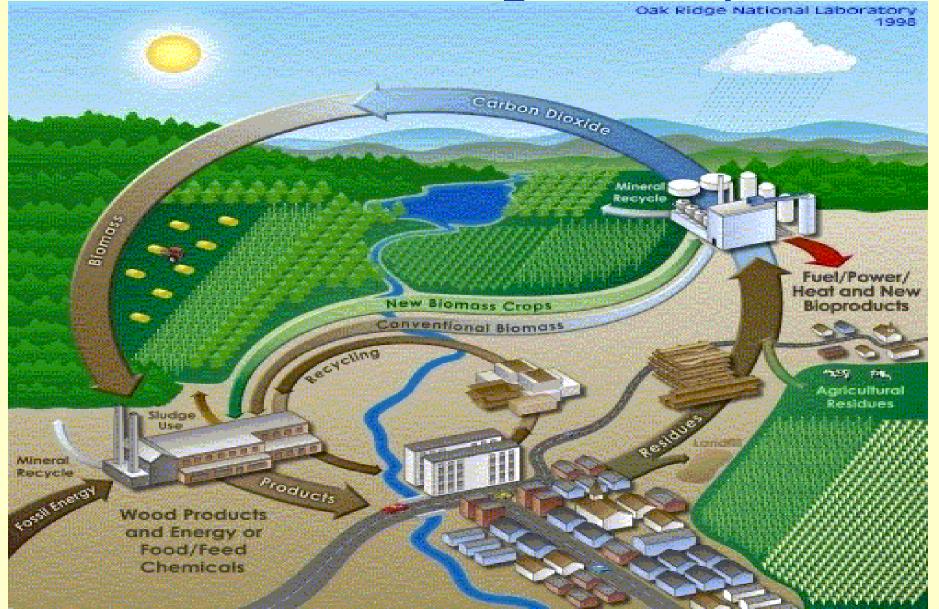
Hydrogen from Biomass Pyrolysis: Integrated Co-Products and Services

Biorefining Videoconference

(June 17, 2004)


Danny Day, Eprida

danny.day@eprida.com

716-316-1765

James Lee ORNL (Oak Ridge, TN) Don Reicosky USDA Soil Conservation (Morris, MN) Bob Evans National Renewable Energy Laboratory Matthew Realf and Ling Zhang Georgia Institute of Technology (Atlanta, GA)

Our Future: Integrated Systems

Pyrolytic conversion offers cost effective options

The 2001 report by Spath^{*} offered that pyrolytic conversion of biomass offered the best economics for hydrogen production, partly because of the opportunity for co-product production and reduced capital costs.

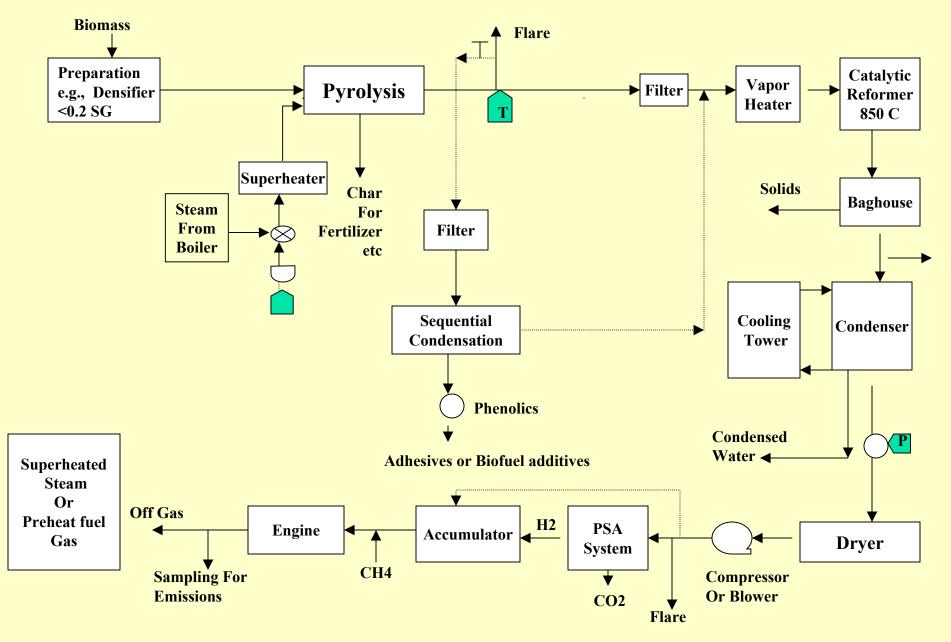
<u>*</u>Spath, *et al*, Update of Hydrogen from Biomass -Determination of the Delivered Cost of Hydrogen, National Renewable Energy Laboratory, Milestone Report for the U.S. Department of Energy's Hydrogen Program 2001

