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Kinetic parameter estimation for most batch crystallization processes is necessary
because nucleation and crystal growth kinetic parameters are often not available. The
existing identification methods are generally based on simplified population balance
models such as moment equations, which contain insufficient information on the crystal
size distribution (CSD). To deal with these problems, a new optimization-based identifi-
cation approach for general batch cooling seeded crystallization is proposed in this study.
The final-time CSD is directly used for identification. A novel effective method for solving
the population balance equation is developed and used to identify nucleation and growth
kinetic parameters. Cooling crystallization of ammonium sulfate in water was experimen-
tally investigated, where the concentration was measured by an on-line density meter and
the final-time CSD was analyzed by a Malvern Mastersizer 2000. Kinetics for ammonium
sulfate are determined based on cooling crystallization experiments. Applying these
kinetics in simulation provides a good prediction of the product CSD. © 2004 American
Institute of Chemical Engineers AIChE J, 50: 1786–1794, 2004
Keywords: model identification, batch crystallization, crystal size distribution, crystalli-
zation kinetics, ammonium sulfate

Introduction

Batch crystallization is widely used in the production of high
value-added products, which are essentially characterized by
the crystal size distribution (CSD). Usually, the final-time CSD
of a batch crystallization determines product quality. In the
case of batch cooling crystallization, the cooling rate affects the
supersaturation profile and has strong influence on the CSD.
Thus, optimization of temperature profiles is of great impor-
tance. A major obstacle for designing the optimal temperature
profiles pertains to the accuracy of the mathematical models
that highly depends on adequate representations of crystalliza-
tion kinetics.

Garside et al. (1982) suggested a simple technique, known as
initial derivatives, to deduce crystal growth kinetics from iso-
thermal batch experiments performed in the integral model.

This technique was extended to a batch cooling crystallizer
(Tavare, 1985). Palwe et al. (1985) used three different meth-
ods, including polynomial fitting, initial derivatives, and opti-
mization procedure, to determine the growth rate kinetics of
ammonium nitrate. They noted that the least-squares error
optimization procedure is potentially the most accurate and
precise. Witkowski et al. (1990) implemented optimization-
based estimation of crystallization kinetics by minimizing a
weighted least-squares objective function, which represented
the error between the estimated and experimental data. They
used on-line concentration and transmittance data from a batch
naphthalene–toluene system, in which the error weights are
chosen arbitrarily. Qiu and Rasmuson (1991) used concentra-
tion and final-time CSD data to determine kinetic parameters
for an aqueous succinic acid system. They simplified the pop-
ulation balance equation (PBE) to a first-order quasi-linear
equation by assuming that the crystal growth rate can be
expressed as a product of a function of supersaturation and a
function of crystal size. Dash and Rohani (1993) estimated
crystallization kinetics of potassium chloride. They included
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crystal mass distribution from a sieve analysis in the objective
function. Monnier et al. (1997) used calorimetry and image
analysis to identify nucleation and growth kinetic parameters of
adipic acid in water. Weighted least squares were also used by
some other researchers to estimate kinetics in batch crystalli-
zation (David et al., 1991; Livk et al., 1995; Tadayyon et al.,
2002). However, none of these researchers justified the selec-
tion of the weights. A maximum likelihood estimation (MLE)
scheme was used by Miller (1993) to identify kinetic parame-
ters from on-line concentration and transmittance measure-
ments in a KNO3–H2O system. The similar strategy was used
by Matthews and Rawlings (1998) for an organic photochemi-
cal–heptane system. Concentration and transmittance measure-
ments were used for estimation. However, the concentration
and transmittance measurements do not contain sufficient in-
formation to determine the CSD, and consequently the param-
eters determined by this method may not be satisfactory.

Most of the published methodologies used method of mo-
ments to reduce the population balance to a set of ordinary
differential equations (ODEs) or changed the PBE to simple
forms under some assumptions, so their applications are lim-
ited to cases such as size-independent growth rate and no fines
dissolution. This article presents a new optimization-based
methodology to identify kinetic parameters of batch crystalli-
zation using the final-time CSD analyzed by a Malvern Mas-
tersizer 2000. A novel approach for solving the PBE is pro-
posed and consequently size-dependent growth rates can be
considered. To evaluate the effectiveness of this method, sim-
ulations and experimentations are performed. A good match
between the predicted and actual CSD is obtained.

