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LECTURE NOTE VI 
Chapter 10 

Quadratic Approximation Methods for Constrained Problems 
 

- Linear approximation can be applied to a constrained NLP and the LP subproblem suggested a 
corner point of the constraints. However, the improved feasible point may be at the corner or 
inside the feasible region. 

- Thus, a line search will be performed to find the improved point in the direction to the suggested 
points by the LP subproblem. 

- A better way to approximate the nonlinear objective function and constraints is higher-order 
approximation such as quadratic approximation. 

 
10.1 Direct Quadratic Approximation 

▶ Quadratic approximation of a function 

 
0 0 0 0 0 2 0 01

( ; ) ( ) ( ) ( ) ( ) ( )( )
2

T Tq x x f x f x x x x x f x x x        

▶ Direct Successive Quadratic programming solution 

Given x0, an initial solution estimate, and a suitable method for solving QP subproblems. 
Step 1: Formulate the QP problem: 
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Step 2: Solve the QP problem and set x(k+1)= x(k)+d. 
Step 3: Check the convergence. If not converged, repeat step 1. 
 
Example: Favorable case 
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From an initial guess x0=(2 1)T and f(x0)=12.25, using the direct successive QP strategy. 
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Thus, the first QP subproblem will be 
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The solution is d0=(–0.92079  0.4604)T and x(1)= x0+d0. At this point 
 f(x(1))=5.68779 (improved), h(x(1))= –0.42393 (not feasible), g(x(1))≥0  



Department of Chemical and Biological Engineering Korea University 
 

 
ChE605 Engineering Optimization  III-2 

Then, the second QP subproblem will be 
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The solution is d(1)=(–0.03043  0.434)T and x(2)= x(1)+d(1). At this point 
 f(x(2))=5.044 (improved), h(x(2))= –0.0132 (reduced violation), g(x(2))≥0  
The next two iterations produce 
 x(3)=(1.00108 1.99313)T, f(x(3))=5.00457, h(x(3))= –4.7x10-3, g(x(3))≥0  
 x(4)=(1.00014 1.99971)T, f(x(4))=5.00003, h(x(4))= –6.2x10-6, g(x(4))≥0  
In 4 iterations, a very accurate solution has been obtained. (x*=(1 2)) 
 

Example: Unfavorable case 
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From an initial guess x0=(2 1)T and f(x0)=12.25, using the direct successive QP strategy. 
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Thus, the first QP subproblem will be 
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The solution is d0=(–1.7571  –0.24286)T and x(1)= x0+d0. At this point 
 f(x(1))=0.18388, h(x(1))= 9.7619, g(x(1))=0  
Then, the second QP subproblem will be 
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The resulting new points for the next 4 iterations are: 
 x(2)=(0.32986 0.67015)T,  f(x(2))=0.2211, h(x(2))= 4.1123, g(x(2))=0  
 x(3)=(0.45383 0.54618)T,  f(x(3))=0.2479, h(x(3))= 2.6374, g(x(3))=0  
 x(4)=(–0.28459 1.28459)T, f(x(4))= –0.3656, h(x(4))= 9.5316, g(x(4))=0  
 x(5)=(–0.19183 1.19183)T, f(x(5))= –0.2286, h(x(5))= 26.422, g(x(5))=0  
The iterations show oscillatory path. (x*=(1 2)T) and the feasibility is not improving. 

 
 The nonlinear constraints have to be handled appropriately. 
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10.2 Quadratic Approximation of the Lagrangian Function 

▶ Equality Constrained Case 

   min f(x)  

   subject to h(x) =0 

- Necessary condition for optimality of the Lagrangian function 
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▶ QP subproblem 
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- If d*=0 is the solution of this subproblem, x(k) must satisfy the necessary conditions for a local 
minimum of the original problem. Then the Lagrange multiplier can be obtained from 

  ( ) * ( )( ) ( ) 0
Tk kf x v h x     

- Suppose this subproblem satisfies the second-order sufficient conditions for optimality at d=0 
with v*. Then 
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 and (x(k), v*) satisfies the sufficient conditions for a local minimum of the original problem. 
- If no further corrections can be found, that is d=0, then the local minimum of the original 

problem will have been obtained. 
- The Lagrange multiplier of the subproblem can be used conveniently as estimates of the 

multipliers used to formulate the next subproblem. 
- For points sufficiently close to the solution of the original problem the quadratic objective 

function is likely to be positive definite and thus the solution of the QP subproblem will be 
well behaved. 

