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Chapter 1

Vectors

1.1 Scalars and Vectors

Scalar: a quantity described by a single number that has magntude only.
Vector: a quantity descibed by a directed line segment that has magni-
tude and direction.
Carteslan (rectangular) coordinate systemn: three mutually perpendicular
straght lines:




On each line, consider the unit point whose distance from the origin 1s 1.
The vectors defined by the directed line from the origin to the unit point are
denoted by

1 0 0
1=eg =10 j=e=|1 k=g, = |10
0 0 1

Representation of Wector in a Coordinate System:
(iven a coordinate system, a vector @ can be represented by triples of

real numbers:

I
T= | T2 | =16 + Taq + Tata
T

(iven a coordinate system, the vedior and its representation are 1denti-

fed.

Warning: a vector has different representation in different coordinate
syatems.

0
Gero [Null) Vector: 0= | 0
0
Magnitudes [Norm) of Vectors:
P norms:
lelly = (2l + ool + |meff)s 1< p<oo
] e = moaoc{ ]y |a] 5 | T2[ }
Eaxcample:

[[=lls = [=] + |z + ]2
el = ferl? + |22l + 2] ?
[3i]eo = masc{ 1] |, 23]}

||7]|; coincides with the length in Euclidean sense and, thus, 15 called Eclidean
norm. Throughout the lecture, we uee the Huclidean norm unless stated
otherwise and || - || denctes || -||.-
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Unit Ball {x: X, £3

Basic Algebraic Operatlons of Vectors
@ a scalar, &, y: vectors

Addition:
Ty K T+
T4y =| T2 |+ | W2 | = | Tatu2
Ty a Ty + Ya
Xty y
X



Scalar Multiplication:

) i k]
ar =4 | Ia = Fe)]
T LT

Properties of Addition:

o Commutativaty: T+3 =%+

o Assoclativiby: (v+y)+z=2x+(y +2)
s r+l=0+z=x

o v+ ({—x] =10

Properties of Scalar Multiplication:
o ||af| = [afll=|

o Distnbutivity: alz+y) = at + ay
o Distributivity: (¢+ bz = ax+ bz
o Assoclativity: albr) = (ab)r

o lz =2

e 0 =10

1.2 Linear Independence

Linear {or Vector] Space R™: set of vectors
Linear Combination: glven {2y, -, Tmt,

@r +aaT -+ O, & £ R

Span: 3pan of T, -+, T 18 the set of all inear combination of them,
which 1z a plane in R™.

SPAN{ T, Taye e oy T} = {T = By + T2+ - -+ + Gy & € R}

]



Linear Independence: {&y,---,%n} 15 called linearly independent if no
one of them iz in the span of others:

T E spaﬂ{:rl,- o liony Tyt 1$m}1 1.

Theorem: The famuly of vectors {#,}12; C R" are linear dependent it 3
{a;1™,, not all sero such that

Gt + e et = 0.
Proof: {«<) Linear dependence implies there exists ¢ such that
T £ spand Ty, oy oty Fipty sy Tm e
I
There exists ;s such that
Ti =@ Tr + -+ & Tiog + &g T + -0 Gl

1

STy et G T — T F & Tip o T = 0.



(=) Let a; # 0. Then

&y ty_y thiyq [

_ - 1
B S Ty — e T — iy — e —
1 & 1 & 1—1 & 1+1 & ™
Hence {17, 1z linearly dependent.
By contrapeeition, we get the following corollary.
Corcllary: The family of vectors {417, C R™ are linear independent 1ff

Bty F o F Ot =0 = g, =10 Wi

Diet.: The masamal number of linearly independent vectors in a linear
space 15 called the dimension of the linear space.

Ex: dimlR") = n

Definition: the family of wvectors {517, C R™ is sald to be a basls if
elements of the family are linearly independent each other and

V = Span{{Bi}2,).

The elements of the family are called basiz vectors of R™



Note: If # € R® 3 unique {15, such that
= Zﬁb[
(1

£=| t |iscalled the component vector (or representation) of & w.r.t.