Model Formulation

A mathematical framework suited to modeling crystalliza-
tion processes is the population balance, which describes the
state of the CSD. If crystal agglomeration and breakage phe-
nomena are neglected, the population balance for a batch
cooling crystallizer is (Miller, 1993)

�f�L, t�

�t
�

��G�L, t� f�L, t��

�L
� 0 (1)

where f is the population density of crystals, G is the crystal
growth rate, subject to the spatial boundary condition

f�0, t� �
B0

G�L�0
(2)

where B0 is the crystal nucleation rate at size zero.
The crystal growth rate is given by

G � kg�T, L���C�� (3)

where �C � C � Csat. The crystal growth rate constant kg is
temperature dependent and it may also be dependent on the
crystal size, which may be expressed by

kg�T, L� � k0exp��Eg/RT��1 � k1L�k2 (4)

The nucleation rate may be expressed as

B0 � kb��C�� (5)

Under the assumption that the slurry volume remains con-
stant during the crystallization, the mass balance for the batch
cooling crystallizer is

dC

dt
� ��kv

d�3

dt
(6)

where �3 is the 3rd moment of the CSD, defined as

�3 � �
0

�

fL3dL (7)

The energy balance is not required to simulate the crystal-
lizer because the measurements of slurry temperature are as-
sumed to be available. The necessary initial conditions for the
population and mass balances, respectively, are

f�L, t� � f0�L� t � 0 (8)

C�t� � C0 t � 0 (9)

The model is identified by estimating the parameters in Eqs. 3
and 5 from experimental data. The parameters to be estimated
include Eg, k0, k1, k2, kb, �, and �.

Model Solution

The PBE described in the previous section is a hyperbolic
partial differential equation (PDE). Analytical solution of the
PBE does not exist, and the numerical solution of the model is
necessary to estimate the parameters.

The concept of population balance has been a major contribu-
tion to the subject of crystallizer analysis and design. A represen-
tation of population balance is shown in Figure 1, where popula-
tion balance distributions at time t � t0 and t � t0 	 �t are
demonstrated. The crystals grow into the size range L2 	 �L2

from size range L1 	 �L1 over the time interval �t. f0 � f (L1, t0)
and f1 � f (L2, t0 	�t) represent the population density at time t0
and t0 	�t, respectively. Without crystal agglomeration and
breakage phenomena, the population balance implies

f�L1, t0��L1 � f�L2, t0 � �t��L2 (10)

Based on the definition of growth rate,

L2 � L1 � G�L1, t0��t (11)

L2 � �L2 � L1 � �L1 � G�L1 � �L1, t0��t (12)

we have

�L2 � �L1 � �G�L1 � �L1, t0� � G�L1, t0���T

� �1 �
�G�L1, t0�

�L
�t��L1 (13)
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f�L2, t0 � �t� � f�L1, t0 � �t� �
�f�L1, t0 � �t�

�L
G�L1, t0��t

(14)

Substituting Eqs. 13 and 14 into Eq. 10 gives

f�L1, t0� � f�L1, t0 � �t� �
�f�L1, t0 � �t�

�L
G�L1, t0��t

� f�L1, t0 � �t�
�G�L1, t0�

�L
�t

�
�f�L1, t0 � �t�

�L

�G�L1, t0�

�L
G�L1, t0���t�2 (15)

which can be written as

f�L1, t0 � �t� � f�L1, t0�

�t
� �G�L1, t0�

�f�L1, t0 � �t�

�L

� f�L1, t0 � �t�
�G�L1, t0�

�L

�
�f�L1, t0 � �t�

�L

�G�L1, t0�

�L
G�L1, t0��t (16)

If �t 3 0, Eq. 16 becomes

�f�L, t�

�t
� �G�L, t�

�f�L, t�

�L
� f�L, t�

�G�L, t�

�L
(17)

which is equivalent to Eq. 1. Therefore, we can use the idea
represented in Figure 1 to solve Eq. 1.

