Catalytic Treatments of Biomass Derived Gas I

Young-Kwon Park

The University of Seoul

Utilization of Biomass

Thermochemical Conversion of Biomass

Basic Definitions

Pyrolysis

- Thermal conversion (destruction) of organics in the absence of oxygen
- In the biomass community, this commonly refers to lower temperature thermal processes producing liquids as the primary product
- Possibility of chemical and food byproducts

Gasification

- Thermal conversion of organic materials at elevated temperature and reducing conditions to produce primarily permanent gases (CO, H2, CH4, etc.), with char, water, and condensibles as minor products
- Primary categories are partial oxidation and indirect heating

Classification of Pyrolysis

Methods to Remove Tars from Producer Gas

 Physical Process - Filters, Wet Scrubbers • Thermal Process - Temperature exceeding 1000°C - require expensive alloys Catalytic Process -Operate at much lower temperature (600-800°C) than thermal process - Provide the simplest and most effective means of removing tar

Tar Decomposition Reaction

• Cracking - $pCnHx \rightarrow qCmHy + rH2$ Steam Reforming - $CnHx + nH2O \rightarrow (n+x/2)H2 + nCO$ Dry Reforming - CnHx + nCO2 \rightarrow (x/2)H2 + 2nCO Carbon Formation - $CnHx \rightarrow nC + x/2 H2$

Criteria for the Catalyst

 The catalysts must be effective in the removal of tars

• If the desired product is syngas, the catalysts must be capable of reforming methane The catalysts should provide a suitable syngas ratio for the intended process The catalysts should be resistant to deactivation as a result of carbon fouling and sintering The catalysts should be easily regenerated The catalysts should be strong

The catalysts should be inexpensive

Two Distinct Groups of Catalyst

Primary Catalyst

-added directly to the biomass prior to gasification

 addition is either by wet impregnation of the biomass material or by dry mixing of the catalyst

purpose is reducing the tar content and have little effect on the conversin of methane and C2-3 hydrocarbons in the product gas
operate under the same conditions of the gasifier

Two Distinct Groups of Catalyst Observation with Primary Catalyst - A change in product distribution - A decrease in tar amount - an increase in hydrocarbon production - a slight decrease in the amount of CO and increase in the amount of CO2 - an almost no variation in the amount of CH₄

Problems regarding catalyst deactivation and carryover of fines were severe
Catalytic tar reduction depends on gasification conditions

Catalyst in primary measures

Table 1 In-bed additives used by researchers under different operating conditions

Feed	Feed properties		Operating conditions			Additive	Reference
	Moisture (%)	Size (mm)	Gasif. agent	Temp (°C)	Time (s)		
Cellulose	_	1.0 - 2.0	Steam	600-800	1.26-1.54	Limestone	Walawender et al. [33]
Wood	_	_	Steam	750	_	K_2CO_3	Douglas et al. [52]
Pine sawdust	8.5	1.0	Steam	750	_	Dolomite	Corella et al. [37]
						FCC	
Pine sawdust	10-25	-4.0-0.8	Air	800	0.6	Dolomite	Narváez et al. [13]
Pine chips	10 - 12	-5.0 - 1.0	$Steam/O_2$	795-835	_	Dolomite	Olivares et al. [38]
Pine sawdust	10	_	Steam	700	< 0.4	Ni-Al	Bilbao et al. [46]
Pine sawdust	10	_	CO ₂	700	_	Ni-Al	García et al. [23]
Pine chips	_	_	Air;steam/O ₂	800-850	_	Dolomite	Corella et al. [9]
Pine chips	10 - 15	_	Air	800-845	_	Dolomite	Gil et al. [14]
						FCC	
Almond shell	7.9	1.1	Steam	770-820	_	Olivine	Rapagnà et al. [39]
						Dolomite	
Birch	6-8	1.0 - 3.0	$O_2 - N_2$	700-900		Silver sand	Rosén et al. [41]
			_			Olivine	
Pine/bagasse	_	_	Steam	750	30	Ni-based	Baker et al. [44]

Two Distinct Groups of Catalyst

Secondary Catalyst

- placed in a secondary reactor downstream from the gasifier

- Independent of the type of gasifier
- Operated under different conditions

Tar Reduction Concept

Fig. 1. Tar reduction concept by secondary methods.

