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LECTURE NOTE V 
Chapter 8 

Linearization Methods for Constrained Problems 
 
8.1 Direct use of Successive Linear Programs (SLP) 

▶ Linearly Constrained Case 

   min f(x)  

   subject to Ax ≥b, x ≥0 

- By linearization of the objective function using 1st-order Taylor series expansion, the lineary 
constrained problem is converted into LP. 

  0 0 0 0
2( ) ( ) ( )( ) ( )f x f x f x x x O f x x C        

- Frank-Wolfe Algorithm 

 Given x0, line search and overall convergence tolerances 0   and 0  . 

 Step 1: Calculate ( )( )kf x . If ( )( )kf x   , stop. Otherwise, go to step 2. 

 Step 2: Solve the LP subproblem, 

  
( )min ( )

subject to , 0

kf x y

Ay b y


 

 

  Let y(k) be the optimal solution to the LP problem. 

 Step 3: Find ( )k  which solve the problem 

  ( ) ( ) ( )min ( ( ))    (0 1)k k kf x y x      

 Step 4: Calculate (y(k) is at the boundary satisfying the constraints.) 

  ( 1) ( ) ( ) ( ) ( )( )k k k k kx x y x     

 Step 5: Convergence check. If  

  ( 1) ( ) ( 1)k k kx x x    and ( 1) ( ) ( 1)( ) ( ) ( )k k kf x f x f x    

  then terminate. Otherwise, go to step 1. 
 
Example: 

  
0.25 0.25 0.25
1 2 1 2

1 2 1 2

min ( ) ( / ) (64 / )

subject to 1,  ,  64

f x x x x x

x x x x

  
  

 

 Suppose as the initial estimate, x1=2 and x2=10 (feasible solution). 

  0.75 0.25 0.5 2
1 2 1

1

0.25 (1 ) 3.83 10
f

x x x
x

  
    


 

  0.75 0.25 0.24 0.5 3
2 1 2

2

0.25 ( 64 ) 2.38 10
f

x x x
x

   
    


 

 The 1st subproblem is 

  
1 2

1 2 1 2

min ( ) 0.0383 0.00238

subject to 1,  ,  64

f x y y

y y y y

  
  

 

 and the solution to this LP is y1=64 and y2=64.  
 The line search of f in the direction (64 64)T– (2 10) T results 
  x1=3.694 and x2=11.475 ( =0.02732) 

 Termination criteria are not met yet. 
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 Then, the 2nd subproblem becomes 

  
1 2

1 2 1 2

min ( ) 0.00397 0.00456

subject to 1,  ,  64

f x y y

y y y y

 
  

 

 and the solution to this LP is y1=1 and y2=64.  
 The line search of f in the direction (1 64)T– (3.694 11.475) T results 
  x1=3.526 and x2=14.745 ( =0.06225) 

 Through the following iterations, the subproblem solutions approaches to the optimal 
solution in zigzag pattern. 

 

▶ General NLP Case 

   min f(x)  

   subject to g(x)≥0, h(x)=0, xL≥x≥xU 

- By linearization of the objective function and constraints using 1st-order Taylor series 
expansion, the constrained NLP problem is converted into LP. 

  0 0 0 0
2( ) ( ) ( )( ) ( )f x f x f x x x O f x x C        

  0 0 0 0
2( ) ( ) ( )( ) ( ) 0g x g x g x x x O g x x b         

  0 0 0 0
2( ) ( ) ( )( ) ( ) 0h x h x h x x x O h x x a         

- Not like the linearly constrained case, the obtained solution for LP subproblem is may not be 
feasible since the constraints of the subproblem is the linearized one. 

- Thus, the direct application of Frank-Wolfe algorithm does not guarantee any convergence to 
the optimal solution since the linearization can have large error if the trial point is far from 
the base point. 

- Remedy: limit the region that the LP subproblems can excurse such that the objective 
function value is decrease and the infeasibility is reduced. 

