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Multi-Input Multi-output (MIMO) Processes

• Single-input single-output (SISO) processes
– One CV and one MV: No need of pairing

• Multi-input Multi-output (MIMO) processes
– Several CV’s and several MV’s

– SIMO and MISO 

– The numbers of CV’s and MV’s are not necessary same.

– One MV affects all or some of CV’s. (process interaction)

– Pairing: Which MV will control which CV?

– Control loop interaction: One control loop affects the other 
control loops.

– Multiloop control: Multiple SISO controllers are applied.

– Multivariable control: All MV’s will be manipulated to all or 
some CV’s.



Korea University III -3CBE495 Process Control Application

MIMO Process Examples

• Inline blending system
– Component flows affect both 

product flow and composition.

• Distillation column
– Steam and reflux flows affect 

both top and bottom product 
compositions.

• Gas-liquid separator
– Gas and liquid product flows 

affect both tank level and 
pressure.
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Control loop interaction

• 2x2 control problem
– Two-input and two-output process

– Transfer function (superposition principle for linear process)

– Multiloop control schemes for 2x2 process

1 1 211 12

2 1 221 22

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

p p

p p

y s G s u s G s u s

y s G s u s G s u s

 

 

11 121 1

2 221 22

( ) ( )( ) ( )

( ) ( )( ) ( )

p p

p p

G s G sy s u s

y s u sG s G s

    
     

     
 ( ) ( ) ( )s s s py G u

Process interactions

1-1/2-2
pairing

1-2/2-1
pairing



Korea University III -5CBE495 Process Control Application

• Open-loop transfer function for Gp22

• When y1-u1 loop is closed.

(automatic mode)

– The controller Gc2 should be

designed based on the TF which

is altered by the other control loop.
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• Examples
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2x2 Multiloop Control
• Closed-loop TF

– Closed-loop stability depends on both Gc1 and Gc2.

– If either one or both of Gp12 and Gp21 are zero, the interaction 
term is vanished. The stability depends on two individual 
feedback control loops.

– For example, if Gp21 is zero, Gp12 U2 is a disturbance on y1.
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• Examples

– Examine the poles from 

1-1/2-2
pairing

1-2/2-1
pairing
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Pairing of CV’s and MV’s

• Bristol’s relative gain array (RGA)
– Relative gain is a measure of process interaction

– The ratio between open-loop and closed-loop gains.

– The open-loop gain: is the gain between yi and uj
while all loops are open.

– The closed-loop gain: is the gain between yi and uj
while all other loops are closed. 

– Choose      so that it is close to unity or at least not negative for 
the multiloop pair.
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• Properties of RGA
– It is normalized since the sum of the elements in each row or 

column is one.

– The relative gains are dimensionless and thus not affected by 
choice of units or scaling of variables.

– The value of RG is a measure of steady-state interaction.

– implies that closed-loop gain is same as open-loop gain.

– implies that the i-th output is not affected by the j-th 
input in open-loop mode or closed-loop gain becomes infinity.

– The value of          represents the degree of alteration of open-
loop gain when other loops are closed.

– The negative RG implies the closed-loop gain will be different 
in sign compared to open-loop gain. This pairing is potentially 
unstable and should be avoided.
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• Proof of  

• Proof of 
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• Calculating RGA
– 2x2 system

• All loops are open 

• Second loop is closed (Y2 is controlled perfectly controlled by U2)
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– nxn system
• Except the i-th controller, all other control loops are closed.
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• Implications of RGA elements
1. : Indicating that the open-loop gain is identical to the 

closed-loop gain when Yi and Uj are paired. This loop can be 
tuned independently. (Ideal case) 

2. : Indicating that Yi will not be affected by  Uj at all in 
open-loop mode. This loop should not be paired. 

3. : Indicating that the closed-loop gain will become 
larger than open-loop gain when the other loops are closed.  
This implies that the loops are interacting and the interaction 
from other closed loops is smaller if RG is close to one and is 
larger if RG is close to zero. Avoid the pairing if              .

4. : Indicating that the closed-loop gain will become smaller 
than open-loop gain when the other loops are closed. This 
implies that a high controller gain should be used for this pair. 
If some other controllers are open, this loop may become 
unstable. Avoid the pairing if RG is very high.

5. : Indicating that the closed-loop gain has opposite sign 
of open-loop gain. This loop should not be paired. 
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• Loop pairing rule
– Pair input and output variables that have positive RGA 

elements that are closest to 1.0.

– Niederlinski Index

• For 2x2 system, it is sufficient and necessary condition.

• For nxn systems (n>2), it is only sufficient condition.
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• Example  

– Niederlinski index: 

– The 1-1/2-2/3-3 pairing may be stable, but not sure.

– When the first loop is open, the subsystem is unstable.

