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Abstract

 New Approach 
 based on highly accurate EOS for the pure components 

combined at the reduced T, ρ of the mixture
 reducing parameters for the T,ρ : composition

 For simple mixtures
 with relatively simple functions

very accurate representation

 For nonideal mixtures
 modified reducing func.(T, ρ)+departure func.

0.1% in density, 1% in Cv, 1% in bubble point pressure
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Abstract

 Two applications of mixture model concepts
 developed independently in USA and Germany over 

the same time period
 including the development of individual equation for 

each binary system
generalization of the model for a wide variety of 

mixtures
 Similarities and differences
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Introduction

 Dimensionless Helmholtz energy,
 Thermodynamic properties of pure fluids with high 

accuracy over a wide range of T, P
 All thermodynamic properties from a single 

mathematical relation
 A large number of adjustable coeff. (up to 58 terms 

reported)
 Reference equation for the calculation of property 

tables and chart
accuracy : restricted only by the accuracy of available 

measurements

RTA=α
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Introduction

 Due to the complexity
 Equation with many coefficients

applied only to pure fluids
 High-accuracy EOS

developed for only about 30 pure substances

 Only a few attempts to describe mixture properties 
using multiparameter EOS
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Introduction

 Plocker et al. (1978)
 one-fluid theory applied to modified Benedict-Webb-

Rubin(mBWR) EOS
 with a mixing rule for the pseudo-critical temperature
 VLE and Enthalpies at high pressures

 Platzer and Maurer (1993)
 generalized the 20-term Bender equation
 prediction for multicomponents mixture properties

 Huber and Ely (1994)
 extended corresponding states model based on mBWR 

EOS
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Introduction

 Mixture model (pure → mixture)
 based on  high-accuracy pure fluid EOS for the pure 

components
 pressure-explicit EOS

simple integration of pressure
generally explicit in Helmholtz energy
adopted for the mixture

 combination rules for the Helmholtz energy function 
of mixture components (not mixing rules)
not required a fixed structure of the pure fluid equation

 single mathematical expression
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Introduction

 General form of Helmholtz energy model
 independently developed by both authors during 

overlapping periods of time
 Tillner-Roth (1993)

 focused on developing an accurate formulation for 
individual binary mixtures for a large amount of 
accurate experimental data

 Lemmon (1996)
 focused on developing a generalized model capable of 

accurate property calculation for a large number of 
fluid mixtures
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Introduction

 Purpose
 additional detail and background for the models

especially ideal mixture
 difference between the models
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Helmholtz energy

 EOS for the pure fluids
 ideal part + residual part

 reducing parameter Tn, Vn : critical properties
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Helmholtz energy

 Transforming into the Helmholtz energy form by 
integrating the relation
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Mixture Model

 α of mixture : composition dependence

 Ideal gas mixture : analytically from functions for the 
ideal gas properties of the pure fluids

 consistent with ideal parts of the pure fluid equation 
with independent reduced variable τ, δ
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Mixture Model

 Residual Helmholtz energy

 linear combination of the pure fluid residual energy
 departure function, Δαr

interaction of different species in the mixture
 Corresponding states principle

shape factors : ratios of the critical properties
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Mixture Model
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Mixture Model

 Reducing parameter of the pure fluid equation             
≠ reducing functions of the mixture
 pseudo-critical parameter τ, δ

composition dependence

as xi approaches 1
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Linear mixture model

 Linear mixture model
 linear combinations of the pure fluid parameters

 departure function Δαr omitted
no adjustable parameters
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Linear mixture model : Application

 1,1,1,2-tetrafluoroethane(R-134a) 
+difluoromethane(R-32)

close behavior of an ideal solution
 VLE : excellent results (Fig.1a)
 Density in subcritical range (Fig.2a)

vapor, liquid density : good agreement
 Density in supercritical range (Fig.2b)

larger deviation
 Isochoric heat capacity

±1%(about the experimental uncertainty)
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Linear mixture model : Application

 water+ammonia 
 mixture of polar components showing large mixing 

effects, wide two-phase region
 VLE (Fig.1b)

dew curve : well 
high conc. in the vapor phaseideal at lower pressures

bubble curve : large deviation
 Density (Fig.2c)