 
▶ General case 
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Example: Favorable case 
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From an initial guess x0=(2,1), u0=0 and v0=0, the first QP subproblem will be 
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The solution is d0=(–0.92079  0.4604)T. Since g(d0)>0, u0 must be zero. Also, from the 

necessary condition, ( ) * ( )( ) ( ) 0
Tk kf x v h x    , 

 (1)3 / 8 25 / 4
(23/ 4 47 / 4) (1 2)

25 / 4 24
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Thus, v(1)=2.52723. The new estimate of the problem solution will be x(1)= x0+d0. 
 x(1)=(1.07921 1.4604)T,  f(x(1))=5.68779, h(x(1))= –0.42393  
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Then, the second subproblem will be 
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The solution is d(1)=(0.00614  0.3845)T. Again, since g(d(1))>0, u(1) must be zero. Also, 

 (2)( 0.84081 0.62135) (1.4604 1.07921)v    

Thus, v(2)= –0.57574. The new estimate of the problem solution will be  
 x(2)=(1.08535 1.8449)T,  f(x(2))=5.09594, h(x(2))= 2.36x10-3  
The resulting new points for the next 2 iterations are: 
 v(3)= –0.44046, x(3)=(0.99266 2.00463)T,  f(x(3))=4.99056, h(x(3))= –1.008x10-2 
 v(4)= –0.49997, x(4)=(0.99990 2.00017)T,  f(x(4))=45.00002, h(x(4))= –3.23x10-5 
The iterations show oscillatory path. (x*=(1 2)) and the feasibility is not improving. 

 

Example: Unfavorable case 
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From an initial guess x0=(2 2.789) , u0=0 and v0=0, the first QP subproblem will be 
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The solution is d0=(–1.78316  –2.00583)T. Since the inequality is tight, the multiplier 
must be calculated. 
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Thus, v(1)= –0.00343, u(1)= 0.28251, x(1)= (0.21683 0.78317)T and  
 f(x(1))=0.1698, h(x(1))= 13.318 (large violation), g(x(1))=0  
Then, the second QP subproblem will be 
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Thus, d(1)= (0.10434 –0.10434)T, v(2)= –0.02497, and u(2)= 0.38822. 
The resulting new points for the next few iterations are: 
 x(2)=(0.40183 0.59817)T,  f(x(2))=0.24036, h(x(2))= 2.7352, g(x(2))=0  
 x(3)=(0.74969 0.25031)T,  f(x(3))=0.18766, h(x(3))= 13.416, g(x(3))=0  
The violation is increased considerably. The convergence is unsatisfactory. 

 
 Thus, it suggests that a line search from the previous solution estimate in the direction 
obtained from the current QP subproblem solution. The line search must be carried using some 
type of penalty function. 
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From the above example, starting with x(2), d(2)=(0.34786 0.347860)T, let 

   2 2( , ) ( ) 10 ( ) min(0, ( ) )P x R f x h x g x    

and the minimization along the line 

  (2) (2) 0.40183 0.34786

0.59817 0.34786
x x d 

   
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If =0, P=75.05 and if =1, P=1800. Using any convenient line search method, the 

approximate minimum value of P=68.11 can be obtained at =0.1. Then the resulting point 
will be  

x(3)=(0.43662 0.56338)T,  f(x(3))=0.24682, h(x(3))= 2.6053 
However, d= x(3) – x(2) is no longer the optimum solution of the previous subproblem and the 
only available updated multipliers are associated with d(2), namely v(3)= –0.005382 and 
u(3)=0.37291. In this way, the optimal solutions to subproblems will approach to the optimum. 
 

10.3 Variable Metric for Constrained Optimization 
- The calculation of Hessian can be approximated using the variable metric methods to reduce 

the computational burden. 
▶ Constrined Variable Metric Method 
  Given initial estimate x0, v0, u0, and a symmetric positive definite matrix H0. 

Step 1: Solve the problem 
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Step 2: Select the step size  along d(k), and set x(k+1)= x(k)+d(k) to minimize a suitable 
penalty function. 