Cn
the basis [&To,.
Theorem: In a #-dimensional vector space, any set of # linearly indepen-
dent vectors qualifies as a basis.
Froof: Let {u;}™, be a set of » linearly independent vectors. Then

fab U {u % 18 hnearly dependent. Hence
U+ Syt + - dgt, =0

where not all @;'s are sero. This implies @q # 0 since {u;}™, 18 linearly
dependent otherwizse. Then

=ity + -+ by

where b; = -4
[n]

1.3 Inner Product

Inner (Dot or Scalar] Product:




z-y = |lzllllyll cos

1

=0 if &1 acute
;t?-:i;f{:I:I if & 1= right
<0 i # 1z obbuse

Hence, two vectors 4, ¢ are orthogonal if -y = 0.
Properties of Inner Product:

o ooz =|lgdf = |l = VT

o coslf) = ﬁ?ﬁ = ?ﬁy_@

o Linearity: (@2 +a.y) -2 =ar-2+ a5 -2

o Symmetry: -y =4 -1

o Poaitive Defintteness: - 22> 0 for all o # 0.

o Schwars inequality: ||z || < ||=/|||¥|

Important resulte that can be proven ueing inner product:

o Triangular inequality: ||= + || < [|#]] +||#]

o Parallelogram equality: |2+ 11 +|le — ¢II* = 2|l + i)
1 if1=7
0 e#y

T-9 =Ty + Tahz + Tt = T4

Clearly € - e; = { . Therefore

Projection (component) of £in the direction of g2 p = ||2]| coe d = e



Notice that |p| 1s the length of orthogonal projection of & on a straight

linein the direction 1.

1.4 Outer Product

Outer [cross or vector) Product: ¢ = & % ¢ 1 a vector whose magnitude
18 the area of the parallelogram formed by + and ¢ and whose direction is
the direction to which as right-handed screw advances as the screw is turned

from x to .

MNetice that
[|v]] = [|2f]]|4]] sin &.
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Properties of croes product:

' ti=gx=kx k=10
1=k pxk=1 kxi=j
o Anticommutativity: ¥ x T=—-T X ¥
o Not assoclative: 3 [y x 2] £ T x ¢) x 2
Boctxliwf=tuk=—1#0=0x7=[t%1) x
o (ox) 3y = oz x y) =2 (oy)

srx(yvtz)=(rxy)lt(zxzand (z+y)xz=(rx2)+(yx 2)

Tx Y = (Tt + 27+ B k) (vt +vag + 1K)

vk
= [Tats — Tapalt + (ot — o) 7+ (Tye — o o =det | 1 2 &
i Wa s
Fact: Two vectors are linearly dependent if their creee product 18 zero
vector.

1.5 Triple Products

Scalar Triple Product: x-(y x 2]

b T R Y
Ty z) = Bltan—tha) Folta—val dolnzsa—1.a) =ded | 41 12 ¥
RS

Since interchanging of two rows reverses the sign of the determinant,
rlyxz) =y-(zxa)=z(axy) = —z-(zxy) = —z-(yxz) =—y-(rx 2z

Hence,
r-{yxz)=lrxy -2

11
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Mereowver, 1t 15 casy to se= that

(az] -y x 2] = o[z (y x 2]

Fact: Three vectors form a linearly dependent set iff there scalar triple
product iz serc.

12



Chapter 2

Matrices

2.1 Linear Operators

A: an operator [or transformation or mapping) from R™ to R™

v =4 1 .
. . e
R R~

Def.: Ais linear if
Almiey + gyitn) = g A + aa s, @q,u2 € R, 61,86 R.
Null Space (Kernel):
ANA) ={weR": du =0}
Range Space [Image):
RIA) ={ve R™:v = du,u £ R"} = AR"

Fact: 0 ¢ A A).

Proof: A0 = A{0-«) = 0du = 0.