Drivers for sustainable biohydrogen production

- Energy Independence
- Dwindling Oil Reserves
- Global Warming
- Distributed Socio-Economic Impacts
- Ability to co-locate and integrate unrelated business, symbiotic processing

Current uses of non renewable hydrogen

- Synergistic


 opportunities for
 renewable hydrogen
 can be found in
 hydrogen's largest use
- Under intensive modern agriculture Hydrogen = Food

Hydrogen Uses


- Agricultural Fertilizer
- Oil Refineries
- Methanol
- Chem-Proc, Other
- □ Space Programs

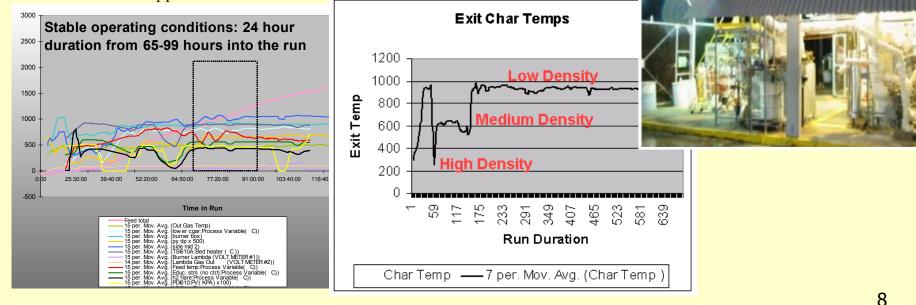
Schematic Flow Diagram of the Biomass Refinery for Hydrogen, Char and Chemicals

Background

Demonstration of Hydrogen Production

Pyrolysis Reactor

A 3 year DOE/NREL project resulted in a pilot demonstration of hydrogen from biomass. The aim was to safely operate a continuous process catalytic steam reformer to process the oxyhydrocarbon gas from biomass pyrolysis and capture 24 hours of stable data. Peanut hulls pellets were heated with natural gas in an oxygen free system, producing an off-gas rich in hydrogen. The steam reformer was externally heated to 850C.

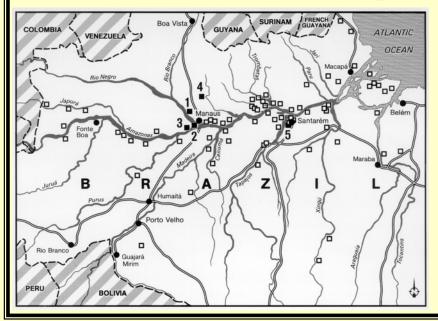

Steam Reformer Reactor

Demonstration Results

A 100 hour run was planned to insure that a stable 24 hour window of data was collected after processes had stabilized. Throughput was set at 50kg/hr of biomass with a moisture content of 13%. The online monitoring recorded by weight production rates of :

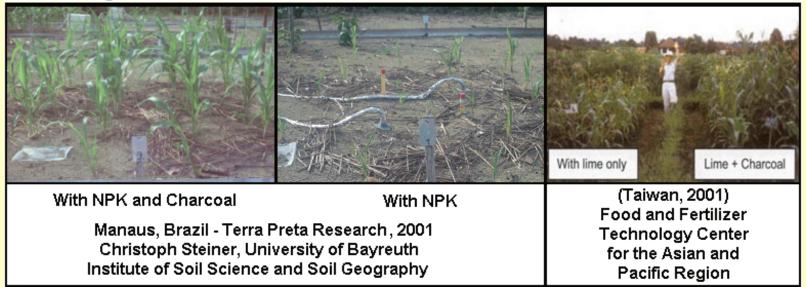
- ■60% H2
- ■3% methane (giving the hydrogen a blue flare)
- ■30% CO2
- ■7% CO

During this run the process also sequestered 20% of the biomass as fixed carbon. The variations in the run conditions produced three different types of char. An accidental discovery in start-up pointed toward a new application.



