

Intramolecular Hydrogen bonding for Lattice fluid EOS

J.H.Lee and C.S.Lee Chemical and Biological engineering in Korea Univ.

Intramolecular Hydrogen bonding

.

Models for intramolecular HB

Proposed Model and model parameter

Results

Conclusion

Intramolecular Hydrogen Bond

Intramolecular hydrogen bond

A hydrogen bond formed between **two functional groups** of the same molecule

Intramolecuar HB plays an important role in **Protein folding**

Intramolecular HB - Polymer

 Cloud-point pressure is decreased owing to intramolecular HB at polar solvents (Gregg et al, 1994)

Previous Work -Ghonasgi(1994)

- For intermolecular association, Wertheim's thoery
- For intramolecular association, Ghonasgi(1994)'s theory was used.

Previous Work – Lattice HB

 Developed by Brinkley(1998) and Missopolinou (1999)

 $\Omega_{\rm HB} = \Omega_{\rm intra} \Omega_{\rm inter}$

Analysis of Intra- and Intermolecular HB of Glycolether using FTIR experiments.

- **H-bond**_{OH-OH} =**H-bond**_{OH-Ether}
- One way of forming intramolecular HB for molecule

$$(Q_{intra} = 1)$$

Problem – Brinkley's theory

 No consideration about distributing Intramolecular HB molecules among total molecules

 $P_{\text{inter}} = \frac{c_M \rho}{N_T}$ B : Intramolecular HB pair M: Intermolecular HB pair $P_{\text{intra}} = c_B$ $c_B : \text{probability for ring formation}$ $Q_{\text{inter}} = \frac{(N_1 - B)!(3N_1 - B)!}{(N_1 - B - M)!(3N_1 - B - M)!M!}$ $Q_{\text{HB}} = Q_{\text{intra}}Q_{\text{inter}}P_{\text{intra}}^B P_{\text{inter}}^M \exp(\frac{-\Delta F_B}{kT})\exp(\frac{-\Delta F_M}{kT})$

Missopolinou (1999)

First formalisms for equation-of-state H-bond_{OH-OH} H-bond_{OH-Ether}

Problem – Missopolinou's model

 If sequence of numbering is reversed, partition function is different.

This Work

- Correct formalism of Q_{intra} and Q_{inter}
- General intramolecular HB model for any molecules

• Assumption Number of distributing intermolecular molecules

$$Q_{\text{intra}} = \frac{N_1}{(N_1 - B)!B!} (c)^B \exp(-B\frac{A_{12}}{kT})$$
HO CH₂—CH₂—OH
HO CH₂—CH₂—OH

 $A_{intra} = A_{ij}(inter)$

This Work

2-methoxy ethanol

$$Q_{\text{intra}} = \frac{N_1}{(N_1 - B)!B!} (c)^B \exp(-B\frac{A_{12}}{kT})$$

$$Q_{\text{inter}} = \frac{(N_1 - B)!}{N_{11}!N_{12}!(N_1 - B - N_{11} - N_{12})!} \frac{N_1}{(N_1 - N_{11})!N_{11}!} (\frac{r_H}{N_r})^{N_{11}}$$

$$\times \frac{(xN_1 - B)!}{(xN_1 - B - N_{12})!N_{12}!} \times (\frac{r_H}{N_r})^{N_{12}} \times \exp(-N_{11}\frac{A_{11}}{kT} - N_{12}\frac{A_{12}}{kT})$$

$$\textbf{HO} - \textbf{CH}_2$$

$$Q_{\text{intra}} = \frac{N_1}{(N_1 - B)!B!} (c)^B \exp(-B\frac{A_{\text{intra}}}{kT})$$

$$Q_{\text{inter}} = \frac{(2N_1 - B)!}{N_{11}!(2N_1 - B - N_{11})!} \frac{(2N_1 - B)!}{(2N_1 - B - N_{11})} \times (\frac{r_H}{N_r})^{N_{11}} \times \exp(-N_{11}\frac{A_{11}}{kT})$$

Result

FTIR regression

- Hydrogen bonding parameter from 35°C and 45°C experiment data
- Pure parameter fitting
- VLE calculation
 - Comparison with Intra HB and without Intra HB

FTIR regression

Fig. 1. Hydrogen bonding in 2-methoxy ethanol + hexane system at 35°C

FTIR regression

Fig. 2. Hydrogen bonding in 2-methoxy ethanol + hexane system at 45°C

Model characteristics

Temp(K)

Fig. 3. Inter- and intramolecular hydrogen bond in 2-methoxy ethanol

Pure parameter fitting

Regressed intramolecular parameter

	U _{HB}	$\mathbf{S}_{\mathbf{HB}}$	C
Alcohol	-4332	-2.98	-
Ether	-2384	-2.98	-
2-methoxyethanol	-	-	0.005

Pure parameter for 2-methoxy ethanol

	r _A	r _B	r _C	e _A	e _B	e _C	DP(%	D (%)
Inter only	7.000	0.0038	-0.0024	93.15	0.175	0.162	4.04	0.054
Intra + Inter	7.578	0.015	-0.0013	123.0	-0.090	-0.299	1.81	0.148

$$DP(\%) = \frac{100}{N} \sum_{i=1}^{N} |1 - \frac{P_i^{calc}}{P_i^{exp}}| \quad D\rho(\%) = \frac{100}{N} \sum_{i=1}^{N} |1 - \frac{\rho_i^{calc}}{\rho_i^{exp}}|$$

Fig. 4. n-Hexane + 2-methoxy ethanol at 40°C and 50°C

Fig. 5. n-Heptane + 2-methoxy ethanol at 50°C

Fig. 6. n-Cyclohexane + 2-methoxy ethanol at (a) 30 (b) 40 and (c) 50°C

Comparison

System	Temp	DP(%)			
	(K)	Intermolecular only	Intra and Intermolecular		
n-Hexane	313.15	7.23	5.08		
2-methoxyethanol	323.15	6.01	5.12		
n-Heptane	323.15	5.40	8.09		
2-methoxyethanol					
	303.15	6.20	4.96		
Cyclohexane .					
2-methoxyethanol	313.15	5.77	3.69		
	323.15	4.81	2.62		

$$DP(\%) = \frac{100}{N} \sum_{i=1}^{N} |1 - \frac{P_i^{calc}}{P_i^{exp}}|$$

- Intramolecular hydrogen bonding based Lattice fluid statistics was proposed which considers the number of distributing molecules with intermolecular bonds
- Regressed Hydrogen bonding parameter and flexibility parameter showed consistent behavior of FTIR experiment data qualitatively and possibility for application to the equation of state.
- The models was found applicable to the calculation of VLE of alkane-2-methoxy ethanol in comparison with the model with only intermolecular HB