수소 생산 및 배달

미국 에너지성

Why Hydrogen

Coal

- Supply: 5,780 Quads recoverable reserves
- Process options: central production from gasification
- Cost: Current: \$0.90-1.80/kg

Projected: \$0.50-1.10/kg

Requires sequestration and near-zero other emissions

Natural Gas

- Supply:
 - 188 Quads proven reserves
 - Currently importing 15% of our needs
- Process Options
 - Central Reforming
 - Cost: Current: \$0.60-1.00/kg Projected: \$0.40-\$0.90/kg
 - Requires sequestration
 - Lowest cost current route
 - Distributed Reforming
 - Cost: Current: \$4.00-\$6.00/kg Projected: \$1.50-\$3.00/kg
 - Lowest cost current route for delivered hydrogen
 - Very sensitive to NG price
 - GHG emissions unavoidable

Biomass

- Supply
 - 6-10 Quads/yr. currently possible
 - Could be much more with biotech advancements
- Feedstock Cost and Infrastructure are Key Issues

- Central Production Process Options

- Gasification
 - Cost: Current \$2.00-\$4.00/kg Projected: \$1.00-\$3.00/kg
- Fermentation
 - Relatively unexplored
- Anaerobic Fermentation → Methane → Hydrogen
 - Agriculture, MSW or industrial sites
 - Existing biomass "collection" infrastructure
 - Co-Gen power and hydrogen possible
 - Sensitive to scale of operations and required distribution infrastructure

Biomass

- Central/Distributed Process Options
 - Trades hydrogen delivery costs for liquid carrier costs plus reforming
 - Fermentation \rightarrow Ethanol \rightarrow Hydrogen
 - Fungible transition from ethanol fuel
 - Cost ??
 - Gasification → Syngas → Methanol (Ethanol) → Hydrogen
 - Pyrolysis → Bio-Oil → Hydrogen
 - Sugar Hydrogenation → Sugar Polyols (e.g., Sorbitol)→ Hydrogen

Water: Electrolysis

- Distributed and central production
- Requires non-GHG emitting clean power: wind, solar, geothermal, hydroelectric, nuclear, fossil with sequestration
- Supply:
 - Essentially unlimited
 - Need purified water

Distributed Electrolysis

- Cost: Current: \$4.00-\$8.00/kg Projected: \$2.50-4.50/kg
- Electricity cost is the driver/controlling
- Eliminates hydrogen delivery costs and infrastructure

Central Electrolysis

- Cost: need better analysis
- Enables more efficient use of intermittent renewables
- Enables more efficient use of off peak power availability
- High temperature steam electrolysis may be more efficient
- Requires hydrogen delivery

Water: Photolytic Production

- Supply: Unlimited
- Central Production Utilizing Photosynthetic Organisms (Algae)
 - Cost: Current ~\$200/kg Projected: <\$5.00/kg
 - Requires breakthroughs in biotechnology and systems engineering
 - Land area requirements or ocean operations
- Central or Distributed Direct Photoelectrochemical Production
 - Cost: Current: N/A Projected: <\$3.00/kg
 - Requires breakthroughs in materials
 - Intermittent: diurnal cycle
 - The ultimate system if successful: renewable, unlimited, simple

High Temperature Thermochemical Water Splitting

- Process Options
 - High temperature (500-1000 C) central production utilizing advanced nuclear energy heat source (or other source) and S-I or CaBr (or other) cycles
 - Ultra-high temperature (1000-3000 C) water splitting chemical cycles utilizing concentrated solar energy
 - Direct water splitting
- Unproven Chemical Cycles
- Materials Issues

Summary

Route	\$/kg Current	\$/kg Projected	%EE WTP ¹	GHG WTW Reduc. ^{1,2}
Coal: Central Gasification	\$0.90-1.80	\$0.50-1.10	_	High W/Sequest.
Coal: C/D Gasification/Reforming	_	_	_	Low-Medium
NG: Central Reforming	\$0.60-1.00	\$0.40-0.90	62%	61%
NG: Distributed Reforming	\$4.00-6.00	\$1.50-3.00	60%	High
Biomass: Central Gasification	\$2.00-4.00	\$1.00-\$3.00	_	High
Biomass: Central Fermentation	_	_	_	High
Biomass: Central Ferm./Methane/Hydrogen	_	-	_	High
Biomass: C/D Gasification/Methanol or Ethanol/Hydrogen	_	_	_	High
Biomass: C/D Pyrolysis	_	_	_	High
Biomass: C/D Ferm./Ethanol/Hydrogen	_	<\$3.00	41% Total 92% Fossil	98%
Biomass: C/D Sugar Hydrogenation/Polyols/Hydrogen	_	_	_	High