For description of the CSD in a batch crystallizer, we can
apply the conservation law of numbers of crystals and the
concept of population balance as well. In this method, the batch

time period is divided into n time steps, each with length �t.
The density function f is a representation of the number of
crystals in a given size range and a given volume. As shown in
Figure 2, at the time t � j�t, we arbitrarily choose m 	 1 points
where we may want to calculate the population density for the
time t � ( j 	 1)�t, with the size Lj,0, Lj,1, . . . , Lj,m and
population densities fj,0, fj,1, . . . , fj,m. The first index ( j � 0, 1,
. . . , n) denotes the time interval number and the second index
indicates the series number of points of the CSD. Let us
consider the point (Lj,i, fj,i). When breakage and agglomeration
are neglected, the number of crystals in the size range Lj,i to Lj,i

	 �Lj,i remains constant, that is

�
Lj,i

Lj,i	�Lj,i

f�L, t�dL � �
Lj	1,i

Lj	1,i	�Lj	1,i

f�L, t�dL (18)

Using a simple first-order approximation provides

�
Lj,i

Lj,i	�Lj,i

f�L, t�dL � �Lj,ifj,i � E��Lj,i� (19)

The quantity E(�Lj,i) represents the asymptotic notation for the
truncation error of this approximation. Using the definition of
growth rate gives

G�Lj,i, j��t � Lj	1,i � Lj,i � E��t� (20)

G�Lj,i � �Lj,i, j��t � Lj	1,i � Lj,i � �Lj	1,i � �Lj,i � E��t�

(21)

By use of Eqs. 20 and 21, we obtain

�Lj	1,i � �j,i � �G�Lj,i � �Lj,i, j� � G�Lj,i, j���t � E��t�

(22)

Substituting Eq. 22 into Eqs. 18 and 19 yields

fj	1,i �
�Lj,ifj,i

�Lj,i � �G�Lj,i � �Lj,i, j� � G�Lj,i, j���t

� E��t � �Lj,i� (23)

Figure 1. Representation of population balance.

Figure 2. Population density discretization.
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which emphasizes the local truncation error. If �Lj,i goes to
zero, Eq. 23 becomes

fj	1,i �
fj,i

1 �
�G�L, t�

�L
�

L�Lj,i,t�j�t

�t

� E��t� (24)

If �t is sufficiently small, an approximation can be obtained

f̃ j	1,i �
f̃ j,i

1 �
�G�L, t�

�L
�

L�Lj,i,t�j�t

�t

(25)

The difference equation for

zi, j � fi, j � f̃ i, j (26)

is obtained by subtracting Eq. 25 from Eq. 24; thus

zj	1,i �
zj,i

1 �
�G�L, t�

�L
�

L�Lj,i,t�j�t

�t

� E��t� (27)

Given that f agrees with f̃ initially and on the boundary

z0,i � 0 i � 0, 1, . . . , m (28)

zj,0 � zj,m � 0 j � 0, 1, . . . , n (29)

The definition of growth rate implies

�G�L, t�

�L
�

L�Lj,i,t�j�t

	 0 (30)

and therefore

�
1

1 �
�G�L, t�

�L
�

L�Lj,i,t�j�t

�t� 
 1 (31)

Then from Eq. 27 we obtain

�zj	1,i� 
 �zj,i� � A��t� (32)

and because z0,i � 0 we easily calculate that

�zj	1,i� 	 A� j � 1���t�


 AT��t� (33)

given that ( j 	 1)�t 
 T.
Equation 33 means that the error zi,j approaches zero as �t

approaches zero. Thus the solution of the finite-difference
analog converges to the solution of the PBE as �t approaches

zero. The boundedness condition implies stability (Ames,
1969). It should be noted that Eqs. 24–33 are independent of
�Li,j.

Because the seed size distribution is assumed to be known,
f0,i and L0,i are available. Therefore, fj	1,i, for j � 0, 1, . . . , n �
1 and i � 0, 1, . . . , m � 1, can be solved iteratively by Eq. 25.
Based on Eq. 20

Lj	1,i � G�Lj,i, j��t � Lj,i (34)

and Lj	1,i can be solved iteratively using Eq. 34 as well.
If the growth rate is size-independent (that is, �G/�L � 0),

then fj	1,i � fj,i, for i � 0, 1 . . . , m � 1, j � 0, 1, . . . , n � 1.
In this case, the seed distribution does not change shape, and it
simply moves out along the L axis at a rate equal to G(Lj,0, j).
In the case of size-dependent growth rate, the integral of seed
distribution over L is constant in the absence of agglomeration
and breakage.

