산업세정연구회 세미나

▶에어로졸 건식세정기술 현황 ▶ 및 연구개발 동향 (2)

2005. 11. 24

중앙대학교 화학공학과

김선근

Argon Snow Cleaning Applications

Removal Efficiencies of Other Contaminants

Contaminant Materials	Dimension	Remarks
Bearing grease film on glass		Complete removal
Polystyrene latex film on glass		Complete removal
Fingerprints(oil droplets) on glass	~50microns	Not removed
Wax residue spots on silicon	~30microns	Not removed
Glass microspheres on silicon	1.6 microns	Complete removal
Polystyrene latex microspheres on silicon	0.6, 0.5&0.3 microns	Complete removal
Silicon debris on silicon	0.1~30 microns	Complete removal

Argon Snow Cleaning Applications

Figure SEM image of polysilicon etch residue.

Figure 8: SEM image of metal corrosion on aluminum lines on uncleaned wafer.

SEM image of polysilicon lines after aerosol cleaning.

Figure SEM image of aerosol-cleaned metal lines showing no corrosion.

Pellet 제조

Pellet 제조

Schematic diagram of dry ice pellet blasting

Pellet Properties

Diameter $D_P = 3 \text{ mm}$ Length $L_P = 5 - 15 \text{ mm}$ Hardness 2 - 3 Mohs

CO₂ Content 99.95 %

10 **Diamond** Alumina Silica **Plastic** Starch

Moh's hardness

Dry ice

Dry Ice Pellet Cleaning Pelletizer and blaster

- Hose의 길이 및 직경
- 노즐의 형태 및 크기
- Pellet의 저장 및 공급
- Blasting 형태

Cleaning Object

- 오염종류
- 표면 경도, 열전도도, 거칠

Cleaning **Power**

Pellet

- 크기
- ●경도
- 형태

Process Variables

- 공기 압, 유량, 습도, 온도
- Pellet 공급속도
- 노즐 기판 거리
- Jet angle

- surface corrosion-rust
- oxidation
- plaster
- sealant
- Teflon
- adhesives
- mold
- chemicals polymers
- petroleum
- scale
- marine growth
- anti-fouling coat

- oil grease tar
- carbon build-up
- coatings paint graffiti varnish
- moss
- cement
- weld splash/weld slag
- mortar
- isolate-separate-release agents
- protective films
- glue silicones wax resin
- rollers cups
- soot

Industries

- Nuclear -- for nuclear decontamination of fixed and smearable activity.
- Chemical & Petroleum -- cleaning resins, glues and deposits on equipment and inside tanks.
- Electrical Power & Rotating Machinery -- cleaning electric motors, SRC banks, open relays, bearings, etc.
- Electronics Manufacturing -- fully adjustable to allow very delicate components to be cleaned.
- Food Processing -- Retards bacterial growth (CO₂ is a disinfectant) and uses pharmaceutical/food grade Dry ice to clean surfaces completely.
- *Printing* -- quickly and easily removes ink and grease and significantly extends the life of printing equipments.

Industries

- Marine -- paint comes off dry and can be vacuumed right at the work site, or collected in cloths beneath it. Even underwater removal can be accomplished safely.
- Mass Transit -- surface preparation of aluminum, plastic, rubber and glass simultaneously without damage makes this method ideal for electric motors, escalators, elevators, rail cars, buses, floors, etc.
- Steel Foundry -- cleaning of permanent molds, hot molds core boxes, isocure cores all without down time.
- Tire & Rubber -- From cleaning large in-situ molds to small O-ring cavities.

Other than Surface Cleaning

- Airport and Highway: Fog dissipation
- Weather control: Seeds for artificial rain formation

Cleaning of Large Electric Motors

Issues

Issues

Pellet transport

Pressure drop vs. gas velocity vs. pellet mass flow rate

Formation of droplets – Rayleigh limit

Electrohydrodynamic atomization modes

Particles

Contaminating films

Impact

Film Removal

Outer diameter of capillary: < 710 μm

Electric field: ~10kV

Solution flow rate: 0.5~2µL/min

Solutions: Water:methyl-2-pyrrolidone mixture

+ Ammonium acetate

Glycerol

	제어변수	Cluster 물성
	Cluster 조성	Cluster 크기
	용액 전도도	Specific charge
	전기장 voltage	
	용액 유량	Cluster 속도
	가속 voltage	Impact energy

Impulsive force

$$F_i = 4\pi (\varepsilon_0 \gamma)^{\frac{1}{2}} r^{\frac{1}{2}} V_a$$

Van der Waals force

$$F_{v} \sim \frac{Hr}{8\pi z^{2}}$$

Particle radius(μm)	F _v (N)	F _i (N)
0.01	3.2×10 ⁻⁹	8.4×10 ⁻⁶
0.10	3.2×10 ⁻⁸	2.7×10 ⁻⁵
1.00	3.2×10 ⁻⁷	8.4×10 ⁻⁵

$$\gamma = 5mN/m$$

$$z = 0.4nm$$

$$V_a = 10kV$$
 $z = 0.4nm$ $H = 8.0eV = 1.28 \times 10^{-18} J$

Microcluster beam cleaning

Applications

Figs. 1 and 2 show the before and after results, respectively, of cleaning with NanoClean technology. (Source: Phrasor Scientific)

Probe needle cleaning

Microcluster beam cleaning Applications

Microcluster beam cleaning

- -Crevices에 갇힌 오염입자의 효과적 제거
- -반도체 제조에서 진공상태의 전후 공정에 부합
- -Valve, fitting, seal 등이 없어 고순도를 유지
- -세척수 사용 저감
- -건식공정의 과도한 기체사용 저감

전망

Aerosol Cleaning

- clean, effective, economic, versatile

- 세정력 향상
- 세정범위 확대
- 공정 및 장치 최적화
- Hybridization(+ UV, ozone, other aerosol)