  ( )kx x     : choose   so that ( 1) ( )( ) ( ) 0k kf x f x   , ( 1)( ) 0kg x     

   and ( 1) ( )( ) ( ) 0k kh x h x    

 However, this remedy could slow down the convergence rate quite severely. 
 
- Use of penalty functions 

  Let ( , ) ( ) ( , , )P x R f x R g h x  . 

  Then solve ( ) ( 1) ( )min ( ( ), )k k kP x x x R


    in the line search step of the SLP. 

Phase Check: If at x(k), the exterior penalty term ( , , )g h x  , then go to phase I. 

Otherwise go to Phase II. 
Phase I: 

  Step 1: Linearize at x(k) and solve the LP subproblem to obtain x . 

  Step 2: If ( )( , , ) ( , , )kg h x g h x  , then ( 1)kx x   and proceed to the 

phase check. Otherwise, reduce  (e.g., / 2  ) and go to step 1. 

Phase II: 

 Step 1: Linearize at x(k) and solve the LP subproblem to obtain x . 

 Step 2: If ( )( , ) ( , )kP x R P x R , set ( 1)kx x  , increase the penalty parameter 

R, and go to phase check. Otherwise, reduce   and go to step 1. 

Termination: both ( )kx x  and ( )( , ) ( , )kP x R P x R  are sufficiently small. 

Remark: Still, the convergence results are available only in linearly constrained case. 
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8.2 Separable Programming 
▶ Single-variable separable functions into (K-1) interval 

( 1) ( )
( ) ( ) ( 1) ( )

( 1) ( )
( ) ( )  (for )

k k
k k k k

k k

f f
f x f x x x x x

x x







    


   

( ) ( ) ( 1) ( 1)k k k kx x x      and ( ) ( 1) 1k k     
( ) ( ) ( 1) ( 1)( )  k k k kf x f f      

- For the entire range 

( ) ( )

1

K
k k

k

x x


   ( ) ( )

1

( )
K

k k

k

f x f


  

where  

 i) ( )

1

1
K

k

k




  

 ii) ( ) 0   for 1, ,k k K     

 iii) ( ) ( ) 0  if 1 for 1, , 1i j j i i K        

 
▶ Multivariable separable functions into (K-1) interval 

- Definition: A function f(x) of N-component vector variable x is said to be separable if it can 
be expressed as the sum of single-variable function that can involve only one of the N 
variables. 

  
1

( ) ( )
N

i i
i

f x f x


   

- Example: 22 2 /3
1 2( ) xf x x e x    is separable; 3

1 2 3 2( ) sin( ) xf x x x x x e    is not. 

- Transformation of non-separable functions: 

  2 2
1 2 3 4x x x x   where 3 1 20.5( )x x x   and 4 1 20.5( )x x x   

  
11

ln( ) ln( ) ln( )i

N N
a
i i i

ii

c x y c a x


    

 
- For the entire range 

1 2
( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2
1 1 1

( )
NKK K

k k k k k k
N N

k k k

f f f f  
  

     x      

( ) ( )

1

   ( 1, , )
K

k k
i i i

k

x x i N


    

where  

 i) ( )

1

1
iK

k
i

k




  

 ii) ( ) 0   for 1, ,k
i ik K     

 iii) ( ) ( ) 0  if 1 for 1, , 1k l
i i il k i K        



Department of Chemical and Biological Engineering Korea University 
 

 
ChE605 Engineering Optimization  III-4 

▶ The NLP can be converted to LP: 

  

( ) ( )

1 1

( ) ( )

1

( )

1

( ) ( )

( )

min ( )

subject to ( ) 0   ( 1, , )

                1   ( 1, , )

                0  if 1 for 1, , 1 

                all 0 

i

i

i

KN
k k

i i
i k

K
k k

j i ji
k

K
k

i
k

k l
i i i

k
i

f x f

g x g j J

i N

l k k K







 



 







  

 

    














 

 

 Remarks: Restricted basis entry 

1. The difference from normal LP is only the condition for ( ) ( ) 0k l
i i   . 

2. This condition implies that only adjacent ( )k
i ’s can become basis at the same time 

for each k. (Restricted basis entry) 

3. If ( )k
i is going to be a basic, check if there is the entry ( 1)k

i
  or ( 1)k

i
  in the 

basis. If not, choose other variable to become a basic variable. 
4. In order to improve the feasibility and accuracy, the number of grid can be increased. 