A Valuable Co-Product

We began to investigate the use of the material as a soil amendment and nutrient carrier after employees mentioned that a mound of char, used for start-up operations was covered in vegetation and more specifically turnips. Someone had tossed some turnip seeds, on the two year old, chest high, char pile. It was only char with no soil, yet on plants completely covered the mound. The plants appeared healthy with roots that enveloped each char particle. The turnips, unfortunately could not be inspected as they already had been eaten, but it was reported they were "Good!".


The Terra Preta Soil Experiment, 2000 Years Old

Terra Preta refers to black high carbon (9%) earth-like anthropogenic soil with enhanced fertility due to high levels of soil organic matter (SOM) and nutrients such as nitrogen, phosphorus, potassium, and calcium. Terra Preta soils occur in small patches averaging 20 ha. These man made soils are found in the Brazilian Amazon basin, also in Western Africa and in the savannas of South Africa. C14 dating the sites back to between 800 BC and 500 AD. Terra Preta soils are very popular with the local farmers and are used especially to produce cash crops such as papaya and mango, which grow about three times as rapid as on surrounding infertile soils.

(Map reprinted by permission: Steiner, 2002)

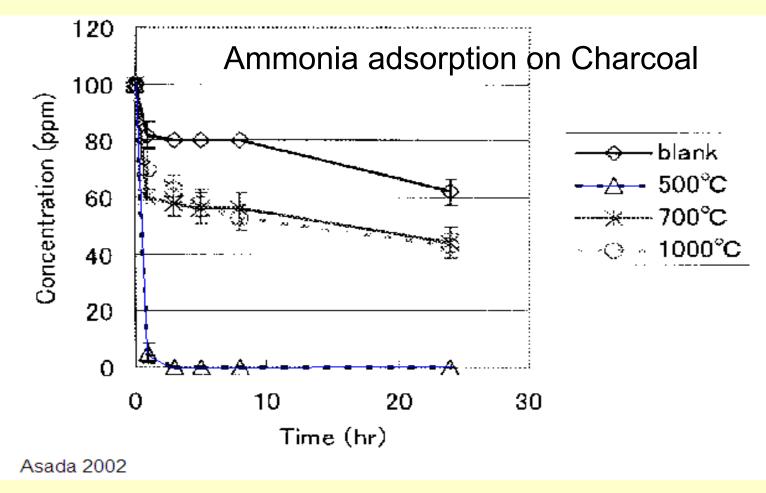
Background Research

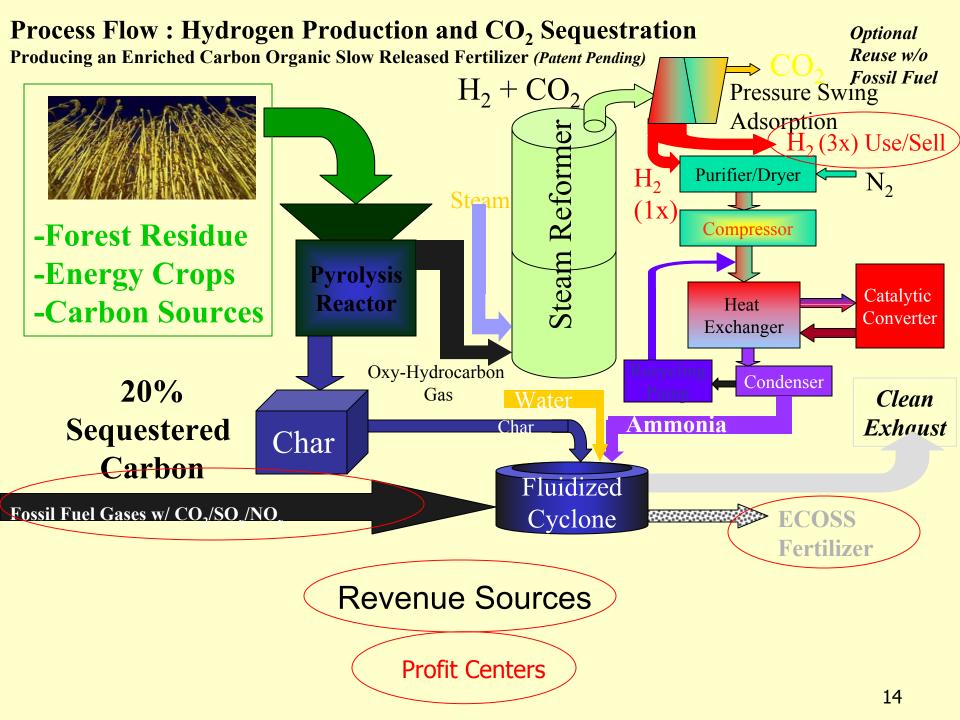
The images above were provided for this poster by Christoph Steiner, who has been recreating Terra Preta soils in Brazil since 1999.