This method provides a means to reduce the PBE to a set of
algebraic equations. These equations can be easily solved along
with the mass balance equation. By assuming that the second-
ary nuclei have the same growth behavior as that of the seed
crystals, and using the same method, we can obtain

fj	1,i
N �

fj,i�1
N

1 �
�G�L, t�

�L
�

L�Lj,i�1
N ,t�j�t

�t

(35)

for j � 0, 1, . . . , n � 1 and i � 1, 2, . . . , j 	 1, with the
boundary conditions of Eq. 2 and Lj,0 � 0.

To illustrate this solution technique, simulations were per-
formed for a hypothetical chemical system, where the kinetic
parameters are given in Table 1, and the solubility of the solute
in the solvent is given by

Csat � 0.0016T2 � 0.1871T � 70.9943

�g solute/100 g solvent� (36)

where T is in °C. The density of the crystals is � � 1.77 g/cm3,
and the shape factor was taken to be kv � 1. The solvent and
the seed loads were taken to be 1500 and 2.5 g, respectively. A
temperature profile of constant cooling rate from 30 to 10°C in
1 h was imposed. The initial solute concentration was taken to
be 0.8 g solute/g solvent.

One of the simulation results shown in Figure 3 is the time
evolution of the CSD. The resulting concentration is shown in
Figure 4. The seed and newly formed crystal size distribution
is given in Figure 5.

Table 1. Kinetic Parameters for Model Simulations

Parameter Value Units

Eg 6.19 
 104 J mol�1

k0 4.31 
 107 m min�1

k1 1.0 
 103 m�1

k2 0.80 Dimensionless
kb 7.78 
 105 Crystal number kg�1 min�1

� 0.91 Dimensionless
� 0.90 Dimensionless
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The orthogonal collocation method is very efficient for solv-
ing differential equations (Villadsen and Michelsen, 1978).
Miller (1993) discussed the use of orthogonal collocation to
solve the PBE. The method approximates the solution as a
linear combination of basis functions and requires that the
approximation satisfies the differential equation at the colloca-
tion points. The function f (L, t) can be approximated by a
linear combination of Lagrange interpolation polynomials, that
is

f�L, t� � �
j�1

l

f�Lj, t��j�L� (37)

where �j is the Lagrange interpolation polynomial of degree j,
and f (Lj, t) is the function evaluated at the point Lj. The
approximation of the derivative with respect to L can be written
as

�f

�L
� �

j�1

l

f�Lj, t�
d�j�L�

dL
(38)

Thus

�f

�L
�

L�Li

� �
j�1

l

Aijf�Lj, t� (39)

where

Aij �
d�j

dL
�

Li

(40)

Orthogonal collocation with Lagrange polynomials is based on
Eqs. 38–40. Identical results, as shown in Figures 3–5, were
obtained by using this orthogonal collocation solution tech-
nique for the simulation example.

Parameter Estimation

If we define the error eij as the difference between the
measured and predicted values of a variable

eij��� � yij��� � ỹij��� (41)

where ỹ denotes the predicted value, and a variable subscripted
by ij denotes the jth value of the ith variable. The least-squares
procedure consists of finding the values of � that minimize the
function

���� � �
i�1

Nm �
j�1

Ni

eij
2��� (42)

That is, we minimize the sum of squares of the residuals. Nm is
the number of variables and Ni is the number of measurements

Figure 3. Evolution of CSD for the simulation model.

Figure 4. Concentration for the simulation model.

Figure 5. Seed and newly formed crystal size distribu-
tion.
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of each variable. This method is a widely used estimation
procedure. The objective function (Eq. 42), consisting of a
simple sum of squares, is often unsatisfactory because of
several reasons, such as different scales of measurement or
various physical dimensions. Also, some observations may be
known to be less reliable than others, and parameter estimates
should be less influenced by those than by more accurate ones.
The solution to these problems is the method of weighted least
squares. Assign a nonnegative weight factor �ij to each eij(�),
and minimize

���� � �
i�1

Nm �
j�1

Ni

�ijeij
2��� (43)

A small �ij is chosen for yij, which is measured on a large scale,
or which are highly unreliable, and conversely for large �ij.
Statistical information may be required such that the weights
can be chosen to incorporate data error structure. However, the
weights are usually set somewhat arbitrarily because statistical
information is often not available (Miller, 1993).

