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Introduction

 Application of Electrolyte Equation of State (EoS)
 high pressure phase equilibria, ionic surfactant systems, gas 

hydrate systems  containing salts, and so on.

 Approach of SAFT-VR to electrolyte systems
 SAFT-VR 

• A second-order high-temperature perturbation expansion of a 
variable-ranged potential (Square well potential).

• Dispersion term : The mean-field level of van der Waals is used.
 Contribution due to the ion-ion interaction

• Primitive models : Debye-Hückel theory, Mean Spherical 
approximation (MSA)
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Primitive Models for Electrolyte Solutions

 The solvent contribution is described by a constant dielectric 
constants.

 Interaction potential : (1)
 Potential 

• The repulsive interactions with a hard-sphere potential.

• (2)

 Electrostatic potential : (3)
• The first term : the Coulomb potential between two ions.
• The second term : Oppositely charged co-ions surrounding each one 

of the interacting ions i and j, as well as the reaction-field potential.
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Primitive Models(PM) for Electrolyte Solutions

 Expressions for 
 An average electrostatic potential            is considered as follows 

(4)
 Poisson-boltzmann equation

(5)

 Potential of mean force ( PMF ), 
• It is possible to obtain wij(r) by solving the Ornstein-Zernike (OZ) 

equation for the interionic pair potential.
• At low density, the PMF reduces to the intermolecular pair potential.
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Debye-Hückel Theory (I)

 A low density fluid of ions of the same diameter
(7)

 Boundary condition
 Continuity of             and                    at          
 vanishes at infinity

 Solution of average electronic potential

(8)
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Debye-Hückel Theory (II)

 Radial distribution function
(9)

 Internal energy
(10)

 Free energy

(11)
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Debye-Hückel Theory (Summary)

 The low density of ions has been assumed.

 The size of the ions has been neglected.

 The structure of the fluid is governed by the electrostatic 
interactions.

 This approach is applicable up to 0.001 molal.
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Augmented Debye-Hückel Theory (I)

 Electrostatic corrections
 Consideration for the size of the ions 

(12)

(13)

 Taking into account the quadratic term in 
(14)
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Augmented Debye-Hückel Theory (II)

 Non-electrostatic corrections
 For higher densities of ions, the non-ionic packing information 

must be considered.
(16)

 The radial distribution function and the free energy can be 
calculated in the context of perturbation theory as follows.

(17)
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Mean Spherical Approximation (MSA)

 Ornstein-Zernike (OZ) equation
 Linking the total correlation function                           to the direct 

correlation function         according to 

(19)

 MSA
 The direct correlation function is given by the intermolecular pair 

potential outside the repulsive core of the molecule.
 The radial distribution function is zero inside the core.
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MSA-Restricted Primitive Model (MSA-RPM)

 Assumption
 All the ions in the solution are of the same size.
 The pair potential is given by equations (1) to (3) and              .

 MSA expressions with RPM

0=CS
ijψ

(21)                                for         )(

(20)                                         for        1)(

σ

σ

>−=

<−=

r
DkTr

qq
rc

rrh

ji
ij

ij



Thermodynamics & Properties Lab. 12

MSA-Restricted Primitive Model (MSA-RPM)

 The radial distribution function (Blum et al., 1970)

Where, 

 The electrostatic residual free energy
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MSA-Primitive Model (MSA-PM)

 Anions and cations are not restricted to be of the same size.
 The structural and thermodynamic properties are written as 

functions of a characteristic inverse length, Γ.
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MSA-Primitive Model (MSA-PM)

 The radial distribution function (Blum et al., 1975)

 The residual free energy

Where 
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SAFT-VRE Approach

 SAFT-VRE

 Ideal free energy of the mixture

where, Λi is the thermal de Broglie wavelength of species i.
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SAFT-VRE Approach

 The monomer-monomer interaction

 is the hard-sphere free energy of the mixture
 are the first two terms of the perturbation expansion 

associated with the attractive energy.
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SAFT-VRE Approach

 Association term
 Water-water ( hydrogen bonding ), ion-water ( solvation ), ion-ion 

(ion-pairing) interactions.



 The effect of the association interactions depends on the range of 
densities, temperatures, and the nature of the solvent.

 Solvation : the formation of hydration shells in aqueous solutions

 Ion-pairing is not important in aqueous solutions of strong 
electrolytes at ambient temperature.
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Model parameter study for a model solution of NaCl

 Effect of the dielectric constant
 Determining the nature of the 

solvent
 The higher the dielectric con-

stant the better the ionic 
solvent

 Using DH and MSA-RPM 
theories

D=1

D=∞
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 Solvent-ion attractive 
interactions : dispersive type
 Interactions through the 

repulsive and Coulombic 
potentials only.

 The vapor pressure is under-
predicted as the solvent-ion 
interaction is strong.

 For greater λ, a less deep well 
and higher vapor pressure. 

α1j /α11=0.31
For λ1j =1.2

α1j /α11=1

For α1j /α11=1

λ1j =1.2

λ1j =1.8
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 Solvent-ion attractive 
interactions : associative type
 To describe the solvent-ion 

interactions (solvation shell)

 Adjustable parameter
• Water-ion interations : 

• The number of attractive site :
][/1 KkHB

jε

iS

For 6 sites

For 12 sites

For 6 sites

For 12 sites
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 Ion pairing 
 ion-ion interactions

• Strong electrolytes are fully 
dissociated.

• The ion pairing occur around 
the critical region.

 Three models
• Coulombic interaction
• Anion-cation attractive square-

well interaction
• Association via short-ranged 

attractive sites

For supplementing solvent-ion 
attractive square-well interactions+(a)

Coulombic interaction only(1)
Ion-ion association+(1)

Attractive ion-ion square-well 
interaction+(1)+(2)
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Conclusion

 Several levels of approximation have been considered for 
primitive model theories.

 The solvent-ion interaction is modeled via an attractive 
potential of variable-range.

 Associative sites of ion-water interactions have been considered.

 SAFT-Electrolyte EoS is applicable to phase equilibria 
containing strong electrolyte.