- •Amount of applied organic matter (25% increase of C_{org} in 0-10 cm
- \bullet Increased the soil C content $\sim 0.75\%$
- •Applied Charcoal 11 t / ha
- •Mineral fertilizer: N (30), P (35), K (50), lime (2100 kg/ha)

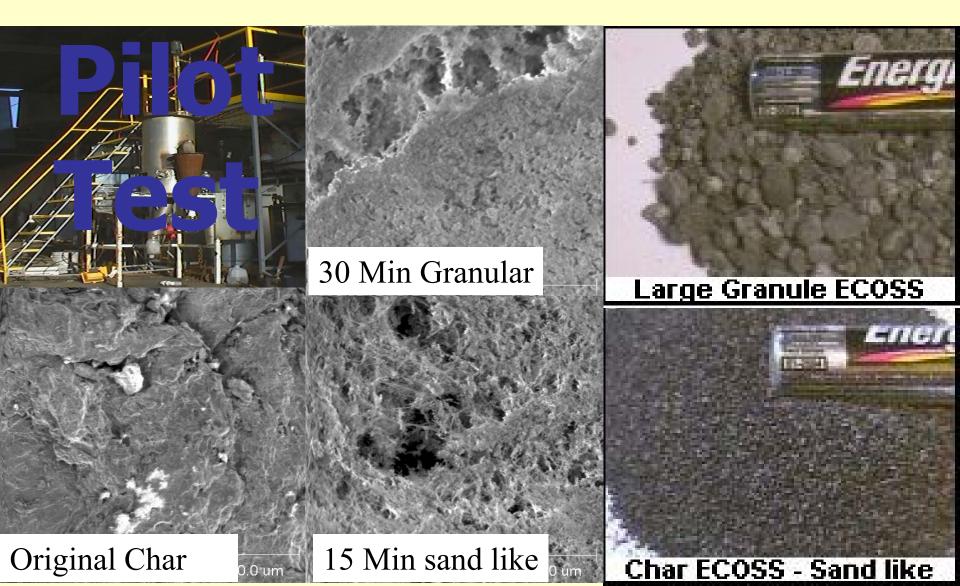
International Workshop on Anthropogenic Terra Preta Soils, (July 2002 Brazil)

- Terra Preta soils contain 15-60 Mg/ha C in 0-0.3m but 1-3Mg/ha may be sufficient (GLASER et al.)
- Increased cation exchange capacity (GLASER)
- Char decreased leaching significantly (LEHMANN)
- Char traps nutrients and supports microbial growth (Pietikainen)
- Char experiments have shown up to 266% more biomass growth (STEINER) and 324% (Kishimoto and Sugiura)
- Available water capacity was 18% than surrounding soils (GLASER)
- Char stability measured in 1,000's of years (SKJEMSTED)


Drivers for Food and Energy Production from Pyrolytic Production of Hydrogen


- Food and Energy Independence
- Dwindling Oil and Topsoil Reserves
- Global Warming Impacts from Agriculture
- Distributed Socio-Agro-Economic Impacts
- Ability to co-locate and integrate unrelated business, symbiotic processing for food, and energy
- Carbon Negative Energy