The maximum likelihood method provides a means to esti-
mate the weights. If the model equations are linear in the
parameters, or if the number of observations is large and the
errors are normally distributed, then the choice of weights
leading to least-variance estimates is given by the elements of
the inverse of the covariance matrix of the errors (Bard, 1974).
When the covariance matrix is not known, the maximum
likelihood method can be chosen to estimate the weights along
with the other parameters. We consider the case of a normal
distribution with the typical assumptions: (1) All errors are
independent. (2) Errors of each measurement are normally
distributed with zero mean. In this case, the maximum likeli-
hood method is equivalent to minimizing

���� � �
i�1

Nm Ni

2
ln	�

j�1

Ni

eij
2���
 (44)

and the estimates of the elements of the covariance matrix are

V̂ii �
1

Ni
�
j�1

Ni

eij
2��� (45)

where V is an Nm
 Nm matrix. Thus, the two steps for the
maximum likelihood method are as follows:

(1) Find �* to minimize �(�).
(2) Estimate V* � ˆV(�*) from Eq. 45.

The case considered here may be regarded as solving the
weighted least-squares problems with unknown weights.

Therefore, the optimal parameter values are found by solv-
ing the nonlinear optimization problem

min
�

����

subject to: Conditions 1–9.
It is not enough to compute a vector �* and to state this is the

estimated value of the unknown parameter �. The reliability

and precision of the estimates must be investigated. If the
model equations can be approximated by linear ones in the
vicinity of the estimate �*, the model may be approximated by

ỹij��� � ỹij��*� � �ij�� � �*� (46)

where

�ij �
� yij

��
�

���*

(47)

is a 1 
 p vector. It can be proved that the vector � � �* has
covariance

V� � 	�
i�1

Nm �
j�1

Ni

�ij
TV�1�ij
�1

(48)

If the errors in the observations are normally distributed, so are
the estimates �*; and therefore, the quantity


 � �� � �*�TV�
�1�� � �*� (49)

is distributed as �2 with p degrees of freedom; that is

P

 
 �p
2�a�� � 1 � a (50)

where P denotes the probability. Hence, we can determine
confidence regions for �* with the measurement error covari-
ance matrix V. The approximate 100(1 � a)% confidence
region is defined by

�� � �*�TV�
�1�� � �*� � �p

2�a� (51)

The above discussion was based on the assumption that the
model equations were nearly linear in the parameters around
the estimate �*, and consequently the linearity assumption
should be tested.

Experimental Work

The experiments with ammonium sulfate were performed in
a stirred double-jacketed crystallizer with a volume of about
1.5 L; a density meter for on-line concentration measurement;
a chiller (HX-150, Thermo Neslab Instruments), which can
manipulate the jacket water temperature according to the set
point value; a stirrer driven by a motor; and a thermocouple to
measure the temperatures of crystallizer and jacket. Additional
elements of the system include data acquisition and control
hardware and a computer that performs on-line control calcu-
lations and stores the collected data. A schematic of the exper-
imental apparatus is shown in Figure 6, where T is in °C. The
density of (NH4)2SO4 is � � 1.77 g/cm3. The shape factor was
taken to be kv � 1.

The temperature-control system uses a chiller to allow fast
changes in jacket water temperature. The objective of the
control system is to control the temperature of the contents of
the crystallizer. The control is accomplished through a cascade
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design. A PI controller compares an on-line measurement of
the crystallizer temperature to a preprogrammed set point tem-
perature and then calculates an appropriate corrective value for
the temperature of the incoming jacket water. This value is
passed, as a new set point, to a PI slave controller that adjusts
the set point to the chiller to meet the new goal. Parameters of
the PI controllers were carefully selected. The temperature-
control system had the capacity to follow accurately and pre-
cisely a given temperature profile.