-1% ~ +3% deviation
 Excess enthalpy (Fig.3c)

poor representation : related to VLE
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Linear mixture model : Application

 ethane+carbon dioxide
azeotropic behavior

 VLE (Fig.1c)
incorrect prediction

 Isochoric heat capacity (Fig.3b)
less accurate
>2% deviation outside of the critical region
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Linear mixture model : Application
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Linear mixture model : Application
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Linear mixture model : Application
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Enhancement to the Mixture Model

 Modification of the reducing functions

 kT,ij, kV,ij: adjustable parameter 
 Effect of varying kT,ij, kV,ij  

VLE of ethane+carbon dioxide (Fig.4)  (kT,ij > kV,ij )
Cv : 1.4% deviation (Fig.5)
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Enhancement to the Mixture Model
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Enhancement to the Mixture Model
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Enhancement to the Mixture Model

 Modification by Tilner-Roth
 supplement the quadratic expression with βT, βV

 effect of exponents on the shape (Fig.6)
 influence of Tn,12 or Vn,12

asymmetric with respect to composition
 Additional flexibility for tuning of the mixture model
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Enhancement to the Mixture Model
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Enhancement to the Mixture Model

 Modification by Lemmon
 modified the linear reducing function

 ζij,ξij,βij : modify the shape of the reducing parameter
 βij=1,

for ethane+CO2, ζij=-67.4K (kT,ij=0.89)
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Departure function

 Departure function

 only to mixture properties, no effect at the pure fluid 
limits

 magnitude of departure function
generally one order smaller than the residual αr

 modeling : regression analysis by Wagner
a set of of experimental data→lowest standard 

deviation→bank of terms→subset of term for Δαij

optimization : modified Marquardt-Fletcher algorithm
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Applications by Tillner-Roth

 Introduction an exponent γ in the departure function 
for a binary system

asymmetric influence
very effective for simple system, R-152+R134a
reduce the number of terms in the departure function
applied only to binary systems to date

 For water+ammonia, 
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Applications by Tillner-Roth

 Results for R-134a+R-32
 five-term departure function

 Fig.7 ( cf. Fig.2b )
density at liquid & vapor region : ±0.1%
density at critical region : -6 ~ ±0.4%
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Applications by Tillner-Roth
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Applications by Tillner-Roth

 Results for water+ammonia
 14-term departure function : 19 adjustable parameters

 Fig.8 ( cf. Fig.1b, Fig.3c )
improved representation
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Applications by Tillner-Roth



Thermodynamics & Properties Lab.

Applications by Lemmon

 Generalized departure function

 ck, nk, mk : fixed the same for all mixture
 Fij, ζij, ξij, βij : adjustable parameters from (p,V,T,x)

0.2% in density, 1% in heat capacities
1-2% bubble point pressure at critical temp.
5-10% bubble point pressure at critical temp. father 
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Applications by Lemmon

 Results
 propane + n-butane : Fig.10

less than 0.04% average absolute deviation in density
0.4% average absolute deviation in bubble point 

pressure
 Uncertainty of the equation reported

0.2% in density
1% in heat capacities

 Fig.11 : ternary refrigerant mixture
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Applications by Lemmon
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Applications by Lemmon
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Conclusions

 EOS for mixture in terms of the Helmholtz energy 
has been developed and applied to several fluid 
systems by two different research groups

 By Tillner-Roth, model of single binary systems for 
which comprehensive accurate data are available

 By Lemmon, generalized model was presented which 
accurately predicts thermodynamic properties of 
mixtures

 Further research for more nonideal systems and 
complex multicomponent mixtures


