2004 추계 화공학회

Vapor-Liquid Equilibria for CO₂ - Nonionic Surfactant System at Elevated Pressures

Hyunsoon Shin, Moonsam Shin, Youngdae Kim, Hwayong Kim*

School of Chemical Engineering, Seoul National University

Introduction

- Surfactants systems, especially micelle and microemulsion systems, was highly non-ideal behavior due to the hydrogen bonding and hydrophobic interaction.
- Surfactants + water and surfactants + alkane phase equilibrium data has been extensively investigated at low pressures, but only a few data of *surfactant* + CO₂ vapor-liquid Equilibria are available at elevated pressures.
- Furthermore, VLE measurements for CO₂ and surfactant mixtures are especially important because the properties of such mixtures are difficult to be predicted from the pure component values.
- In this work, *Vapor-Liquid Equilibria for the binary CO₂ + alkyl polyoxyethylene alcohol surfactant systems* were investigated at elevated pressures.

Apparatus and Materials

Materials

CO₂ : Korea Gas industry with 99.99% purity

C3E1 : Ethylene glycol monopropyl ether, Aldrich with 99.5% purity

Thermometer

probe : 5614, Indicator : 1560 supplied by Hart Scientific Co. (accuracy \pm 0.03 K in 373~673 K)

Pressure transducer

STJE/1833-2 supplied by Sensotec Co. (range <1000 psia, accuracy \pm 0.1%)

Gas Chromatography

detector : TCD column : Porapak S in 0.95 cm O.D. and 160 cm long

Experimental apparatus

Experiment : CO₂ + C3E1 System

T(K)	P(bar)	x ₁	y ₁	T(K)	P(bar)	x ₁	y ₁
	3.35	0.046	0.985	323.15	4.22	0.061	0.987
	7.31	0.102	0.988		7.22	0.090	0.989
	12.12	0.145	0.991		12.67	0.141	0.992
	19.73	0.210	0.993		19.79	0.208	0.993
	25.86	0.293	0.994		29.71	0.303	0.996
212 15	34.42	0.391	0.995		41.89	0.401	0.996
313.15	43.58	0.489	0.995		54.89	0.527	0.996
	51.51	0.562	0.995		61.40	0.606	0.996
	60.13	0.659	0.996		71.83	0.695	0.996
	66.73	0.728	0.996		82.10	0.786	0.995
	71.87	0.812	0.996		88.66	0.874	0.995
	75.93	0.887	0.995		91.17	0.892	0.994

Cubic Equation of State

Peng – Robinson Equation of State

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b) + b(V - b)}$$

$$a(T) = 0.45724 \frac{R^2 T_c^2}{P_c} \times \alpha(T_r, \omega) \qquad \alpha^{1/2} = 1 + \kappa (1 - T_r^{1/2}) \qquad \kappa = 0.37464 + 1.54226\omega - 0.26992\omega^2$$

$$b(T) = 0.07780 \frac{RT_c}{P_c}$$

van der Waals 1-fluid mixing rule

$$a_{m} = \sum_{i} \sum_{j} x_{i} x_{j} a_{ij} \qquad a_{ij} = \sqrt{a_{ii} a_{jj}} (1 - k_{ij})$$
$$b_{m} = \sum_{i} \sum_{j} x_{i} x_{j} b_{ij} \qquad b_{ij} = \frac{(b_{ii} + b_{jj})}{2}$$

Ind. Eng. Chem. Fundam., Vol. 15. No. 1, 59 (1976)

Statistical Associated Fluid Theory (SAFT)

$$Z_{res} = Z_{hs} + Z_{disp} + Z_{chain} + Z_{assoc}$$

$$z_{hs} = \frac{6}{\pi N_A \rho} \left[\frac{\xi_0 \xi_3}{1 - \xi_3} + \frac{3\xi_1 \xi_2}{(1 - \xi_3)^2} + \frac{(3 - \xi_3)\xi_2^3}{(1 - \xi_3)^3} \right] \qquad \qquad \xi_k = \frac{\pi N_A \rho}{6} \sum_{i=1}^m x_i r_i (d_i)^k$$

$$z_{disp} = r \sum_{n} \sum_{m} m D_{nm} (u/kT)^n (\xi_3/\xi_{3cp})^m$$

$$Z_{chain} = \sum_{i=1}^{m} x_i (1 - r_i) L(d_i) \qquad L(d_i) = \frac{2\xi_3 + 3d_i\xi_2 - 4\xi_3^2 + 2d_i^2\xi_2^2 + 2\xi_3^3 + d_i^2\xi_2^2\xi_3 - 3d_i\xi_2\xi_3^2}{(1 - \xi_3)(2 - 4\xi_3 + 3d_i\xi_2 + 2\xi_3^2 + d_i^2\xi_2^2 - 3d_i\xi_2\xi_3)}$$

$$z_{assoc} = \rho \sum_{i=1}^{m} x_i \left[\sum_{S_i} \left(\frac{1}{X^{S_i}} - \frac{1}{2} \right) \frac{\partial X^{S_i}}{\partial \rho} \right] \qquad \qquad X^{S_i} = \left(1 + N_{Av} \sum_{j=1}^{m} \sum_{Y_j} x_j \rho X^{Y_j} W_{ij} \right)$$

