Chromatographic Study of Methanol Adsorption on Activated Carbon

광운대학교 환경공학과 유 경 선

Introduction

Importnace of Adsorption Reaction

- Air pollution control
- Catalytic reaction
- Lots of gas-solid reaction in industrial processes

Experimental Method for Adsorption

- Packed bed experiment
- TGA experiment
- Measuring the partial pressure
- Chromatographic study

Some Features of Chromatographic Study

Advantage

- Little Time to Experiment
- Easyness of Experimental Apparatus
- Quantitative Determination of Reaction Parameters
- Small Amount of Adsorbent
- Reusable of Adsorbent

Disadvantage

- Limitation to the Region of Linear Adsorption
- Requirement of Physical Properties Surface area, Pore volume, Porosity,...

Assumptions for the Chromatographic Study

- Isothermal Condition of Column
- Constant Void Fraction and Interstitial Velocity
- Linear Adsorption of Adsorbate
- Constant Size of Spherical Particle
- One Dimensional Dispersed Flow

Governing Equations of Packed Column

$$\frac{\partial C}{\partial t} = E_Z \frac{\partial^2 C}{\partial x^2} - u \frac{\partial C}{\partial x} - \frac{3D_e}{R} \frac{1 - \varepsilon_b}{\varepsilon_b} (\frac{\partial c_i}{\partial r})_R \quad \text{Column}$$

$$\varepsilon_p \frac{\partial c_i}{\partial t} = D_e (\frac{\partial^2 c_i}{\partial r^2} + (2/r) \frac{\partial c_i}{\partial r}) - \rho_P \frac{\partial c_a}{\partial t} \quad \text{Particle}$$

$$D_e (\frac{\partial c_i}{\partial t})_R = k_f (C - (c_i)_R) \quad \text{Diffusion rate}$$

$$\frac{\partial c_a}{\partial t} = k_a (c_i - \frac{c_a}{K_A}) \quad \text{Adsorption rate}$$

$$C = c_i = c_a = 0 \quad \text{at} \quad t = 0 \quad C = 0 \quad \text{at} \quad x = \infty$$

$$C = C_1(t) \quad \text{at} \quad x = 0 \quad \frac{\partial c_i}{\partial r} = 0 \quad \text{at} \quad r = 0$$

Definition of Moment

• Definition of n-th Moment $m_n = \int_0^\infty C_e(t) \cdot t^n dt$

$$\mu_n = m_n / m_0 = \frac{\int_0^\infty C_e \cdot t^n dt}{\int_0^\infty C_e dt}$$

◆ <u>n-th Central Moment</u>

$$\mu_n = \frac{\int_0^\infty C_e(t-\mu_1)^n \cdot t^n dt}{\int_0^\infty C_e dt}$$

Moment Analysis of Elution Curve of Pulse Input

 $\mu_{1} = (z/u)[1 + \delta_{0}] + (\mu_{1})_{pulse}$ $\mu_{2}' = \mu_{2} - \mu_{1}^{2} = (2z/u)[\delta_{ax} + \delta_{f} + \delta_{d} + \delta_{ad}]$

$$\delta_{0} = [(1 - \varepsilon) / \varepsilon](\varepsilon_{p} + p_{p}k_{a})$$

$$\delta_{ax} = \frac{Ez}{u^{2}}(1 + \delta_{0})^{2} \qquad \delta_{f} = \frac{1 - \varepsilon}{\varepsilon} \frac{R}{3k_{f}}(\varepsilon_{p} + \rho_{p}K_{a})^{2}$$

$$\delta_{ad} = \frac{1 - \varepsilon}{\varepsilon} \frac{\rho_{p}K_{a}^{2}}{k_{a}} \qquad \delta_{d} = \frac{1 - \varepsilon}{\varepsilon} \frac{R}{15D_{e}}(\varepsilon_{p} + \rho_{p}K_{a})^{2}$$

Table 1. Properties of Activated Carbon (Calgon, BPL 4×10 granule)

True Density Particle Density Particle Porosity Surface Area(BET) Particle Size Total Pore volume

2.0 x 10³ [kg/m³] 0.85 x 10³ [kg/m³] 0.63 992 [m²/g] 0.20 mm, 0.34mm, 0.93mm 0.75 x 10⁻³ [m³/kg]

Table 2. Characteristics of Packed Column andOperating Conditions

Packed Leng	th [m]	0.07
Column I.D.	[m]	4.37 x 10 ^{−3}
Particle Size[m]	0.20, 0.34, 0.93
Sample Weig	ht [g]	0.50, 0.43 0.43
Column Poros	sity [-]	0.48 0.52 0.51
Gas Flow Rat	e [ml/min]	30, 50, 70, 90
Temperature	[°C]	70, 100, 130

Fig. 1 Typical Gas Chromatogram

Fig. 2 Effect of the Injection Amount of CH₃OH on the Fisrt Absolute Moment

Fig. 3 Fisrt Absolute Moment of Methanol on Activated Carbon

Fig. 4 Van't Hoff Plot of Adsorption Equilibrium Constant

Fig. 5 Second Moment Plot of Methanol on Activated Carbon

Fig. 6 Second Moment Plot of Methanol on Activated Carbon

Table 3. Adsorption Equilibrium Constant For Methanol On Activated Carbon (BPL 4×10)

Temperature	e [°C]	70	100	130
Equilibrium Constant (Moment)	[m ³ /kg]	0.407	0.124	0.048
Equilibrium Constant (Packed)	[m ³ /kg]	0.715	0.220	0.082

Table 4. Axial Dispersion Coefficient of MeOH On Activated Carbon (BPL 4×10)

× 10⁻⁵ [cm²/min]

	0.2mm	0.34mm	0.93mm
70°C	1.77	2.55	1.91
100°C	1.62	2.72	3.17
130°C	1.12	0.99	-

Fig. 6 Breakthrough Curves of MeOH over Activated Carbon

Summary of Diffusivities

Condition		Di/a ² [s ⁻¹]	Da[m ² /s]	D _{AB} [cm ² /s]
70 °C	500 – 2hr	0.0106	1.152e ⁻⁶	0.77
	900 – 10hr	0.0102	3.288e ⁻⁶	
100 °C	500 – 2hr	0.0198	5.224e ⁻⁶	0.88
	900 –10hr	0.0286	4.182e ⁻⁶	