However, this increases the number of variable and thus considerably increases the 
number of iteration due to the restricted basis entry. 

5. Or, use coarse grid initially and then use fine grid only in the neighborhood of the 
resulting solution. However, this may lead to convergence false optima. 

6. Use this separable programming only when the nonlinearity is not severe and the 
objective function and constraints are separable. 

- Example: 

Solve 

4
1 2

2
1 1 2 1 2

max ( )

Subject to ( ) 9 2 3 0,  0,  0

f x x x

g x x x x x

 

     
 

 Sol) 1 1 2 2( ) ( ) ( )f x f x f x  , 11 1 12 2( ) ( ) ( )g x g x g x   

  where 4
1 1 1( )f x x , 2 2 2( )f x x , 2

11 1 1( ) 2g x x   and 12 2 2( ) 3g x x   

  Division of the range: 10 3x   with the interval size=1 

  (1) (2) (3) (4)
1 1 1 1 1 1( ) 0 1 16 81f x             

  (1) (2) (3) (4)
1 1 1 1 1 1( ) 0 2 8 18g x             

  Then the linear approximating problem becomes with one slack variable 

  

(2) (3) (4)
1 1 1 2

(2) (3) (4)
1 1 1 2 3

(1) (2) (3) (4)
1 1 1 1

( )
1 2 3

min ( ) 16 81

Subject to  2 8 18 3 9

                  1

                  all , , 0k

f x x

x x

x x

  

  

   



     

      

   



 

  The first tableau is  
CB Basis 1

(2) 1
(3) 1

(4) x2 x3 1
(1) b ratio 

0 x3 2 8 18 3 1 0 9 1/2|9/8 

0 1
(1) 1 1 1 0 0 1 1 1|1 

rT 1 16 81 1 0 0 0  

The 1
(4) is a candidate to enter basic and x3 is leaving the basic. But 1

(1) and 1
(4) cannot 
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be the basics at the same time (restricted basis entry). Thus, choose 1
(3) and 1

(1) will 
leave the basis. 

CB Basis 1
(2) 1

(3) 1
(4) x2 x3 1

(1) b ratio 

0 x3 -6 0 10 3 1 -8 1 1/10 
0 1

(3) 1 1 1 0 0 1 1 1 

rT -16 0 65 1 0 -16 16  

The 1
(4) is the candidate for the basis and the restricted basis entry is satisfied. 
CB Basis 1

(2) 1
(3) 1

(4) x2 x3 1
(1) b ratio 

0 1
(4) -0.6 0 1 0.3 0.1 -0.8 0.1 - 

0 1
(3) 1.6 1 0 -0.3 -0.1 1.8 0.9 5/8 

rT 23 0 0 -18.5 -6.5 36 97  

The 1
(1) is the candidate for the basis but excluded due to restricted basis entry, then he 

1
(2) is the candidate for basic and 1

(3) will leave the basis. This violates the restricted 
basis entry rule and there is no other choice. Conclude this is the optimal. 
 1

(3)=0.9, 1
(4)=0.1  x2 =0, x1=1x1

(1)+ 2x1
(2)+ 3x1

(3)+ 4x1
(4)=2.1, f(x)=22.5 

(Exact optimum: x2 =0, x1==2.12, f(x)=20.25) 
 

 Remark: The restricted basis rule will always be satisfied at the optimum if 
1. For all i, f(xi) is either strictly convex or it is linear. 
2. For all i and j, gji(xi) is either concave or it is linear. 

 
8.3 Cutting Plane Methods 

▶ Motivation: Concentrate the efforts to construct accurate approximation only when the current 
point is near optimum. 

