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LECTURE NOTE IV
Chapter 5

Constrained Optimality Criteria

- Condrained optimum is not dways a sationary point.

5.1 Equality-constrained problems
min f (X ,X,,-+, %)

subject to h (X ,X ,--,X) =0 (k=1,...,K)

- Variable elimination method: Eliminate K variables usng the equdity congraints.
However, the equdity congraints should be solved explicitly for a given set of
independent variables.

5.2 Lagrange Multipliers

min f (5 % 5+ Xy)
subject to h (X, X,,---, X) =0

minL(x,v) = f(x) - vh(X)

L(x,v): Lagrangian function

v: Lagrange multiplier

- Suppose for a given fixed vaue of v, if X satisfies the congtraint,
minL(x,v) =min f (X)

- Chdlenge: How to find v so that X satisfies the constraint?

- Example:
min f(x)= X+ X
0= X minL(x,v) =X +X2 - V(2% +X, - 2)
subject to h(X) =2x, + X,- 2=0

=2%- 2v=0 X, =V’

L
Tx
L .
1111—:2X2-V:0 X =V /2
fiL . \ .
W:2x1+x2- 2=0 2v+v/2=2 vV =4/5 X, =4/5,X,=2/5
€2 0u

cf) Hessan of L:H | = -é-O ZL:' is poditive definite and L is aconvex function.
€ u
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5.3 Economic Interpretation of Lagrange multipliers
- If possble, x can be expressed as functions of v and v is adjugted to stidy the congtraints.
- Lagrange multiplier asshadow price:

min f (x4 )

. V)= 1 (X)- -
subject to h(x,,x,)= b minL(x,v) = )- v[h (x)- bj]

120 ad h (% ,%) =b

Thus, X is a function of b,.
T _9 D T T, T g
)L} ‘ITXI b, ‘Hx; b, ﬂxl* b, ‘Hx; b,

v’ is the change in optima vaue per unit increase in the right-hand-side constant of
the congtraint.

5.4 Kuhn-Tucker Conditions
Nonlinear programming (NLP):
mxin f (X)
subjecttoh, (x)=0 (k =1,---, K)
9;(x)*0(=1--J)
Definition: The inequaity congraints is said to be an active or binding congtraint at the

point X if g,(X)=0; itissad to beinactiveor nonbindingif g,(X)>0.

- Kuhn-Tucker condition (KTC) for optimality
Assume f, g, h, are differentiable.

L _« 3 o & &
oK 0- & ufig (- & v () =0
ﬂX j=1 k=1

L _

—=¢g(X)% 0 (gx)-s=0and = 0)
flu

IL
~——=h =0
y ()

ug(x)=0 for j=1,2,...,J (complementary dackness condition)

u=0  (Shadow priceu zl will not be negative for narrower feasible region.)
|
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- Kuhn-Tucker problem (KTP)
Find vectors x, u, v to stisfy KTC.

5.5 Kuhn-Tucker Theorems
Theorem 5.1 (KuhnTucker necessity theorem)
For NLP, let f, g, h be differentible function and X be a feasible solution to NLP. Let
1={jlg(x)=0}. Furthermore, Ng(x') " jT | axd Nh(x') ae linearly independent.
If X is an optima solution to the NLP, then there exists a (u’,v) such that & ,u’,v)
s0lves KTP.
- Congtraint qualification (CQ):“Ng(x') " jT | and Nh(x") are linearly independent”
The CQ (or Slater CQ) is dways satidfied:
1. when dl the inequdity and equdity condraints are linear
2.when dl the inequdity congraints are concave functions and the equality constraints
are linear and there exists at least one feasble x that is drictly indde the feasible
region of the inequdity condrants.
If CQ is not met, there may not exis a solution to KTP.

Theorem 5.2 (KuhnTucker sufficiency theorem)

For NLP, let f be convex, g be al concave functions, and h be linear. If there exists a
solution (,u’,v) that satisfies KTC, thenx’ is anoptimal solution to the NLP.

