TG/DTG studies of Fresh Fishing Net and Waste Fishing Net

Seung -Soo Kim

Department of Environmental Engineering, Donghae University,

119, Jiheung - dong, Donghae, Gangwon, 240 - 713, Korea

Introduction

Ocean pollution poses serious environmental problems in Korea

 \rightarrow Need to treat marine wastes in more environmentally friendly manner

Main composition of marine wastes

- \rightarrow Waste fishing nets (WFN), waste fishing tackles and waste lopes
- Characteristics of marine wastes
- \rightarrow Floating, deposition and moving on seashore
- \rightarrow Damage of marine ecosystem, cause of loss in the fishing industry

► Fishing nets: production, consignment(1997~2000 yr) [unit : Ton]

Year	Production	Consignment	Remark		
1997	11,057	11,571	-		
1998	9,607	9,895	-		
1999	10,066	10,442	-		
2000	10,916	11,033	_		

자료 : 통계청, "한국산업통계연보", 2001, p450

Experimental

Thermogravimetric Analysis

- → Thermogravimetric Analyzer (TGA; Cahn, TG-2171)
- → Sample : Fresh Fishing Net(Nylon-6), Waste Fishing Net(Nylon-6)
- \rightarrow Mass : 400 mg
- \rightarrow Heating rates : 0.5~2.0 /min (<500)
- Micro-scale tubing reactor
 - \rightarrow Reaction temperature : 440
 - \rightarrow Reaction time : 60~100 min
- Product Analysis
 - → Carbon number distribution : GC (Younglin, M600D)
 - \rightarrow FT-IR (Thermo Mattson, 60AR)

Experimental

Elemental analysis : fresh fishing nets(FFN), waste fishing nets(WFN)

		H/C ratio					
	С	Н	N S O		0		
FFN	62.68	10.66	12.24	_	14.42	2.04	
WFN	56.28	8.86	10.92	0.05	14.83	1.89	

Activation Energy

Conversion: X

$$X = \frac{W - W_t}{W_0 - W_t} \tag{1}$$

Pyrolysis rate:

$$\frac{dX}{dt} = k f(X) \tag{2}$$

Reaction constant: k

$$k = A \exp\left(\frac{-E}{RT}\right) \tag{3}$$

Conversion function: f(**X**)

$$f(X) = (1 - X)^n$$
 (4)

▶ Eq.(3), Eq.(4) \rightarrow Eq.(2)

$$\frac{dX}{dt} = A \exp\left(\frac{-E}{RT}\right) (1 - X)^n \quad (5)$$

Take logarithm Eq.(6)

$$\ln\left(\frac{dX}{dt}\right) = \ln\left[A\left(1 - X\right)^{n}\right] - \frac{E}{R}\frac{1}{T} \quad (6)$$

- A : pre-exponential factor (sec⁻¹)
- n : reaction order
- E : activation energy (kJ/mol)
- R : gas constant (8.314Jg/mol K)
- T: temperature (K)
 - t:time (sec)
- Intercept of Eq.(6) is $\ln \left[A (1-X)^n \right] = \ln(A) + n \ln(1-X) \quad (7)$

Decomposition mechanism of Nylon -6:

R.S Lehrle et al., Polymer Degradation and Stability, 67, 21(2000)

TGA curves : FFN and WFN

DGT curves : FFN and WFN

Application of equation 5 : 0.5~2.0 /min

Department of Environmental Engineering, Donghae University

Calculated activation energies

Application of Eq. (7) to calculate pre -exponential factor

		Conversion [%]										
		5	10	20	30	40	50	60	70	80	90	95
FFN	0 th	1.17 ×10 ⁶	1.57 ×10 ⁶	2.45 ×10 ¹²	1.06 ×10 ¹⁴	1.78 ×10 ¹⁵	2.03 ×10 ¹⁶	3.23 ×10 ¹⁷	4.15 ×10 ¹⁸	3.74 ×10 ²⁰	5.95 ×10 ²³	4.38 ×10 ²⁷
	1 st	1.23 ×10 ⁶	1.75 ×10 ⁶	3.07 ×10 ¹²	1.52 ×10 ¹⁴	2.96 ×10 ¹⁵	4.06 ×10 ¹⁶	8.07 ×10 ¹⁷	1.38 ×10 ¹⁹	1.87 ×10 ²¹	5.95 ×10 ²⁴	8.76 ×10 ²⁸
WFN	Oth	1.23 ×10 ⁵	9.61 ×10 ⁵	2.25 ×10 ⁷	2.88 ×10 ⁸	2.67 ×10 ⁹	3.49 ×10 ¹⁰	7.58 ×10 ¹¹	8.35 ×10 ¹³	3.44 ×10 ¹⁶	5.39 ×10 ²³	5.84 ×10 ³⁶
	1 st	1.29 ×10 ⁵	1.07 ×10 ⁶	2.82 ×10 ⁷	4.12 ×10 ⁸	4.46 ×10 ⁹	6.98 ×10 ¹⁰	1.90 ×10 ¹²	2.78 ×10 ¹⁴	1.72 ×10 ¹⁷	2.39 ×10 ²⁴	1.17 ×10 ³⁸

Carbon number distribution : 440 , 60~100 min

Conclusion

- The apparent activation energies increased with an increase of conversion. The average activation energy for FFN was 266 kJ mol⁻¹, while that of WFN was 220 kJ mol⁻¹.
- Pre-exponential factor was between 10¹² and 10²¹ sec⁻¹ when the slope of thermogravimetric curves was almost linear.
- The carbon number of C₆ like caprolactam was slightly increased with the increase of reaction time, but the selectivity of specific hydrocarbons was not observed from the pyrolyzed oil.