 
▶ Kelley’s cutting plane method 

   min f(x)   

   subject to g(x)≥0,  xU ≥ x ≥ xL 

- Given a problem in the form of linear objective function (can be obtained from linearization), 

constraint tolerance 0  , and an initial bound of the feasible region (F) 

  0 { : , 1, , }L U
i i iZ x x x x i N      such that 0Z F  

Step1: Solve linear problem and designate the solution as x(1). 

  
0

min

subject to  

i ic x

x Z


 

For k=1,2,…, carry out the following series of steps 
Step2: Find m such that (maximum violation) 

  ( ) ( )( ) max[ ( ),0; 1, , ]k k
m jg x g x j J      

  If ( )( )k
mg x   , terminate. Otherwise go to step 3. 

Step3: Construct the cutting plane, 

  ( ) ( ) ( ) ( ) ( )( ) ( ; ) ( ) ( )( )k k k k k
m m mp x g x x g x g x x x     

  and let H(k) be the half space ( ) ( ){ : ( ) 0}k kH x p x  . Solve the LP: 
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( 1) ( )

min

subject to  

i i

k k

c x

x Z H 


 

  Designate the solution x(k+1). 

Step4: Set ( ) ( 1) ( )k k kZ Z H   and k=k+1. Go to step 2. 
 
- Example: 

Solve  

1 2

2
1 1 2

2
2 1 2 1 2

min ( )

Subject to ( ) 2 1 0

                 ( ) 9 0.8 2 0,  0,  0

f x x x

g x x x

g x x x x x

  

   

     

 

 Sol) From the inspection, 0
1 2{ : 0 5,0 4}Z x x x      is adequately bracket the 

feasible region for this problem. 
First, find the minimum of  

 1 2

1 2

min ( )

Subject to 0 5,  0 4

f x x x

x x

  
   

 

The solution is obviously is x(1)=(5,4). 
Since g1(x

(1))= –7 and g2(x
(1))= –19, the most 

violated constraint is g2(x). 
(1) (1)

2 1 2( ; ) 19 8( 5) 2( 4)p g x x x x        

The second subproblem becomes: 

 

1 2

1 2

1 2

min ( )

Subject to 29 8 2 0

                 0 5,  0 4

f x x x

x x

x x

  
  
   

 

The solution is x(2)=(2.625,4) and g1(x
(2))= –11.75 and g2(x

(2))= –4.5125. 
(2) (2)

1 1 2( ; ) 11.75 2( 2.625) 8( 4)p g x x x x        

The third subproblem becomes: 

 

1 2

1 2

1 2

1 2

min ( )

Subject to 29 8 2 0

                 15 2 8 0

                 0 5,  0 4

f x x x

x x

x x

x x

  
  
  
   

 

The solution is x(2)=(2.971,2.618). The iteration continues until the constraints are 
satisfied within the specified tolerance  . (The exact optimum is x*=(2.5,2), f*= –4.5) 

 
 Remarks:  

1. The optimum value is approached from below for minimization case since the feasible 
region is getting smaller. (It generates sequence of infeasible solutions) 

2. The feasible region F must be convex set. 
3. The size of LP problem grows continuously with each iteration. 
4. As the solution approaches to the optimum, the constraints become nearly dependent. 

Thus, needs a procedure to delete old cuts if they are not binding at the optimum of the 
current subproblem. (Cut-deletion procedure) 
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Chapter 9 
Direction-Generation Methods Based on Linearization  

 
- Find the decent direction based on the linearized objective function and constraints 
- The direction has to be chosen so that it leads to feasible solution. 
 

9.1 Method of Feasible Directions 
   min f(x)  

   subject to g(x) ≥0 

  The decent direction d while feasible is to satisfy ( )( ) 0kf x d   and ( )( ) 0k
jg x d  . 

▶ Basic Algorithm 

At a given feasible point x(k), let I(k) be the set of indices of those constraints that are active at x(k), 

within some tolerance , that is, 

  ( ) ( ){ : 0 ( ) , 1, , }k k
jI j g x j J      

Step 1: Solve the LP problem 

  

( )

( ) ( )

max

Subject to ( )

                 ( ) ,

                 1 1,  1, ,

k

k k
j

i

f x d

g x d j I

d i N







  

  

    

 

  Label the solution d(k) and (k). 