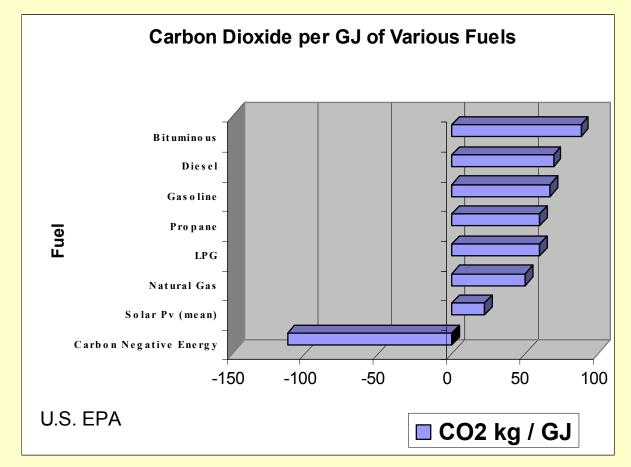
FIDA


PLAY MOVIE

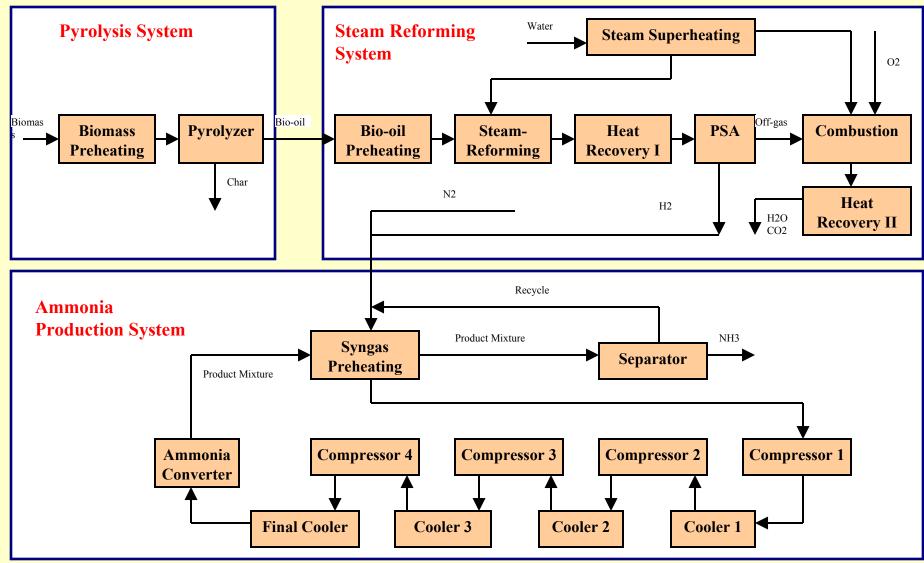
Low Temp Charcoal Advantage

Operated at ambient pressure and temperature CO2 separation is not required

Crushed Interior 2000x SEM


The residual cell structure of the original biomass is clearly visible

The ABC fibrous buildup has started inside the carbon structure


After complete processing, interior is full

Trace minerals are returned to the soil along with essential nitrogen. 16

Carbon Negative Energy

Integrated System with H2 and Ammonia from Biomass

Energy Balance

Heat Requirement	Total Amount Required (kJ)	Heat Sources to Provide the Heat	Heat Provided (kJ)	Contribution (%/100)	Note			
Biomass Preheating	75.96	Heat Recovery I	13.93	0.183	Biomass from 27 to 100C			
		Heat Recovery II	12.02	0.158	Biomass from 100 to 163C			
		Cooler 1	48.73	0.642	Biomass from 163 to 418.3C			
		Cooler 2	1.27	0.017	Biomass from 418.3 to 425C			
Pyrolysis	86.89 - 145.06	Cooler 2	27.41	0.189 - 0.315				
		Cooler 3	28.69	0.198 - 0.330				
		Final Cooler	15.75	0.109 - 0.181				
		External	15.03 - 73.20	0.505 - 0.173				
Bio-oil Preheating Reforming	37.81	External	37.81	1	Bio-oil from 425 to 850C			
	101.63	External	101.63	1	850C			
Steam Superheating	673.92	Heat Recovery I	232.46	0.345	Water from 27 to 163C			
		Heat Recovery II	350.84	0.521	Water from 163 to 571.5C			
		External	90.62	0.134	Water from 571.5 to 850C			
Syngas Preheating	49.66	Reaction Heat	17.63	0.355	Syngas from 27C to 126.7C			
		Product Stream	32.03	0.645	Syngas from 126.7C to 309.5C			
Total Heat	1025.87 - 1084.04							
Total Work Required	137.40 1163.27 - 1221.44 19							
Total Energy Required								