– Such a system that is stable when all loops are closed, but that 
goes unstable if one of them become open is said to have a low 
degree of integrity. 
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Always pair on positive RGA elements that are closest to 1.0 
in value, and thereafter use Niederlinski’s condition to check 
the resulting configuration for structural instability
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• Example: Blending Process

– The RGA is dependent on the product composition.

– If x is greater than 0.5, use 1-1/2-2 pairing, else choose 1-2/2-1 pairing.

– If x is close to one, FB is very small and FB will not affect the product 
flow very much, but FB will change the composition significantly.

– This strategy implies that the larger flow of feeds is selected to control 
product flow and the smaller flow of feeds is selected to control 
composition.
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• Example: Pure integrator

– Some gains become infinity.

– Replace 1/s as I and get the gains.

– Calculate RGA while I goes to infinity.

– 1-1/2-2 pairing is recommended.

– If I cannot be cancelled, use other approaches suggested by 
McAvoy.
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• Pairing of non-square systems
– Under-defined system: more outputs than inputs

• Choose same number of outputs as inputs based on the 
importance of the output variables.

– Over-defined system: more inputs than outputs
• Among possible combinations of inputs with same number of 

inputs as outputs, choose best subsystem based on the RGA 
analysis so that the subsystem has least interaction.

• Comments on RGA
– RGA is only based on the steady-state information.
– If there are some constraints on inputs, the best RGA pairing 

may perform poorly.
– Even though the RGA analysis indicates large interaction, 

some processes have less interaction dynamically when the 
time constants are quite different.

– If there are significant time delays, lags, or even inverse 
response, the best RGA pairing may perform poorly.

– Dynamic RGA or some other modification can be used.
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Multiloop Controller Tuning

• The multiloop controllers have some performance 
limitation caused by the interaction.

– For highly interacting systems, the performance cannot be improved 
very much by controller tuning.

• Practical tuning method
– With the other loops on manual control, tune each control loop 

independently for satisfaction

– Then fine tune the controllers while all loops are on automatic.

– Detuning method for 2x2 (McAvoy)

• Or, use optimization method to find tuning parameters so 
that the performance criteria such as ITAE is minimized. 
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Change of Variables

• By using transformations to create combinations 
of the original inputs and /or outputs of a process, 
it is possible to obtain an equivalent system with 
less interaction.

– Find A, B, and K so that the interaction for     is eliminated or 
at least improved .

– Example:

1 y=Ay
u=Bu

y = Ku y = A KBu Ku




  

K


35.1 34.1

34.1 35.1

 
   


0.878 0.864

1.082 1.096

 
   

K
39.9 31.5

39.4 32.0

 
   

B

0.991 0.009

0.011 0.989

 
  




K


1 1 2

2 1 2

0.8964 0.8824

1.1036 1.1176

u u u

u u u

   
      







Korea UniversityIII -22CBE495 Process Control Application

• Use of Singular Value Decomposition (SVD)

– The controller should be designed based on new transformed 
inputs and outputs.

  ( : diagonal matrix)TK = W V 

Ty = W V u

Let  and .T T  W y = V u

Then   (completely decoupled at steady state) 
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Decoupling Control

• The design objective
– The reduction of control loop interactions by adding additional 

controllers called decouplers to a conventional multiloop 
control configuration.

• Theoretical benefits
– Control loop interaction are eliminated and the stability of the 

closed-loop system is determined by the stability 
characteristics of the individual feedback control loops

– A set-point change for one CV has no effect on the other CV’s

• In practice
– Reduction of control loop interactions (not a perfect 

elimination of interactions due to the imperfect process model 
and the physical realizability of the decouplers)
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• Decoupler Design
– The effect of u1 on y2 through Gp21 can be cancelled by using a 

decoupler D21 going through Gp22.

– In the same manner,

– Ideal decoupler
• Similar to a 

FF controller

• May be unstable or

physically unrealizable

• Often implemented 

as a lead-lag module

or a static decoupler

21 1 21 22 1 21 21 22/p p p pG U D G U D G G    

12 2 12 11 2 12 12 11/p p p pG U D G U D G G    
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• General Case Design

– 2x2 case

– 3x3 cases

 (  is a full matrix)  (  is diagonal)D D  y Gu G y G v G

 (  is the decoupler)u Dv D
1

D D
   G GD D G G

A common choice for ( )D diagG G

11 12 12 11 21 12 12 12 11

21 22 21 21 21 22 22 12 21

1

1D

G G D G D G G D G

G G D G D G G D G

      
            

G12

21

1
Let ,

1

D

D

 
  
 

D

12 12 11 21 21 22/   and  /D G G D G G    

12 13

21 23

31 32

1

Let 1 , and solve for .

1
ij

D D

D D D

D D

 
   
  

D
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• Example

– D21(s) has a pole and zero which are very close each other. 
Thus, D21(s) =-0.5 is a quite reasonable approximation.

– D12(s) has time lead instead of time delay, which is physically 
unrealizable. 