Step 2: If (k)0, the iteration terminates, since no further improvement is possible. Otherwise, 
determine 

  ( ) ( )min{ | ( ) 0, 1, ,  and 0}k k
jg x d j J         

 If no 0   exists, set    . 

Step 3: Find (k) such that  

  ( ) ( ) ( ) ( ) ( )( ) min{ ( ),0 }k k k k kf x d f x d         

 Set ( 1) ( ) ( ) ( )k k k kx x d    and continue. 

 
- Example: 

Solve  

2 2
1 2

2
1 1 2

2
2 1 2 1 2

min ( ) ( 3) ( 3)

Subject to ( ) 2 1 0

                 ( ) 9 0.8 2 0,  0,  0

f x x x

g x x x

g x x x x x

   

   

     

 

Sol) The gradients of the problem functions are given by 

 1 2[2( 3), 2( 3)]f x x     

 1 2[2, 2 ]g x    and 2 1[ 1.6 , 2]g x     

Suppose the feasible starting point x(k)=(1,1) is given. At this point, 

 (1)
1( ) 0.0g x   and (1)

2 ( ) 6.2 0g x    

Thus, g1 is the only binding constraint, I(k)={1} and the first subproblem becomes 

 1 2

1 2 1 2

max

Subject to 4 4 0

                 2 2 0,   1 , 1

d d

d d d d





   

     
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The solution to this LP is d(1)=(1,0) with (1)=2. We must now search along the ray 

 
1 1 1

1 0 1
x




     
       
     

 and 0   

to find the point at which the boundary of the feasible region is intersected. Since 

 1( ) 2(1 ) 1 1 2g        , 2
2 ( ) 9 0.8(1 ) 2g       

the 1.958  . The minimum of f with 0 1.958   is  

 2 2 2( ) [(1 ) 3] (1 3) ( 2) 4f            

Since (1) 1.958  , x(2)=(2.958,1) is obtained. 

For the second iteration, 

 
1 2

1 2

1 2

max

Subject to 0.048 4 0

                 4.733 2 0,

                1 , 1

d d

d d

d d





   

  
  

 

The solution to this LP is d(2)=(–1,0.8028) with (2)=3.127. 
The iterations will continue in the same way.  
 

Remarks:  
1. It generates a sequence of feasible solutions. 
2. By considering only the active constraints at the 

current feasible point, a zigzag iteration pattern 
results, which unfortunately slows down the 
progress of the iteration. 

3. It may converge to points that are not KK points in three-dimensional cases. (jamming) 

4. The remedies are: a) reduce the tolerance for criterion of the active constraints () if (k)<.  

5. Or, b) replace ( )( )k
jg x d    with ( ) ( )( ) ( )k k

j jg x g x d   . The direction will 

be less affected by the constraint j when ( )( ) 0k
jg x  . 

6. The feasible direction methods cannot directly handle the nonlinear equality constraints, 
because there is no feasible interior to such constraints. To relax this problem, instead of 

equality, kh     can be used, but it limits the step size and leads to very slow 

progress and need a procedure to return to feasible points. 
 

9.2 Simplex Extensions for Linearly constrained Problems 
   min f(x)  

   subject to Ax ≥b 

  Let x


 be the basic variable and x  be the nonbasic. 

   1 , 0Bx Ax b x B b x     
 

When a linearized objective function is used, all the LP machinery can be used. The relative 
cost can be calculated. 

0 0 0 1( ) ( ) ( )r x f x f x B A  


 

1 1( ) ( ; ) ( , )f x f x x f B b B Ax x   
 

0 0 0( ) ( ) ( )( )f x f x r x x x    

For linear case, minimum will be found at the boundary, but for nonlinear case, the minimum 
may occur before boundary and it requires line search. 
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▶ Convex Simplex Algorithm 

Given a feasible point x0, a partition ( , )x x x 
 of the problem variables, and a convergence 

tolerance 0  , 

Step 1: Compute ( )( )kr x . 

