Quality Control of Polymer Production Processes

J. Proc. Control, **10**, 135-148 (2000) M. Oshima, M. Tanigaki

Introduction

Polymer plant operation

- Grade transition
- Maximizing production
- Safe operation of reactor

Quality control for the objectives

On-line soft sensing and optimal grade changeover control

Polymer Production Plant

Prospective Control System

Needs for Quality Modeling

Micro-scale-

Macroscale

Basic Structure of Inferential System

An Examples of Three Kinds Model

$$\square \text{ Mechanistic model (McAuley & MacGregor, 1991)} \\ \ln(MI_i) = 3.5 \ln\left(k_0 + k_1 \frac{[H_2]}{[C_2]} + k_2 \frac{[C_3]}{[C_2]} + k_3 \frac{[C_4]}{[C_2]} + k_4 \frac{[R]}{[C_2]}\right) + k_5 \left(\frac{1}{T} - \frac{1}{T_0}\right) \\ \frac{dMI_c(t)^{-0.286}}{dt} = \frac{1}{\tau(t)} MI_i(t)^{-0.286} - \frac{1}{\tau(t)} MI_c(t)^{-0.286} \\ \square \text{ Empirical model (Watanabe et. al., 1993)} \\ \log(MI_i) = \beta + \alpha_1 \log \frac{[H_2]}{[C_2]} + \alpha_2 \log \frac{[H_2]}{[C_2]} + \alpha_3 \log \frac{[C_3]}{[C_2]} + \alpha_3 \log \frac{[C_4]}{[C_2]} \\ + \alpha_4 \log[R] + \alpha_5 \log(T) \\ \frac{d\log(MI_c(t))}{dt} = \frac{1}{\tau(t)} \log(MI_i(t)) - \frac{1}{\tau(t)} \log(MI_c(t)) \\ \square \text{ Neural net model (Koulouris, 1995)} \\ MI_i^{-0.286} = \text{Wave-Net}\left(\frac{[H_2]}{[C_2]}, \frac{[C_2]}{[C_2]}, \frac{[C_6]}{[C_2]}, \frac{[R]}{[C_2]}\right) \\ \blacksquare \text{ MacMinimized model (Koulouris, 1995)} \\ \end{bmatrix}$$

MI Estimation by Models

MI Estimation with EKF

Risk of Extrapolation

Grade Changeover Operation

Control System

□ Iterative open-loop optimization

- A new optimal trajectory is recomputed
- The first input action is implemented at every new measurements

Combination of FF&FB controllers

- A optimal trajectory is pre-calculated of both MV & CV
- MV is introduced to the plant in a FF manner
- CV is deviated from the desired optimal trajectory, FB controller is activated to compensate the deviation

Results of Control

Optimal Blending

Reactor control is not good enough to satisfy the customer's demands

IPSE lab

Blending Optimization Result

Conclusion

Integration of process control, sensing and optimization is indispensable
Most important factor is quality modeling