• Time lead is 1 which is relatively small compared to time 
constants. Thus, neglect time lead and use a lead-lag type.

– Due to the modeling error of the process, the perfect 
decoupling would not be possible anyway. 

– In many cases, the steady-state decouplers will be beneficial to 
reduce the control loop interactions.

5 4

3 3

5 2

4 1 8 1

3 6

12 1 10 1

s s

s s

e e

s s

e e

s s

 

 

 
   
 
   

pG

21
21

22

0.5(10 1)

12 1
p

p

G s
D

G s


   



12
12

11

0.25(4 1)

8 1

s
p

p

G s e
D

G s


   


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Alternative Decoupling Control System

• The original configurations
– The decoupler uses the controller output signal which may be 

different from actual input to process due to saturation.

– It may cause the wind up.

• New approach
– Use same input to process 

– It is more sensitive to 

modeling error
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• Experimental application to distillation column 
– Outperforms the conventional multiloop PI control
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Other types of  decoupling

• Partial (one-way) Decoupling
– Set some of decouplers zero.

– This is very attractive if one CV is more important than the 
others, or one interaction is much weaker than the others or 
absent.

– Less sensitive to modeling errors

– The partial decoupling can provide better control than the 
complete decoupling in some situations.

• Nonlinear decouplers
– If the process is nonlinear or time-varying, the linear 

decoupler would be worse than conventional multiloop PID 
schemes.

– Then, the nonlinear decoupler can be considered.
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Sensitivity of the decouplers

• For the imperfect model (static case)

2 21 22
21 22 21 21

11 21 22

1 p p
p p p

p p

K Ky
D K K K

u K K

 
     

 





1 21
21 12 11 11 12

11 22

p
p p p p

p

Ky
D K K K K

u K
   





2 12
1122 21 22

22 11

/  (if no error)p
p p p

p

Ky
K K K

u K
  




1 12 11

12
22 12 11

1 p p
p

p p

K Ky
K

u K K

 
   

 





11
11 12 22 21

11 12 22 21

1
( )( )

1
( )( )
e e e e

e e e e




 


 


 



12 21 11 22Let /  and /p p p p ij pij pijK K K K e K K   

If the RG is large, the decoupled 
process gain becomes very small 
and large controller gain should 
be used. (It may cause trouble if 
there is model error.)
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• If there is no modeling error (eij=1)
– Regardless of     ,            (no interaction)

• If there is no interaction, (         )
– No effect by modeling error (        )

• If there are large interaction (         )
– Still large interaction even with decoupler

– The RG becomes unity only when eij are ones.

• Thus, the high RGA processes may have strong 
sensitivity to modeling errors.

0 

1 
1 

11
11 12 22 21

11 12 22 21

1 1
( )( ) 11

( )( )
e e e e

e e e e




 

  
  

 

1 
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• Analysis in vector-matrix form (steady state)

– If the determinant of K is small
• Small modeling errors will be magnified into very large error in y.
• Small change in controller output v will also result in large error 

in y.
• If the determinant is zero, then some outputs are dependent each 

other and independent control is impossible. (degeneracy)

1,  ,  and  D
  y Gu u Dv D G G

1 1
D D

   y GG G v y KK K v 

Let .  K K K 

1 1( ) D D
       y K K K K v y KK K v    

( ) DAdj
 

K K K v
y

K


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Less obvious ill-conditioned case

• Example 1

– No unusual indicator
– But effect of u1 is much greater than u2.

• Example 2

– Not ill-conditioned from eigenvalues
– Easy to decouple

• Example 3

– Not ill-conditioned from eigenvalues
– But effect of u1 is much greater than u2.

60 0.05

40 0.05
K

 
    

det( ) 0.05(60 40) 5  K 11 1/(1 40 / 60) 0.6   

3 1

2 1
K

 
    

det( ) 1(3 2) 5  K 11 1/(1 2 / 3) 0.6   

max

min

59.965
720 (condition number)

0.0835




 

max

min

2
1 (condition number)

2

j

j




 
 
 

1 0.001

100 1
K

 
  
 

det( ) 1 0.1 0.9  K 11 1/(1 0.1/1) 1.11   
max

min

1.316
1.924 (condition number)

0.684




 
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• Most reliable indicator of the interaction
– Determinant of K, RGA, or condition number cannot be an

reliable indicator of the ill conditioning in a matrix.

– Singular value: eigenvalue of the matrix KTK 

– The condition number based on singular values is the most 
reliable indicator of the matrix condition.

• Conclusion
Feasibility of decoupling is directly related to the conditioning 
of the process gain matrix. Decoupling is only feasible to the 
degree that the process is well conditioned; it is virtually 
impossible to achieve decoupling in a poorly conditioned 
process.

1 0.001

100 1
K

 
  
 

4max

min

100.01
1.113 10  (condition number)

0.009




  