Remark 1 For practicd problems, the CQ will generdly hold. If the functions are
differentiable, a Kuhn-Tucker point is a possible candidate for the optimum. Hence,
many of the NLP methods atempt to converge to Kuhn-Tucker point. (Recal the
andogy to the uncongraint optimization case wherein the agorithms atempt to
determine a Setionary point.)

Remark 2. When the sufficiency conditions of Theorem 5.2 hold, a Kuhn-Tucker point
automaticaly becomes the globad minimum. Unfortunately, the sufficiency condition
is difficult to verify, and often practicd problems may not possess these nice
properties. Note that the presence of one nonlinear equdlity constraint is enough to
violate the assumptions of Theorem 5.2.

Remark 3. The sufficiency conditions of Theorem 5.2 have been generaized further to
nonconvex inequality constraints, nonconvex objectives, and nonlinear equality
congraints. These use generalizations of convex functions such as quasi-convex and
pseudo-convex functions.
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5.6 Saddle Point Conditions
Definition: A function f(xy) is sad to have asaddle point at ,y) if f(x,y)=f(X,y)=f(xy)

for dl xandy.
- Example:
f(xy)=X—xy+2y and y=0 (x is unrestricted)
f
ﬂ—:2x-y:0 and E:-x+2:O X =2and y =4
fix iy

f(X,y)= 4-2y+2y=0, f(x,y )= X—4x+8=(x-2)*4, and f(X,y)=4
Thus, 1(2,y)=f(2,4=f(x,4) andf possess a saddle point at (2,4).

- Kuhn-Tucker Saddle point Problem (KTSP)
Find (X ,u’) such that
L(X,u)£L(x ,u)EL(x,u) fordlxadu=0

where L(x,u)= f(X)- § u.g,(¥.

J

Theorem 5.3 (Qufficient optimality theorem)
If ' ,u")isasaddle point of a KTSP, thenx is an optima solution to the NLP problem.
Pf) Since L(x ,u) £L(x ,u’) £L(x,u),

f(X)- qug)EFX)- qug(X)EF(X)-Qug (¥ fordluz0
f(x)- qug,(X)E f(X) adu=0  gx)=0 (feasible)
FX)EF(x)-Q ug (0 f(x)£ f(X) if g(x)=0(minimum)

Theorem 5.4 (Necessary optimality theorem)
Letx" minimize f(X) subject to g(X) =0 and X1 S. Assume Sis a convex &, f(x) is a

convex function, and g(x) are concave functions on S Assume aso that there exisis a
point XI S such that g(X)> 0. Then there exists a vector of multipliers u'=0 such

that (X ,u’) is a saddle point of the Lagrangian function
L(x,u) = f(x)- § u;9,(%)
j

satisfying L(x ,u) £L(x",u’) £ L(x,u’) fordl xI S andu=0
Pf) Sincef(x)> f(x'), g(x) =0, and u g (x)=0 for dl j=1, ..., J,
f(x)- §ug,(xX)E f(X)=f(X)- § ug,(xX) L(x ,u) £L(X ,u")
From Farkas Lemma, f(x)-f(x)<0 and g(X) =0 withu" have no solution if

f)- f()-aug 0  L(X,u)ELXU)
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Farkas Lemma: For NLP, we assume that the Sater CQ is satisfied. The inequaity
system f(x)<0, g;(x) =0(j =1,---,J) has no solution if and only if there exists a vector
u=0 such that

f(x)- §u,9,(020

T hese systems are called dternative systems, i.e., exactly one of them has a solution.

Theorem 5.5
A solution (X',u”) withu'20and x'T S isasaddle point of a KTSP if and only if the
following conditions are satisfied:
i) X" minimizes L(x,u’) over dl x1 S
ii) g(x) =0
iii) ug (x)=0 for al j=1, ..., J

5.7 Second -Order Optimality Conditions
mxin f(X)
subjecttoh (X) =0 (k=1 ---, K)

K
- The firg-order KTCis Nf(x) - v.Nh (X) =0 and h(x)=0.