Summary

Route	\$/kg Current	\$/kg Projected	% EE WTP ¹	GHG WTW Reduc. ^{1,2}
Water: Electrolysis: Distributed	\$4.00-8.00	\$2.50-4.50	28% Grid 68% Renew.	(22%) Grid ~100% Renew.
Water: Electrolysis: Central		_	_	Low: Grid High: Renew.
Water: Central Photolytic: Organisms (e.g. algae)	~\$200	<\$5.00	_	High
Water: Central or Distributed Photolytic: Photoelectrochemical	_	<\$3.00	_	High
Water: Central HT Splitting Chemical Cycles	_	<\$2.00	_	High
Water: Central U-HT Splitting Chemical Cycles	_	_	_	High
Water: Direct Water Splitting	_	_	_	High

- The estimates, except for the distributed water electrolysis case using renewable electricity, are from "Guidance for Transportation Technologies: Fuel Choice for Fuel Cell Vehicles, Final Report prepared by Arthur D. Little for U.S. Department of Energy, February 6, 2002, http://www-db.research.anl.gov/db1/cartech/document/DDD/192.pdf. The distributed water electrolysis estimates are from Wang, M., "Fuel Choices for Fuel-Cell Vehicles: Well-to Wheels Energy and Emissions Impacts," *Journal of Power Sources*, **112(1):** 307-321, October 2002.
- 2. GHG well-to-wheels reduction is the reduction of GHG emissions as compared to the emissions from standard/today's gasoline ICE.

Potential Scenarios

Short Term

 Distributed: NG, Liquids (including biomass derivatives), Electrolysis
 Central NG, Coal and Biomass
 Renewable Power: Wind, Solar, Hydro, Geothermal
 Central Coal with Sequestration
 Photolytic: Photoelectrochemical, Photosynthetic organisms
 Thermochemical Water Splitting Nuclear, Solar, Other

Long Term

Hydrogen Delivery

Hydrogen Delivery: Develop cost effective, energy efficient delivery technologies for hydrogen to enable the introduction and long term viability of hydrogen as an energy carrier.

Barriers

- Lack of hydrogen/carrier infrastructure options analysis
- Capital cost of hydrogen pipelines
- Cost of hydrogen compression and liquefaction
- Cost of gas or liquid truck or rail transport
- Hydrogen capacity and cost of known solid or liquid carriers.
- Chemical carriers (i.e. ethanol, bio-oils, naphtha) require two processing operations

Delivery Options

- End Game
 - Pipeline Grid
 - Other as needed for remote areas
 - Breakthrough Hydrogen Carriers
 - Truck: HP Gas & Liquid Hydrogen
 - Electrolysis and Distributed reforming of NG, Renewable Liquids (e.g. ethanol etc.)
- Transition
 - Electrolysis and Distributed reforming of NG, Renewable Liquids (e.g. ethanol etc.), other liquids
 - Truck: HP Gas & Liquid Hydrogen
 - Regional Pipeline Grids
 - Breakthrough Hydrogen Carriers

Technoeconomic Analysis

- Basic economic analysis of individual processes to produce or deliver hydrogen
 - Project by project basis: Project Team or other resources
 - H2A Core effort

- Timeframe: 2005, 2015, 2030
- Most better known routes to hydrogen
- Consistent, comparable, transparent approach
- Central Production
 - Coal Gasification
 - NG Reforming
 - Biomass Gasification
 - Nuclear: S-I, HT Steam Electrolysis
 - Wind Electrolyis

- Forecourt/Distributed
 - Dispensing Only
 - NG Reforming
 - Electrolysis
 - Ethanol Reforming
 - Methanol Reforming
- Delivery: Hydrogen Pipeline, Tube Trailer, Liquid Truck
 - Components
 - A few basic metropolitan and interstate cofigurations

Infrastructure: Transition & End Game

- In what scenarios (under what conditions) will the hydrogen economy succeed?
- How do individual technologies affect the transition to and functioning of the system?
- How do alternative energy sources affect the transition to and functioning of the system?
- How will the evolution of the system over time and geographically affect costs and benefits?
- What is the role for policy in the transition and maintenance of the hydrogen economy?
- What are the costs and benefits (including the global macroeconomic effects) of a hydrogen economy?

Infrastructure: Transition & End Game

- FY04 Plan: Learn by Doing
 - Insert some hydrogen pathways and FCVs into TAFV (ORNL) model
 - GIS level modeling of infrastructure in the mid-west (Joan Ogden)
 - Metropolitan infrastructure modeling (Tellus)
 - All energy systems modeling (LLNL)
 - Small region/U.S. modeling (WINDS: NREL)
 - Infrastructure NPV analysis (TIAX)
 - Delivery options analysis (Solicitation)
 - Transitions analysis (Solicitation)