Step 3: Check the convergence 

Step 4: Update (k), using the gradient difference 

 ( 1) ( 1) ( 1) ( ) ( 1) ( 1)( , , ) ( , , )k k k k k k
x xL x v u L x v u       

 in such a way that (k+1) remains positive definite. (variable metric method) 
 
Remarks: 
1. Penalty functions 
 - Han 
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  where i iv   and j ju   for k=1 and otherwise, 
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2. Hessian update formulae 
 - DFP 
   
 - BFS 
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  ( 1) ( 1) ( 1) ( ) ( 1) ( 1)( , , ) ( , , )k k k k k k
x xy L x v u L x v u        and 

  

( )

( )

( )

1     if 0.2

0.8
 otherwise

T T k

T k

T k T

z y z H z

z H z

z H z z y


 
 
 

 

 
Example:  
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From an initial guess x0=(2,1), and initial metric H0=I, 

 (23/ 4 47 / 4)Tf   , (1 2)Th  , (1 1)Tg   

Therefore, the first QP subproblem will be 

 

1
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2
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The solution is d0=(–4  2)T. The multipliers at this point are 

 
23/ 4 4 1 1

47 / 4 2 2 1
v u

       
                

 

Thus, v(1)= –46/4 and u(1)= 53/4. For the first iteration, let the penalty parameters be 

 (1) 46 / 4    and (1) 53 / 4   

The penalty function takes the form (Powell’s approach) 

 1 2
1 2 2 1 1 2 1 26 (46 / 4) 2 (53/ 4) min(0, 1)P x x x x x x x x         

The line search in the direction of x(1)= x0+d0. Using a bracketing method, P=9.1702 at 

=0.1348. The new point is x(1)=(1.46051 1.26974)T. 
Using BFS update rule, 
 z= x(1)– x0=(–0.53949  0.26974)T  

 0 (1) (1) 23 / 4 1 1 4
( , , ) ( 46 / 4) (53/ 4)

47 / 4 2 1 2xL x v u
       

                    
 

 

(1) (1) (1) 3.91022 1.26974 1
( , , ) ( 46 / 4) (53 / 4)

4.9665 1.46051 1

5.26228

4.81563

xL x v u
     

              
 

  
 

 

 (1) 0( ) ( ) (1.26228 6.81563)T
x xy L x L x     

Since zTy=1.15749>0.2zTz=0.0728, =1 and w=y. Thus, 

 
2(1) 1.57656 7.83267

/ /
7.83267 40.9324

T T TH I zz z yy z y
 

     
 

 (p.d.) 

Then, the second subproblem will be 

 

1.57656 7.832671
min ( ) (3.91022 4.9665)

7.83267 40.93242

subject to (1.26974 1.46051) 0.14552 0

                (1 1) 1.73026 0

Tf x d d d

d

d
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 
 

 
 

The solution is d(1)=( –0.28911  0.35098)T. Since g(d(1))>0, u(2) must be zero and 
v(2)=4.8857. The penalty function multipliers are updated. 

 (2) max( 4.8857 , 46 / 4 4.8857 / 2) 8.19284     

 (2) max( 0 , (53/ 4 0) / 2) 6.625     

The penalty function now becomes 

 1 2 1 2( ( )) ( ) 8.19284 2 6.625min(0, 1)P x f x x x x x        

 where (1) (1)( )    0 1x x d       

The minimum occurs at =1, P(x(1))=6.34906. The new point is  
 x(2)=(1.17141 1.62073)T, f(x(2))=5.5177, h(x(2))= – 0.10147 
The iterations continue with an update of H(1). The results are 
 v(3)= –0.13036, x(3)=(1.14602 1.74619)T,  f(x(3))=5.2674, h(x(3))= –0.13036 
 v(4)= –0.17609, x(4)=(1.04158 1.90479)T,  f(x(4))=5.0367, h(x(4))= –0.17090 
 v(5)= –0.45151, x(5)=(0.99886 1.99828)T,  f(x(5))=5.0020, h(x(4))= –0.00399 
 v(6)= –0.50128, x(4)=(1.00007 1.99986)T,  f(x(4))=5.0000, h(x(4))= –0.1.9x10-6 
The quasi-Newton iteration that uses only first derivatives is quite satisfactory. 
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RECOMMENDATIONS FOR CONSTRAINED OPTIMIZATION 
1. Best current algorithms 

• GRG 2/CONOPT 

• MINOS 

• SQP 

2. GRG 2 (or CONOPT) is generally slower, but is robust. Use with highly nonlinear functions.  

• Solver in Excel 

3. For small problems (n 100) with nonlinear constraints, use SQP. 

4. For large problems (n 100) with mostly linear constraints, use MINOS.  

• Difficulty with many nonlinearities 

 

Small, Nonlinear Problems - SQP (generic) solves QP's, not linearly constrained LP's, fewer function 

calls. 

