이산화탄소의 재활용기술 현황 (III)

\succ Synthesis Gas from CO₂

 $CO_2 + CH_4 \leftrightarrow 2CO + 2H_2$

 $\mathrm{CO}_2 + \mathrm{H}_2 \iff \mathrm{CO} + \mathrm{H}_2\mathrm{O}$

- Highly endothermic reaction
- Catalyst : Rh/Al_2O_3 , Ru/Al_2O_3 , Pt/Al_2O_3 , Ir/Al_2O_3 , KNiCa/Zeolite, $Ni_{0.03}Mg_{0.97}O$, Pt/ZrO_2
- Coking by carbon deposition

 $CH_4 \leftrightarrow C + 2H_2$

 $2CO \leftrightarrow C + CO_2$

- Resistance : Ru > Rh = Pt > Ir
- Combining of Y_2O_3 , Eu_2O_3 to minimize coking

Synthesis of Methane

(1) $CO_2 + H_2 \leftrightarrow CO + H_2O$ $CO_2 + 3H_2 \leftrightarrow CH_4 + H_2O$ (2) $CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$

- Catalyst : Ru/SiO₂, Co/SiO₂, Ni/SiO₂, Fe/SiO₂
- Need of Excess H_2 (4 H_2 /C H_4)
- Difficulty of storage and transportation of methane

- Synthesis of chemicals by microwave
 - Catalyst : Supported Ni in microwave reactor
 - Conversion : 5%, Products : methane(55.1%), C_4 + alcohol(28.4%)
- Methylamine synthesis(Baiker et al., J. Chem. Soc. Chem. Commun., 1995)
 - Commercial process is operated with MeOH and NH₃
 - Direct methylamine synthesis from $H_2/CO_2/NH_3$
 - Catalyst : Cu/Al_2O_3

> Higher Hydrocarbon Synthesis

- Methanol synthesis from CO/CO_2 and H_2
 - ICI process
 - Catalyst : CuO/ZnO/Al₂O₃, CuO/ZnO/Cr₂O₃
 - Reaction: 230~300°C, 50~100bar
- Methanol-to-Hydrocarbon process
 - MTG/MTO process
 - Catalyst : HZSM-5, SAPO
 - Reaction: 300~500°C, 1~20bar

Methanol synthesis from CO₂

Direct conversion of CO_2 to hydrocarbon over a hybrid catalyst system

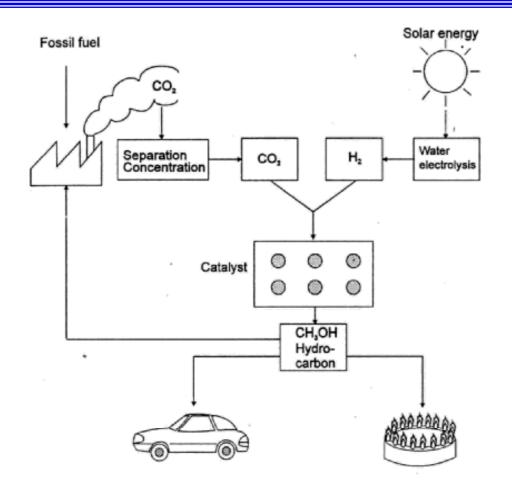
\triangleright Overall approaches to the hybrid catalysts for CO₂ hydrogenation

- Lower hydrogenating ability of methanol synthesis catalyst
- The effect of zeolites characteristics on the hydrocarbon formation
 - structure, acidity, pore size

 CO_2 hydrogenation over hybrid catalysts composed of CuZnOZrO₂ and zeolites

Hybrid catalyst	H.C. yield (wt%)	C ₂₊ H.C. Yield(wt%)	Main product
A + HZSM-5	2.7	2.2	Ethane
A+ Cu/HZSM-5	4.2	3.8	Ethane
A + SAPO-5	9.1	8.8	Butane
A+ Cu/SAPO-5	14.9	14.4	Butane
A + SAPO-34	11.0	10.6	Propane
A+ Cu/SAPO-34	15.8	15.5	Propane

A : Cu/ZnO/ZrO₂ , Cu : 1.5 wt % 400° C, 28 atm, W/F = 20g-cat•h/mol


Hydrogen Supply

- Steam Methane Reforming
 - $CH_4 + H_2O \leftrightarrow CO + 3H_2$
- CO₂ reforming without carbon formation
 - $\quad \mathrm{CO_2} + \mathrm{CH_4} \, \leftrightarrow \, \mathrm{2CO} + \mathrm{2H_2}$
- Solar energy for water electrolysis
- Biomass conversion

Solar Hydrogen Production by Photocatalyst

- To realize CO₂ hydrogenation process as a solution for the global warming, solar hydrogen providing system from water should be established
 - photocatalytic production of H_2 from water is needed
- Catalyst : $Na_2CO_3 + 5wt\% NiO/TiO_2$ system
 - Products : 400m^2 of H₂ and 200m^2 of O₂ for 6.5 hrs solar light irradiation

▶ 이산화탄소의 재활용에 의한 연료생산 과정의 개념도

➤ Summary

• Catalytic conversion technology \rightarrow not yet feasible(economically)

but increasingly urgent (environmental regulations)

- CO_2 : Chemically too stable \rightarrow thermodynamical constraints for high conversion
- Main products : Alcohol(MeOH, EtOH, PrOH, BuOH), Fuels (Hydrocarbon), Fine Chemicals (ester, acid, pyrone, lactone)
- Hydrogen supply : Solar energy for water electrolysis, Steam Methane Reforming, CO₂ reforming without carbon formation etc
- Separation and Recovery of CO₂ connected with catalytic utilization