Step 2: Compute s and q as follows: 

  min{0, : 1, , }s ir i N M     

  min{0, : 1, , }q i ir x i N M     

Step 3: If s   and q  , terminate. Otherwise, consider two cases: 

a) If s qr  , determine min{ / : 0, 1, , }r j js jsx p p j M      and set 

r   . (where pjk are the elements of matrix 1B Ax ) 

b) If s qr  , determine min{ / : 0, 1, , }r j jq jqx p p j M       and set 

min( , )r qx    . 

Step 4: Calculate the target point v(k): 

  ( ) ( )k k
j j jkv x p   

 and 
( )

( )   if 

0       otherwise

k
k j

j

x i k
v

   
 


 

  where k is equal to s or q depending upon whether 3(a) or 3(b) occurs. 

Step 5: Find * such that 

  ( ) * ( ) ( ) ( ) ( ) ( )( ( )) min{ ( ( )) : 0 1}k k k k k kf x v x f x v x


          

Step 6: Set ( 1) ( ) * ( ) ( )( )k k k kx x v x    . If *=1 and =r, update the basis and the basis 

inverse. Otherwise, retain the same basis and go to step 1. 
 

Remarks:  
1. If the optimal solution is not in the corner of the feasible region, the basis will not change 

for a while. Empirically, occasional change in basis would improve the convergence using 
periodical random update of basis or choice of basis of M-largest variables in magnitude. 

2. The rate of convergence to non-corner point optima can be quite slow; however, the 
direction-finding machinery is very simple and rapid. Thus, one would expect the solution 
efficiency to be better than that of the Frank-Wolfe algorithm. 

 

▶ Reduced Gradient Method 

- If all the nonbasic variables change simultaneously instead of changing one-by-one, it would 
improve the efficiency of the convex simplex method. (more like conjugate gradient) 

  
    if 0

   where 1, ,
  if 0

i i
i

i i i

r r
d i N M

x r r

 
   

  

- The gradient of f is reduced to 0 0 0 1( ) ( ) ( )r x f x f x B A  


 in x  space not in full 

space of x. (Reduced gradient) 

- The change in basic variables must be calculated using 1d B Ad 


 to satisfy the linear 

constraints. 

- For nonbasic variables, ix  is increased if the relative cost is negative, while ix  is 

decreased if the relative cost is positive. 
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Given a feasible point x0, a partition ( , )x x x 
 of the problem variables, and a convergence 

tolerance 0  , 

Step 1: Compute ( )( )kr x . 

Step 2: Compute d  and d


 using above relationships. If d  , terminate. Otherwise, 

Step 3: Calculate the step-size limit max=min(1,2) where 

  ( )
1 min{ / : for all 0, 1, , }k

i i ix d d i M    
    

  (If all 0id 


, then set 1   .) 

  ( )
2 min{ / : for all 0, 1, , }k

i i ix d d i N M       

  (If all 0id  , then set 2   .) 

Step 4: Find * such that 

  ( ) * ( )
max( ) min{ ( ) : 0 }k kf x d f x d


         

Step 5: Calculate the new point ( 1) ( ) *k kx x d   . If *=max=1, change the basis to 

avoid degeneracy. Otherwise, go to step 1. 
 
9.3 The Generalized Reduced Gradient Method (GRG) 
   min f(x)  

   subject to h(x) =0   (i=1,…,I) 

▶ Implicit Variable Elimination 

- Reduce the number of variable to search using the equality constraints 

- Using the linearized equality at feasible point x(k) and for ( )( ; )k
ih x x  to be feasible, 

 ( ) ( ) ( ) ( )( ; ) ( ) ( )( )   ( 1, , )k k k k
i i ih x x h x h x x x i I      

 ( ) ( ) ( )( ; ) 0 ( )( ) 0   ( 1, , )k k k
k kh x x h x x x k K       

- Using the partition ( , )x x x 
 

 ( ) ( )( ) ( ) 0k kx x x x   J C
 

 

 where 1 2(   )T
Ih h h   J

  
  and 1 2(   )T

N Ih h h   C   

 ( ) 1 ( )( ) ( )k kx x x x   J C
 

 

