The Solubility of PCL (polycaprolactone) in various solvents with and without CO₂

Ji Ho Ryu¹, Ji Young Park², Youn Woo Lee³, Jong Sung Lim^{1*} ¹Sogang University, ²KIST, ³Seoul National University

Introduction What's is the supercritical fluid?

Supercritical fluid

- above its critical temperature & critical pressure.
- only one state-of-the-fluid
- gas-like properties

low surface tension \rightarrow excellent penetration high diffusivity \rightarrow fast transfer rate low viscosity \rightarrow good hydrodynamic features

liquid-like properties
high density → high solvent power

Approach to DDS (Drug Delivery System) - Supercritical Fluid Technology -

Applications to DDS

Coating Effective material Effective component

pulmonary drug

slow dissolution drug

Why should we make particles with Supercritical Fluid Technology?

- Several stable processes invented to make small particles (micro \sim nano)

- Narrow diameter dispersion, high degree of purity
 - No solvent existence
 - can use the very low solubility materials
 - reduce several separating and refining processes
 - stable and safety from the thermal threat

Solute Polycaprolactone (PCL)

Polycaprolactone – biodegradable polymer

Ring Opening Polymerization

Caprolactone

Polycaprolactone

- **usage** : Contraceptive pill, Artificial skin, Surgical thread, Film & coating material for DDS

- Essential conditions of PCL for DDS

No rejection symptoms in the body Non-toxic residual product Dissolved materials is eliminated by metabolism

Solvent	Chemical formula	M.W.	Tc/K	Pc/MPa	Dipole moments
Dimethylether (DME)	CH ₃ OCH ₃	46.06	400.00	5.24	1.3
Chlorodifluoromethane (HCFC-22)	CHClF ₂	84.46	369.30	4.97	1.4
Carbon dioxide	CO ₂	44.01	304.18	7.38	0

SOGANG UNIVERSITY

Apparatus schematic diagram

Figure 1. Schematic diagram of experimental apparatus 1. Water for pressuring 2. Pressure generator 3. Pressure gauge 4. Piston 5. Sapphire window 6. Magnetic bar 7. Stirrer 8. Air bath 9. Variable-volume cell 10. Light source 11. Borescope 12. Camera 13. Monitor 14. Temperature gauge 15. Heater 16. Heating Controller

Solubility Measurement

- The cell charged with a certain weight-percent PCL
- Purge 3 times with solvent in order to remove air
- Inject the solvent into the cell
- Control the temperature in the air bath
- Using the pressure generator, put incompressible fluid into the other side of cell to make one-state-of-fluid
- Extract the incompressible fluid from the cell slowly, the magnetic bar spinning in the cell would be disappeared ← That's the cloud point !!!

PCL (M_w=103,750) + HCFC-22

P-T isopleths of cloud points of polycaprolactone in a HCFC-22 at various polymer molecular weight

PCL $(M_w = 103,750) + DME + CO_2$

P-T isopleths of cloud points of polycaprolactone in DME + CO_2 mixed solvent. (CO_2 wt% is polymer free basis)

PCL $(M_w = 103,750) + HCFC - 22 + CO_2$

P-T isopleths of cloud points of polycaprolactone in HCFC-22 + CO₂ mixture (CO₂ wt% is polymer free basis)

Conclusion

The solubility of PCL was not concerned with concentrations of PCL (3, 5, 7 wt%)

The phase behavior of PCL in each solvent exhibited LCST (lower critical solution temperature) behavior

HCFC-22 was more powerful solvent than DME for dissolving PCL (The cloud point pressure of PCL in HCFC-22 was lower than in DME at the same temperature)

 CO₂ could be used as an Anti-solvent (As the proportion of CO₂ increased in each solvent, the solvent power was getting more weak)