Three temperature profiles used in the cooling crystallization
experiments are shown in Figure 7, where the temperature
range was selected to be 30–10°C over a 1.5-h batch time.
Each of these profiles was replicated at least twice. The only
differences among the replicates were the random noise in the
temperature profiles. The temperature of the crystallizer was
measured at 10-s intervals throughout a crystallization run. The
time delay for the temperature measurement was negligible.

The solubility curve for ammonium sulfate within this temper-
ature range is (Mullin and Nyvlt, 1971)

Csat � 0.00225T � 0.704 (52)

The crystallizer was charged with initial loads of solvent and
solute constituting the desired solute concentration. Typical
charges were 624 g of ammonium sulfate and 800 g of water.
These were measured on a high-capacity electronic balance.
The initial concentration was 0.78 g of ammonium sulfate per
gram of water, providing a 1°C cushion between the highest
operating temperatures and saturation temperature of the initial
solution. The initial supersaturation is 0.0022, which is within
the metastable zone of ammonium sulfate and consequently
primary nucleation is not expected (Mullin and Nyvlt, 1971).
The solution was maintained initially at about 36°C, which is
approximately 5°C above the saturation temperature of the
solution. The crystallizer was maintained at this temperature
for about 15 min after dissolution appears to be complete. The
crystallizer was cooled to 30°C by adjusting the set point of the
cascade PID controller. This temperature was maintained for
about 15 min. The mass of the seed load was measured on an
electronic balance with a 0.0001-g precision. Seed crystals of
mean size 255.5 �m were prepared from the commercial
product by recrystallization and careful sieving. The seed dis-
tribution is shown in Figure 8. Seed loads in this study were
10 g (�5.7346 
 105 crystals). The stirrer speed was 7 rps.

The final-time product was immediately filtered using a
5-micron filter paper. To avoid agglomeration upon drying, the
crystals were then washed with isopropanol saturated with
ammonium sulfate. The wet crystals on the filter paper were
collected and immediately used for size analysis. Isopropanol
solution saturated with ammonium sulfate was used as the
suspension liquid for the CSD measurement with a Malvern
Mastersizer. Before each measurement, the 500-mL suspension
chamber of the Mastersizer sensing zone and the connecting
tubes were rinsed and then filled with the suspension liquid.
Suitable amounts of the product (�5 g) were added to the
chamber, vibrated for 20 s with ultrasound before size distri-
bution measurement.

Figure 6. Experimental apparatus.

Figure 7. Temperature profiles for batch crystallization.

Figure 8. CSD of seed.
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As mentioned earlier, for a cooling crystallization process the
states of interest are the CSD, the concentration of the crystallizing
solute in the liquid phase, and the system temperature. The CSD
describes the state of the solid phase and the product quality.
Temperature profile and initial concentration specify the driving
force in the system. Although it is not possible to measure the
CSD explicitly on-line, we can obtain the final-time CSD using a
Malvern Mastersizer. It was found that density is not a sufficiently
sensitive property for determination of the concentration of am-
monium sulfate solutions, and the on-line concentration measure-
ment of the experiments is not reliable; thus, we use only the
final-time CSD, temperature profile, and the initial concentration
to estimate the kinetics of ammonium sulfate.

The batch time period was dividend into n time steps, and
the CSD of the seed was divided into m groups, with the size
intervals �L0,0, �L0,1, . . . , �L0,m�1 and population densities
f0,0, f0,1, . . . , f0,m, respectively. Because the final-time CSD of
the product is available, we can also divide the final-time seed
distribution into m groups, such that �L0,0f0,0 � �Ln,0fn,0,
�L0,1f0,1 � �Ln,1fn,1, . . . , �L0,m�1f0,m�1 � �Ln,m�1fn,m�1. The
final-time CSD for nucleated crystals was also divided into n
equivalent groups. The objective of the optimization problem is

��� � �
m

2
ln� �

i�0

m�1

� fn,i � f̂n,i�
2� �

n

2
ln��

j�0

n�1

� fn, j
N � f̂n, j

N �2� (53)

and the conditions

�Ln,0 � L̂n,0� 
 �1 (54)