- Eliminate the variable x


 

 ( ) 1 ( )( ; ) ( ( ), )k kf x x f x x x x  J C
   (a function of N–I variables) 

- Optimality conditions for ( ) ( ( ), )f x f x x x    

 ( ) ( ) ( ) 1( ) ( ) ( ) 0k k kf f f x
f x f x f x

x x x x
   

     
   

J C
    

cf) This condition is equivalent to Lagrangian stationary condition: 

 

* *
* * *

* *

( ) 0
( ) ( ) 0

( ) 0

T

T

f x v
f x v h x

f x v

       
  

J

C


 

 * * 1 * * 1( ( ) ) ( ) ( ) 0Tv f x f x f x     J J C
 
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▶ Generalized Reduced Gradient Algorithm 

Given a feasible point x0, a partition ( , )x x x 
 which has associated with it a constraint 

gradient submatrix J with nonzero determinant, a specified initial value of search parameter 

=0, termination parameter 1, 2 and 3, all positive, and a reduction parameter , 0<<1, 

Step 1: Calculate ( ) ( ) 1( ) ( )k kf f x f x     J C
 . 

Step 2: If f   , stop. Otherwise, set ( , )Td d d


 where 

  ( )Td f   and 1d d J C


 

Step 3: (minimizing f in d direction while satisfying the equality constraints) 

 Set =0, For l=1, 2,…, 

a) Calculate v(k)=x(k)+d. If ( )
2( )k

ih v   for i=1,…,I, go to (d). Otherwise, continue. 

b) Let ( 1) ( ) 1 ( ) ( )( )l l l lv v v h v   J
 

 and ( 1) ( )l lv v  . 

c) If ( 1) ( )
3

l lv v    
, go to b). Otherwise, if ( )

2( )l
ih v   for i=1,…, I, go to (d). 

Otherwise, set = and go to (a). 

d) If ( ) ( )( ) ( )k lf x f v , set = and go to (a). Otherwise, set x(k+1)=v(l) and go to step 1. 

 
- Example: 

Solve  

2 2
1 2 3

2 2
1 1 2

2 1 3

min ( ) 4 12

Subject to ( ) 20 0

                 ( ) 7 0

f x x x x

h x x x

h x x x

   

   

   

 

Sol) Suppose we are given the feasible starting point x(1)=(2,4,5) and suppose we choose x1 as 
nonbasic variable and x2 and x3 as basic variables. Thus, 

 2 3( , )x x x  and 1x x  

The function derivatives are  

 2 3(4, 2 ,3 )f x x   , 1 1 2( 2 , 2 ,0)h x x     and 2 (1,0,1)h  . 

Step 1: Since (4, 8,10)f   , 1 ( 4, 8,0)h     and 2 (1,0,1)h  , 

 
8 0

0 1

 
  
 

J   
4

1

 
  
 

C   ( 8,10)f  


  (4)f   

 1 1/ 8 0

0 1
  
  
 

J  and 
1/ 8 0 4

(4) ( 8,10) 2
0 1 1

f
   

       
  

  

Step 2: The direction vector becomes 

 2d f    and 
1/ 8 0 4 1

2
0 1 1 2

d
      

          


 

Step 3: Set 0=1. 

a) v(1)T=(2,4,5)+ (2,–1,–2)=(4,3,3), h1(v
(1))= –5 and h2(v

(1))=0. (not small enough) 

b) 

1

(2) 3 6 0 5 2.167

3 0 1 0 3
v

        
         
       


 

c) Since (2) (1)v v 
 is not small enough, repeat b) again. 
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b) 

1

(3) 13 / 6 13/ 3 0 0.69 2.008

3 0 1 0 3
v

        
         
       


  

c) Assume this result is a converged one. Checking h1(v
(3))= –0.032 and h2(v

(3))=0 is 
assumed to pass the condition. 

d) v(3)T=(4,2.008,3) and f(x(1))=5< f(v(3))=9: No improvement in f(x). 