Large, Mostly Linear Problems - MINOS performs sparse constraint decomposition. Works 

efficiently in reduced space if function calls are cheap. 

 

RULES FOR FORMULATING NONLINEAR PROGRAMS 
1) Avoid overflows and undefined terms, (do not divide, take logs, etc.) 

x + y – ln(z) = 0    x + y - u = 0 and exp(u) – z = 0 

2) If constraints must always be enforced, make sure they are linear or bounds. 

v(xy – z2)1/2 = 3    vu = 3, u2 – (xy – z2) = 0, and u0 

3) Exploit linear constraints as much as possible. 

Mass balance: xiL + yiV = ziF    li + vi = fi and L – sum(li) = 0, V – sum(vi) = 0, … 

4) Use bounds and constraints to enforce characteristic solutions. 

If necessary, add constraints such as axb and g(x)0 to isolate correct root of h(x) = 0. 

5) Exploit global properties when possibility exists. 

If the problem is convex (no nonlinear equations), then use LP or QP. 

If the problem is a Geometric Program, the logarithmic transformation converts the problem to 

a convex problem. 

6) Exploit problem structure when possible. 

min (Tx - 3Ty) 

s.t.  xT + y - T2y = 5  If T is fixed, it can be solved by LP. 

4x - 5Ty + Tx = 7  Put T in outer optimization loop. 

0T1 
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AVAILABLE SOFTWARE FOR CONSTRAINED OPTIMIZATION 

NaG Routines 
Unconstrained Optimization 
E04CCF - Unconstrained minimum, simplex algorithm, function of several variables using 

function values only (comprehensive) 
E04DGF - Unconstrained minimum, preconditioned conjugate gradient algorithm, function of 

several variables using first derivatives (comprehensive) 
E04FCF - Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified 

Newton algorithm using function values only (comprehensive) 
E04FYF - Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified 

Newton algorithm using function values only (easy-to-use) 
E04GBF - Unconstrained minimum of a sum of squares, combined Gauss-Newton and 

quasi-Newton algorithm using first derivatives (comprehensive) 
E04GDF - Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified 

Newton algorithm using first derivatives (comprehensive) 
E04GYF - Unconstrained minimum of a sum of squares, combined Gauss-Newton and 

quasi-Newton algorithm, using first derivatives (easy-to-use) 
E04GZF - Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified 

Newton algorithm using first derivatives (easy-to-use) 
E04HEF - Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified 

Newton algorithm, using second derivatives (comprehensive) 
E04HYF - Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified 

Newton algorithm, using second derivatives (easy-to-use) 
E04JYF - Minimum, function of several variables, quasi-Newton algorithm, simple bounds, 

using function values only (easy-to-use) 
E04KDF - Minimum, function of several variables, modified Newton algorithm, simple bounds, 

using first derivatives (comprehensive) 
E04KYF - Minimum, function of several variables, quasi-Newton algorithm, simple bounds, 

using first derivatives (easy-to-use) 
E04KZF - Minimum, function of several variables, modified Newton algorithm, simple bounds, 

using first derivatives (easy-to-use) 
E04LBF - Minimum, function of several variables, modified Newton algorithm, simple bounds, 

using first and second derivatives (comprehensive) 
E04LYF - Minimum, function of several variables, modified Newton algorithm, simple bounds, 

using first and second derivatives (easy-to-use) 
 
Specialized Constrained Algorithms 
E04MFF - LP problem (dense) 
E04NCF - Convex QP problem or linearly-constrained linear least-squares problem (dense) 
SQP Routines 
E04UCF - Minimum, function of several variables, sequential QP method, nonlinear constraints, 

using function values and optionally first derivatives (forward communication, 
comprehensive) 

E04UFF - Minimum, function of several variables, sequential QP method, nonlinear constraints, 
using function values and optionally first derivatives (reverse communication, 
comprehensive) 

E04UNF - Minimum of a sum of squares, nonlinear constraints, sequential QP method, using 
function values and optionally first derivatives (comprehensive) 

GAMS Programs 
CONOPT - Generalized Reduced Gradient method with restoration 
MINOS - Generalized Reduced Gradient method with restoration 

MS Excel 
Solver uses Generalized Reduced Gradient method with restoration 