�Ln,m�1 � L̂n,m�1� 
 �2 (55)

and

�Ln,n
N � L̂n,n

N � 
 �3 (56)

where �1, �2, and �3, which are small positive slack constants
chosen arbitrarily, become the constraints of the optimization
problem. Ideally, �1, �2, and �3 should be zero. It should be noted
that only the final-time population densities are included in the
objective function because the product CSD can be totally deter-
mined by the population densities and the conditions in Eqs.
54–56. The estimates are presented in Table 2. The confidence
intervals indicate that the parameters are well determined. The
least-certain parameters are k2 and kn with intervals representing
4.94 and 3.66% of the parameter magnitudes, respectively. The
other parameters are even more accurate with relative confidence
intervals of less than 2%. It is found that the linearity assumption

is valid in this problem, given that the actual values of the
objective function at selected points on the boundary of the region
differ only slightly from the approximation. A comparison of the
simulated and experimental results for temperature profile 2 is
shown in Figure 9. The CSD of the product clearly indicates the
product composed of seeded crystals and newly formed crystals.
The predicted and experimental CSD match very well, and only
small discrepancies are observed. The small confidence region and
high similarity between the predicted and experimental CSD were
indications that the model was well identified over the desired
operating region. A good match between simulated and actual
CSD for temperature profiles 1 and 3 was obtained but is not
shown here because of limited space.

The order of the growth rate with respect to supersaturation,
as presented in Table 2, is 0.82. Comparable growth kinetic
results (�0.8–1.1) were reported by Mullin et al. (1970) and
Tavare (1985). The activation energy is about 72 kJ/mol, which
is slightly higher than that obtained by Tavare (1985) (62
kJ/mol). Although the stirrer speed is fixed in our experiments,
the overall growth rates estimated by this method (�0.005–
0.18 �m/s) over the range of variables are comparable to those
(�0.005–0.25 �m/s) derived from batch experiments or con-

Table 2. Parameter Estimates and 95% Confidence Intervals

Parameter Estimate Confidence Interval

ln(Eg) 11.18 �0.22
ln(k0) 13.99 �0.24
ln(k1) 14.60 �0.27
k2 0.87 �0.04
ln(kb) 13.45 �0.23
� 0.82 �0.03
� 0.91 �0.04

Figure 9. Experimental vs. simulated CSDs.
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tinuous MSMPR crystallizer experiments by Larson and Mul-
lin (1973) and Tavare (1985).

Conclusions

An approach to estimate the kinetic parameters of crystal
nucleation and growth from batch cooling experiments is pre-
sented. The kinetic parameters were estimated using the final-
time product CSD, the initial concentration and the experimen-
tal temperature profile collected on-line in the batch
crystallization process. The parameter estimates were analyzed
with respect to different experimental data. The reliability and
precision of our estimates were investigated by giving the 95%
confidence interval. In comparison to other techniques re-
viewed herein, the proposed method is significantly more ef-
ficient. Further, the kinetics are related directly to the CSD of
the final-time product, instead of relying on insufficient and
uncertain information of the crystals such as transmittance
data. In comparison to batch techniques based on on-line
concentration measurement, the present method has the advan-
tage of being less sensitive to the accuracy and noises of the
measurement. Using the method proposed, the growth rates for
ammonium sulfate are determined and experimentally evalu-
ated. Kinetic parameters reported herein are in good agreement
with results previously published by other researchers.

Notation

B0 � nucleation rate, number per kg solvent s�1

C � concentration, kg solute per kg solvent
Csat � saturation concentration, kg solute per kg solvent
�C � supersaturation, kg solute per kg solvent
Eg � activation energy for growth process, J mol�1

f � crystal number density, number per kg of solvent m�1

G � crystal growth rate, m/s
k0, k1, k2 � constants in Eq. 4

kb � nucleation constant
kg � growth rate constant, m s�1

kv � volume shape factor
L � crystal size, m
p � number of parameters
R � gas constant, J mol�1 K�1

Greek letters

� � growth order
� � nucleation order

�3 � 3rd moment of the CSD
� � density, g cm�3

� � vector of model parameter

Subscripts

k0, k1, k2 � initial

i, j � summation subscripts
m � group number of CSD
n � time steps of batch time

sat � saturated

Superscript

N � nucleated
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