Reduce a as =0.4 (=0.4) and repeat step 3. 

a) v(4)T=(2,4,5)+(2,–1,–2)=(2.8,3.6,4.2), h1(v
(1))= –0.8 and h2(v

(1))=0. (not small 
enough, Newton iteration b)~c) is required.) 

b) 

1

(5) 3.6 7.2 0 0.8 3.49

4.2 0 1 0 4.2
v

        
         
       


 

c) Assume (5) (4)v v 
 is small enough, and h1(v

(5))= –0.02 and h2(v
(5))=0 is 

assumed to pass the condition. 
d) v(5)T=(2.8,3.29,4.2) and f(x(1))=5< f(v(5))=4.66: Improved! 
Set x(2)= v(5)= (2.8,3.29,4.2)T and repeat from step 1. 
(Exact optimum: x*= (2.5,3.71,4.5)T) 
 

Remarks:  
1. The Newton iteration for feasibility is the most time-consuming step. 
2. Stop Newton iteration if there is improvement. 
3. Treatment of bounds: Treating them as inequality is not very good idea. 

a) A check must be made to ensure that only variables that are not on or very near 
their bounds are labeled as basic variables. This check is necessary to ensure that 
some free adjustment of the basic variables can always be undertaken 
 Order the variable in the magnitude of the distance from their bounds and 
choose largest I variables such that the J becomes nonsingular. 

b) The direction d  is modified to ensure that the bounds on the independent 

variables will not be violated if movement is undertaken in the d  direction. 

This is accomplished by setting 

  

( )

( )

0  if  and <0, 

0  if  and >0,

                otherwise

U
i i i

L
i i i i

i

x x f

d x x f

f

  
  


 

c) The checks must be inserted in step 3 of the GRG algorithm to ensure that the 
bounds are not exceed during the Newton iterations. 

4. Treatment of inequalities: If the inequality is given by ( )j j ja g x b  , 

 use ( ) ( ) 0I j j N jh x g x x     with j N j ja x b   

  Regard them as equality and bounds on new slack variables. 
5. Treatment of linear elements: Each problem functions can be subdivided into linear 

and nonlinear components for linear and nonlinear variables, y and x. 
 The NLP problem can be expresses as follow: 

  1 1

2 3 2

min ( )

subject to ( )

                 

                 ,

T Tf x c x d y

h x A y b

A x A y b

l x y u

 
 
 

 

 

 The problem variables are divided into three sets of variables 
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- The I basic variables which have values strictly between their bounds. 
- The S superbasic variables which have values strictly between their bounds but are 

not basic. 
- The N–I–S nonbasic variables which have values lie on one or the other of the 

bounds. 
- The nonlinear part will be linearized. Then, the equality becomes (B is chosen so 

that it is nonsingular) 
  BxB+ SxS+ NxN=0  xB+ B-1SxS+ B-1NxN=0 

- At a solution, the basic and superbasic variables will lie somewhere between their 
bounds (to within the feasibility tolerance), while nonbasic variables will normally 
be equal to one of their bounds. 

- At a solution, the number of superbasic variables is no more than the number of 
nonlinear variables. 

- In the reduced gradient algorithms, xS will be regarded as a set of independent 
variables or free variables that are allowed to move in any desirable direction to 
improve the objective function value or to reduce the sum of infeasibilities. The 
basic variables can then be adjusted to satisfy the constraints. 

- If it appears that no improvement can be made with current definitions of B, S, and 
N, some of the nonbasic variables are selected to be added to S with an increased 
size of S (number of columns). At all stages, if a basic or superbasic variable 
encounters one of its bound, the variable is made nonbasic and the size of S is 
reduced by 1. 

- The number of superbasic variables indicates the number of degrees of freedom 
remaining after the constraints have been satisfied. In broad terms, the number of 
superbasic variables is a measure of how nonlinear the problem is. 

6. MINOS 
- Basically GRG algorithm without the restoration of the equality constraints. 
- Instead, use augmented Lagrange objective function 

  ( ) ( ) ( ) ( ) ( )T TQ x f x v h x h x h x    


