555,2.5555) 1.444hτ τ= + =
(4) (3)(2.5185,2.5185) 1.4818hτ τ= + =
(5) (4)(2.5062,2.5062) 1.5hτ τ= + =
(6) (5)(2.5,2.5) 1.5hτ τ= + = (Stop) 1 2 2.5x x⇒ = =

- MOM type codes: ACDPAC, GAPFPR, VF01A, SALQDR, SALQDF, SALMNF, …