k=1

- Let X be aKuhn-Tucker point. Using the Taylor series expansion,

Df (xX')= f(X +Dx)- f(x")=Nf(x")Dx+0.5DX H,Dx+Q,

Dh, (x') =h (X +Dx) - h. (x') =Nh,(x )Dx + 0.5Dx' H ,Dx + O,

~

Df* - § yDi = &Nf - § R gDx +05DX" §H, - §  H, jDX+O,
k e k u e k u

For (x+Dx) to be feasible, Dh, =0 and assuming the CQ is sttisfied a x, the KT
necessary condition implies that
Nf" - & vk =0

k

\ Df* »0.5Dx" gH, - & VY H,jDx? 0 for X' to be minimum.
e k u

Theorem 5.6 (Second-order necessity theorem)
For NLP with equality and inequdity condrants, let f, g, h be twice differentiable
functions and x' be a feasible solution to NLP. Let I={jlg(x)=0}. Furthermore,
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Ng(x)"jT 1 ad Nh(x') are linearly independent. Then the necessary conditions
thet X be alocd minimum to the NLP are that
1. There exists (U',v) suchtha (X ,u’,v) isaKuhn-Tucker point.
2. For every vectory satisfying Ng'y =0"j1 1 and Nhyy =0 "k,
J K
yH & u"v)y2s0 where L(x,u,v)=f(x)- g ug (X)-Q v%h(X.
=1 k=1
- Example:
min f (X) =(x - 1)?+ x2 .
r . 00 =(%-1) 2 , 1Isx'=(0,0) optimal?
Subjectto g(x) =-x,+ %530
Nf(X) =[2(%,- 1) 2x,], Ng(x)=[-1 2x] and 1={1}
Since Ng(x')=[-1 O] is linearly independent, the CQ is satisfied a X . The first-
order KTC are:
2(%-1) +u =0, 2% - 2%U,; =0, u(-x,+x3)=0 ad u 30
The solution (x",u)=(0,0,2) satisfies these conditions and it is a Kuhn-Tucker point. (a
candidate as the optimal solution) Next, check the second-order necessary conditions to
test whether it is alocd minimum to the NLP problem.

H = l\'JandH (x*u*)—é2 oL
2 T -2y

Consider only vectorsy satisfying Ng,y=[-1 Oly=0b y=[0 y,], verify if

& 0000 .,
0 YoJ&, 8, G=-2Y:°0
| Y& - 208Y.0

However, this condition is not satisfied unless y,=0 and this point is not a locd
minimum for the NLP.

Theorem 5.7 (Second-order sufficiency theorem)
For NLP with equdity and inequdity condraints, let f, g, h be twice differentiable

functions and X' be a feasible solution to NLP. Let 1={j|g(x)=0}. Then the sufficient
conditions thatx be a locd minimum to the NLP are that

1. There exists (u',v) suchthat (x ,u’,v) isaKuhn-Tucker point.
2. For every nonzero vectory satisfying

Ngiy=0"jT I,={j] g;(x')=0,u; >0
Ngy2 0" jT 1, ={jlg;(x)=0,u;=0 (LLEIL,=1)
Nhy=0"k,
J
y™H & u",v)y>0 where L(x,u,v)=f(x)- § u,g;(x)- 5_ v, h.(X) .
k=1

=1
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Remark 1 The conditions on Ng;y is equivaent to
Nf'y£0 and Ngys 0" jT I.
Remark 2 The vector y s in the tangent plane of equality constraints. (Njy =0 " k)

Remark 3. When the functions are differentiable and the congraints satisfy the CQ, the
KTC isthe necessary conditions

Remark 4 When the objective function is convex, the inequality constraints are
concave, and the equdity condraints are linear, the KTC becomes the sufficient
conditions for global optima.

Remark 5 If the functions were not differentiable the saddle point optimality
conditions can be gpplied.

Remark 6: Since there can be several KuhnTucker points, the second-order optimality
conditions should be applied, which impose additiond restrictions.

Remark 7 The second-order sufficiency conditionsdo not require the convexity of the
function and the linearity of the equdity condrants.
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Chapter 6

TransformationM ethods

- NLP problem
min f (x) (xT RY)
subjecttoh (x)=0 (k =1---, K)
9;(x)*0(=1---J)

x" £ x£ x’

- Man ideat
- Solve a constrained optimization problem by solving a sequence of unconstrained
optimization problems, and in the limit, the solutions of the unconstrained
problems will convergeto thesolution of theconstrained problem.
- Use an auxiliary function that incorpor ates the objective function together with
“penalty” termsthat measure violationsof theconstraints.