Heat Recovery/ Total system

Heat Sources	To (K		Heat Sinks to Obtain the Heat	Amount of Heat Obtained (Kj)	(%/100)	Note			
Heat Recovery I	328.	323	Steam Superheating	232.46	0.708	Provide the heat with temperature from 850 to			
			Biomass Preheating	13.93	0.042	50C Provide the heat at 100C			
			Waste	81.93	0.250	Provide the heat at 100C			
Heat Recovery II	644	.19	Steam Superheating	350.84	0.545	Provide the heat with temperature from 1220 to 1220			
			Biomass Preheating	12.02	0.019	163C Provide the heat from 163 to 119.5C			
			Waste	281.32	0.437	Provide the heat from 119.5 to 60C			
Cooler 1	48.	73	Biomass Preheating	48.73	1	Provide the heat from 591.9 to 309.5C			
Cooler 2	48.	73	Biomass Preheating	1.27	0.026	Provide the heat from 591.9 to 584.4C			
			Pyrolysis	27.41	0.563	Provide the heat from 584.4 to 425C			
			Waste	20.04	0.411	Provide the heat from 425 to 309.5C			
Cooler 3	48.	73	Pyrolysis	28.69	0.589	Provide the heat from 591.9 to 425C			
			Waste	20.04	0.411	Provide the heat from 425 to 309.5C			
Final Cooler	15.	93	Pyrolysis	15.93	1	Provide the heat from 591.9 to 500C			
Reaction Heat	17.	.63	Syngas Preheating	17.63	1				
Ammonia Mix	32.	.03	Syngas Preheating	32.03	1				
External Heater	245	.09	Pyrolysis	15.03 - 73.20	0.061 -	Provide the heat at temperature above 425C			
	303	.26	Bio-oil Preheating	37.81	0.241 0.125 -	Provide the heat for bio-oil from 425 - 850C			
			Steam Superheating	90.62	0.154 0.299 -	Provide the heat for steam from 571.5 to 850C			
			Reforming	101.63	0.370 0.335 -	Provide the heat at temperature above 850C			
Char Cooling	6.2	28	Waste	6.28	0.415 1	Provide the heat from 425 to 27C			
Total Heat Released			1435.66 - 1493.83						
Total Work Provided			137.40						
Total Energy Provided			1523.40 - 1581.57						
Total Energy Wasted			409.61 20						
						20			

Hydrogen with Carbon Utilization The Opportunity

- The economic value of utilizing hydrogen to enhance the value of charcoal as scrubbing agent, trace mineral source, fertilizer carrier and topsoil amendment can significantly exceed the energy value of its combustion.
- Hydrogen use ties back to farm productivity
- Establishment of sustainable energy and agricultural systems
- Charcoal in a modified SCR strategy can scrub CO2, SOx, and NOx from fossil fuel exhaust producing valuable nitrogen fertilizers.

Technical Barriers: Hydrogen from biomass via pyrolysis and steam reforming

- Feedstock cost and availability
- Efficiency of pyrolysis and reforming technologies
- Durable, efficient and impurity tolerant catalysts
- Hydrogen separation and purification
- Market and delivery

Benefits

- Locally produced hydrogen yields locally produced fertilizer which can provide the highest crop yields and return harvested soil nutrients
- Mutually beneficial business structures form in a organic and symbiotic fashion
- Groups form which have a much stronger natural competitive defense against imported goods and power. Long-term contracts mutually support financing needs.
- Income opportunities stabilize local economies and balance the influence of large manufacturing firms
- For each ton of CO2 captured \$179 of fertilizer and hydrogen will be generated at \$54 paid for the biomass.
- 1 million BTU of hydrogen used or sold, ~112 kg of CO2 will be removed from the atmosphere.
- Nitrogen yields additional energy crop productivity from biomass growth.

Conclusion

- This solution allows agricultural and forestry to join in a mutually beneficial relationship with renewable hydrogen producers and fossil fuel users. This synergy supports the restoration of our soils and represents limitless carbon storage options.
- Hydrogen with carbon co-products allow "<u>capture and</u> <u>utilize</u>" technology to help reduce energy costs

Contact Information

Danny Day Eprida, Inc.

danny.day@eprida.com

706-316-1765

Final Note: A Limiting Factor

Material Balance and Production Limits (Energy is not the limiting factor) At theoretical maximum H2 –CO2 conversion there would only be enough CO2 to convert 61% of H2 to ABC and since our target nitrogen content for the pyrogenic carbon is 10%, (requiring 45% carbon by weight), our limit becomes the 20% carbon char (wt. 12) vs the 56% of ABC (mol.wt. 79). The limit is therefore the carbon char as a carrier utilizing only 31% of available hydrogen but sequestering 112kg of carbon dioxide (as measured experimentally) per million BTU of hydrogen utilized for energy. In addition, there is more than 112kg-150kg when the carbon sequestered in the form of additional plant growth and CO2 equivalents from reduced greenhouse gas emissions from lower power plant and fertilizer NOx release.