Sanchez-Lacombe EOS

$$Z = r \left[-\frac{1}{\widetilde{\rho}} \ln(1-\widetilde{\rho}) + (1-\frac{1}{r}) - \frac{\widetilde{\rho}}{\widetilde{T}} \right]$$

$$\frac{\mu_i}{kT} = \ln \phi_i + 1 - \frac{r_i}{r} + r_i \left[-\frac{\widetilde{\rho}}{\widetilde{T}} + \frac{\widetilde{P}\widetilde{v}}{\widetilde{T}} + (\widetilde{v}-1)\ln(1-\widetilde{\rho}) + \frac{1}{r_i}\ln\widetilde{\rho} \right] + r_i \widetilde{\rho} \left(\sum_{j=1}^{i} \phi_j \chi_{ij} - \sum_{j=1}^{i} \sum_{k=j+1}^{i} \phi_j \phi_k \chi_{jk} \right)$$

$$\phi_i = \frac{x_i r_i}{r}, \quad r = \sum x_i r_i \quad or \quad \frac{1}{r} = \sum \frac{\phi_i}{r_i} \qquad \qquad \chi_{ij} = \frac{(\varepsilon_{ii}^* + \varepsilon_{jj}^* - 2\varepsilon_{ij}^*)}{kT}$$

$$\varepsilon^* = \sum_i \sum_j \phi_i \phi_j \varepsilon^*_{ij}, \qquad v^* = \sum_i \phi_i v^*_i$$

$$\varepsilon^*_{ij} = \sqrt{\varepsilon_{ii}^*} \varepsilon^*_{jj} (1-k_{ij}), \qquad v^*_{ij} = \frac{(v^*_{ii} + v^*_{jj})}{2}$$

Macromolecule, Vol. 11, No. 6, 1145 (1978) Seoul National University Soaring towards the Future

Pure parameters for EOS

• Pure parameters for PR EOS

	$T_c(K)$	$P_c(bar)$	ω	Reference
CO ₂	304.21	73.83	0.224	Exp. Data
C1E1	564.00	50.10	0.733	Lydensen Method
C2E1	569.00	42.40	0.758	Lydensen Method
C3E1	615.20	36.51	0.487	Exp. Data

• Segment and site-site parameters for SAFT EOS

	ν^{∞}	т	u^0/k	ε^{AA}/k	$10^2 k^{AA}$
CO ₂	13.60	1.414	215.63		
C1E1	12.00	4.178	260.19	2290.45	0.462
C2E1	12.00	4.183	256.23	2051.24	1.227
C3E1	12.00	4.756	254.32	1571.79	1.228

Pure parameters for Sanchez-Lacombe, Consistent Sanchez-Lacombe EOS

	$T^*(K)$	P*(bar)	*(g/cm ³)
CO_2	290.84	6619.50	1.573
C1E1	506.75	7272.25	1.122
C2E1	506.78	6122.24	1.088
C3E1	569.92	4461.00	1.016

Fluid Phase Equilibria, Vol. 185, 219(2001)

Soaring towards the Future

Correlation Result : compared with PR, SAFT EOS

Correlation Result for CO₂ + CIE1 System

Correlation Result for $CO_2 + C2E1$ System

Correlation Result for $CO_2 + C3E1$ System

	k _{ij}	AADP		k _{ij}	AADP		k _{ij}	AADP
PR	0.0646	0.0932	PR	0.0659	0.1144	PR	0.0381	0.0552
SL	0.0581	0.0416	SL	0.0784	0.0506	SL	0.0988	0.0637
CSL	-0.0078	0.0130	CSL	-0.0057	0.0213	CSL	-0.0659	0.0504
SAFT	0.0635	0.0110	SAFT	0.0600	0.0243	SAFT	0.0407	0.0941

Correlation Result : Consistent Consideration

Seoul National University Soaring towards the Future

Correlation Result : Consistent Consideration

Correlation Result for $CO_2 + C1E1$ System at 322.90 K SL : $k_{ij} = 0.0581$, AADP = 0.0416, CLS : $k_{ij} = -0.0078$, AADP = 0.0130

Correlation Result for $CO_2 + C2E1$ System at 323.3 K SL : $k_{ij} = 0.0784$, AADP = 0.0506, CSL : $k_{ij} = -0.0057$, AADP = 0.0213

- The isothermal VLE data for the system CO₂ + C3E1 were obtained at 313.15, 323.15 K at elevated pressures.
- The consistent Sanchez-Lacombe equation of state showed more improved results in the isothermal CO₂ + surfactant VLE correlation than the Sanchez-Lacombe equation of state and compared with Peng-Robinson equation of state and SAFT equation of state.
- The Fugacity coefficients derived from the Sanchez-Lacombe equation of state are considered for calculating consistent phase equilibrium conditions.