- Transformation methods
- The original congtrained problem is transformed into a sequence of unconstrained problem
via the penalty function.
- If only one uncongtrained optimization is required, the pendty function isexact.
- Interior point method: the sequence X contains feasible points. Barrier method)
- Exterior point method: the sequence x¥ contains infeasible points. Penalty method)
- Mixed point method: the sequence x*' contains both feasible and infeasible points

6.1 The Penalty Concept
- T he penalty function
P(x,R) = f(x) +WR, o(x), (X))
- R: a =t of penalty parameters
- W: penaltyterm
- W=0 if g(xX)=0and h(x)=0and W> 0 if g(x)<0 and/or h(x)?0.

- The transformation methods to be useful:
- The subproblem solution should gpproach a solution of NLP, that s,

lim x® = x
k® T<¥
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- The problem of minimizing P(x,R) should be smilar in difficultyto minimizing f(x).
That is the method will be less than useful if the uncongtrained problems are
excessively difficult to solve, no matter how strong the theoreticad bass of convergence.

- R®*P=F(RY) should be smple It seems resonable to hope that the caculation
overhead associated with updating the pendty parameters should be smdl compared to
the effort associated with solving the uncongraned subproblems. (Note: This may in
fact not be desrable for problems with very compex objective and constraint functions.
In this case, considerable effort updating the pendty parameters may be judtified.)

- The various penalty terms
- For equality condraints (pendty methods)

a a
+®
L1 I|' L]

!
\LL . h(x) N

o 5
"
[T R e Figure 6.2. Infinite barrier penalty. Fopare bk lofao basdai pacalty

1. Parabolic penalty(quadratic-loss penalty): exterior
W =Rh(x)'h(x) or W=R|h(x)| (R>0, =0

- Initidly, use smdl R 0 that the initid subproblem can be solved eedly.
- Gradually increaseR 0 that the vidlaion gets pendized.

2. Infinite penalty exterior
_1¥ ifh(x)* 0
1 0if h(x)=0
- Smplest form but discontinuous dong the boundary
- Practicdly, assgn large number ingtead of infinity

Remark: Approximation of Lagrange multiplier from penaty method

Lagrange multiplier: v, = Nf (x)/ Nh, (x)
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J
Penalty function: P(x,R) = f(x) +0.5RQ [h, ()]
j=1

RP(x R) = Kf (x) +R& h, (x)[Rih,()]=0

j=1

b v, =- limRh, (X (R)

R® ¥

Example:

min f(X) =- x X
subjectto h(x) =x,+2x, -4 =0

Usng parabolic pendty function

minP(x) =- x X, + 05R(x, +2X, - 4)?

%:-xz +R(X +2X%- 4) =0
P
ﬂﬂg) =-% *+2R(X;+2x, - 4) =0

8R 4R
P X (R =77 adx(R)=7—

b (R =x(R)+2x(R)- 4=~ —

4R-1
If R® ¥ ,x=2and x=1 (Solution to congtrained problem)
(Lagrange multiplier: u(R) = - Rh(x(R)) = - % =-1)

- For inequality congtraints

Q

Positive Penalty
\
H gtx)

=

i

o|

1. Logarithmic barrier function (Logarithmic penalty) : interior

W=-R§ Ing,(x) (0<g;,(X) <1) otherwise, W=0 (g;(x)>1)

]

2 Inverse barrier function (Inverse penalty) : interior

W=R& [1/g, ()] (g,(x)>0)

- Sat a a feasble solution so that inequdities are not violated
- Discontinuous near the boundary

I II
\ \
S T

Figure 63. Log penalty. Famr b lreee poraliy Figure 3. Fraches operapo

e 23
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- Recovery procedure is needed if the search point is an exterior point

- Initidly, use large R 0 that the initid subproblem can be solved eeslly.

- Gradually, decrease R monotonicaly toward zero o that the pendty term
for violation becomes zero at the optima solution

...............

ai !
]

T
PEEEEgs
F

Lok
FEY ]

ks
T

[ e—————

Remark: Why not use amdl R from the beginning?
- No matter how smdll the R is, the solution of the pendty function is not the

optima solution and it is very difficult to solve
- Start from large R (easier to solve) and decrease R and repeatedly solve the

subproblem by using the previous solution.

Remar k: Approximation of Lagrange multiplier fromlogarithmic barrier method

Lagrange multiplier: u; = Nf (x) / Ng; (x)

Pendlty function: P(x,R) = f(X) + RéJ_ In[g; (X)]

j=l

NP(x,R) = Nf (x) +Rg} (1 g;())[Ng;(x] =0

i
P v, :u®rro1R/gj(x(R))
Example:

min f(X) =X, - 2X,
subject to g;(x) =1+ % - 2% 3 0and g,(X) = X, 3 0

Using logarithmic barrierfunction
MinP(X) = % - 2% - R{IN(1+X - 2x3) +In(x,)]

V-1
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PO _, o 1

- —:O
% (1+ %~ 2x))
ﬂP(X) :-2+R2—X22- Ri:o
X, (1+x,- 2X,) X,

P -2+2x,- R/Ix,=0and X2 - x,- R/2=0

b x(R)=( +/A+2R)/2 and x (R)= (3R- 1+/1+2R)/2

If R® 0, x=0andx,=1 (Solution to constrained problem)
vi(R)=limR/ g (R =lim2R/[2+(3R-1+41+2R)- 1+ R+ +2R)] =1

v,(R) =limR/ g,(R) =lim2R/(1++1+2R)=0

3. Bracket penalty (quadratic-loss penalty) : mixed
W = 0.5R§ [min(g, (x),0)F

J

- First derivative continuous, but second derivative is discontinuous (not
auitable for Newton type optimization)

- Initidly, choose R as amdl positive and

- Gradually increaseR 0 that the violation gets pendized.

i aing

A

-1 " i i
|\l - T .\EIE §iie
«* " )
A7 T i :
| w
| N | = '3}\\_
15 | 1 . % ! LY G =
w b oL R W [ - . H
Y . 1

Fgmm B ks syt o s 4 5

- T he convergence
- Condder only the barrier methods (pendty methods can be andyzed in asimilar way)
agoplied to the problem
min f (x)
subjecttog(x) 3 0
Let Sand S’ denote, respectively, the feasible regionand its interior, i.e.
S={x]g (x)2 0,i=1,---m}

S°={x]g,(x) >0,i =1}

Assumptions
1) fanddl gi (1=1,...,m) are continuous. W isacontinuousfunction

onS’, and W ® +¥ whenx approachesthe boundary of S.
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2) Foranya ,thesst {x|x1 S, f (x)£a} isbounded.

3) S ISnot empty.

4) Anyyl S can be approached by a sequence {x¢ inx® y, xd S°
- Theor em (Convergence of the Barrier Methods)

Let P(x,R)= f()+RW(X); R® R 3limR =0 an

X, 1S agloba minimizer of problem r)?ison P(x, R,) . Then, fork =1, 2, ...,

a) P(Xk+l ’Rk+l) £ P(Xk !Rk)
b) W(X.,) * W(x,)

¢) f(Xn)E f(X)
d f(X)E f(x)EPXR)

e) If the subsequence {x | ki K} convergesto X,then X must be an optimal

solution of theinequality constrained problem.
Ff)

a) Sincex is a globd minimizer of problem nl1lsg1 P(x,R),

P51 Red) = T(X) * R WX ) £ T(X) + R, W(X)
£ f(x)+RW(X)=P(x..R)
b) Summing f (x,) + RW(%) £ f (X..) + RW(X,.,) and
F (%) + ReaW(Xi1) £ £(X) + R, W(X,) , then by rearranging
(Re- Ra) W(X) £ (R - R )W(X10)
W(Xk) £ W(Xk+1) (RR1=0)
c) From &), f(X.q) £ f(Xca) + R s(W(Xein) - W(X)) £ T (%)

d f(x)E f(x)E f(x)+ RW(%)=P(x ,R)

(Rk:Rk+1)

e) Let X be the limit of {x} that satisfies condtraints. For any € >0, there exist
X suchtha f(X)+e3 f(x) for xI S°.

fO)+e+ RW(R)® f(%)+RW(X) =limP(x,R)* f(X)

f(x)+aes LE@TP(XWRKV fx)(a>0)p Iki®n;1 P(x.,R)=f(x)
Since f(x)£ f(X) ad
limP (R )= F(X)+RWE)=f (X )P )£ F (<) (" RW(R)® 0)

\ FOO)EFREFX)P F(R)=F(X)
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- Exact Pendty Method
The idea in an exact pendlty method is to choose a pendty functionW(x) and a

constant R so that the optima solution X of P(x R) is dso an optima solution of the
origina problem.
Theorem:
Supposea corstrained optimization problemis a convex program for which the
Karush-Kuhn-Tucker conditions are necessary.
J |
Ssupposethat W(x) = @ min(g; (),0) + ;2’_11 [h (%)

j=1
Then as long as R is chosen aufficiently large, the sets of optima solutions of P(x,R)
and the origind problem coincide. In fact, it suffices to chooseR > max(y’;v; ),
where (U,V) is a vector of Karush-Kuhn-Tucker multipliers.

Remar k: Unfortunately, the resulting problem with exact pendty (large pendty
parameter) generates quite ill-conditioned problem which is very difficult to solve.

6.3Method of Multipliers (MOM)
- T he standard pendty approach generates progressively ill-conditioned subproblems which

limits the utility d the method for practica applications.
- The fixed parameter pendty methods has been suggested

- Huard's method of centers;

P(x,R)=[R- (0] 8,(¥

j=1
where R is a moving truncation a esch maximization dage, sy, R = f(%._,) -
This is equivdent to parameterless penalty form for minimization

P(¥) =~ In[f (%)~ (X]- A 0,(X) (Perameter-free methoc)
j=1
- MOM

P(x,s ¥t ®)=f (x) +Réj‘ {min(gj ) +s ¥,0)%- s J(k) ]2}

j
j=1
s [. k) <2 Ky 2
+Ra{gh(x)+ti“h| . 85)5}
i=1
where s ' =min(g, x"))+s ,0) (=1---,J)

0D = (xX9) 4+t O (=1, 1)

- R is congant for each iteration
- The method will terminate if X¥ fails to change.
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Remark:

1 lim x® =x" (a Kuhn-Tucker point)

2. Minimization of P(x) is smilar in difficulty to minf(x) fro reasonable vaue of R.
3. The updating rues for s ad t ae sSmple requiring essentidly no
additiona calculation.

Example
min f (x) = (x - 4)° +(x, - 4)°
subject toh(x) =x; +x, - 5=0

PU) = (%, - 4)° +(6, - 4)° (0 +%, -5 4)7 - =t

P 2
ﬂ—:Z(xl- 4)+E(X1+X2_ 5+t)=0
P 2
ﬂ—:2(><z'4)+E(X1+Xz-5+t):0
by = _ 5+4R-t
=% 2+R
For convenience, chooseR=1toget b x =X, :3-%

Stat with t @ =0, t® =n(3,3)+t @ =1,

t @ =h(2.6667,2.6667) +t ' =1.333

t @ =h(2.5555,2.5555)+t @ =1.444

t ¥ = h(2.5185,2.5185) +t ¥ =1.4818

t ® =h(2.5062,2.5062) +t ) =15
t®=n2525)+t® =15 (Stop) b x,=x, = 2.5

§ ]
.'I' e (3
Wy R
acf f T [
| ., -\‘\K\\ e
'\_ * ket
| '. . LY et
hoh Uy Y EE
N N ] i
,_ .
2l ‘-\.:‘-\ N'\-\'_ A 'I o
',
NN
.
i -,\:\: \\\M —__*
[N
sl i B o SRRl
) B aa ) &
.
b ® o )

- MOM type codes: ACDPAC, GAPFPR, VFO1A, SALQDR, SALQDF, SALMNF, ...
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