Fact: A[ 4] and R[ 4] are linear subspaces.

Proof: Let 21,22 € A (4], Then dry = Ax; = 0. By linearity,

AI:MI +E'$2]| = G&A:I?l + &'A:I:g = |:|
= aty +bes C A A).

13



Let 3"1,3"2 E R'IA]. T].'l'ﬂl'l 3$1!$2 e R" E'L'l.l:-].'l t]la.t :Ul == A.':I:]_ and yg = .1.4.'.'1:2.
Then azy + bry £ R™. By linearity,

.A.IIM]_ + EI':L‘;:I = C&f—l:lfl + E?'A’,Iig = aﬁh + &?g E .R(Aj

Theorern: 4 isinjective [one-to-one) HE AT [A) = {07,

Proof: {=) Obvious
(<] Suppose the contrary. Then 3 & # ¢ such that dy = dr = Aly -

) =0 = y =& (contradiction].
Facts:
1. If { 4u;} 15 a linearly independent famly, then so 18 {u}.

2. The converse of the above holds if 412 injective.

Proof: 1)
Bythy + oo+ Gty = 0
iy
aydiy +-- + andu, = Alaguy + - + gt = 0
|l
iy ==, =1
2) (&)

0= ayduy +-- -+t diin = Aoy + -+ + Gty

By one-to-one assumption,

iy e F Anti, =0

Theorem: Suppose A be a linear operator from R™ to R®. Then TFAE
1. 4 1s injective (A7 A) = [01]

14



2. A is surjective (onto] (R{4) = V)
3. 4 is bijective (injectivedsurjective)
4. A1 exists

Proof: {1 = 2] From the previous Fact 2, {u;} is a basis implies {du]}
i& 80.

R = (o, du; +--- +apdu, ra, € R = {d{apu;+ -+ apti,) 0 4 € R}
EHn
={du:uc R =R[4).
(1 &< 2) Let {t} be a basie of R™,
A surjective = 3 4, such that o = du; = {u,} 15 a basis of R™.

Consider 4 # 0. Then % = @ty + -+ - + @attn # 0 where g’s are not all
sero. Hence, duw = Aoty +- -+ + @otin) = o iy +--- + a, A, # 0 and,
S’ ——

thus, A'{ ) = {07.
(2 & 3) Obvious from the equivalence of 1) and 2).
(3 = 4) inverse mapping is well defined.
(3 < 4) Notice that, if 47! exdsts, dzy = Ary implies 41 = #2. Henee,
injective.

] tn

2.2 Matrices

An 7 m matrix s a rectangular array of numbers:

11 Gy m
By Uaz = lUay
A= ] ] ]
':&nl afnﬂ ':&nm
Transpose of a Matrix A:
11 g rat
AT = Py g v e
ISE’lr‘.l a’ﬂn ISE’mn



Conjugate Transpose of a Matrix 4:

A =

Notice that AT = 4* for real matrices.

a1 @n
d1a Haa
R‘1 n Eﬂn

Trat
Emﬂ

Rmn

Basic Algebraic Operation of Matrices

a: a scalar, 4, B matrices

A ddition:
[ o1 g
A+B=| ™ "
| s G
[ty + by
| am by
thent '.|'bm1
Scalar Multipliu:ati;m:
f11 2
ad =a a_m a_n
ot o
Matrix Multiplication:
11 a2
AR = a'.ﬂi Iﬁr.gg
'5%;11 'I’;nﬂ

Tn
'I’En

a’mn

g+ '512
az + bag

ra + bmﬂ

T1n
dan

':Ermn

bll 512 'E'ln
E:'21 522 bﬂn
IE'ml bmz IE'mn
"-I’in + bi n
dan + bzn
Kran + bmn
By dya &l n
Blay  lan didan
IE'11 IE'1 2 blf
'521 '522 bﬂf
IE'r.|1 bnﬂ bnf



EFZl i b'-l E‘le C&l,'b,'g "' EP:l EL]_,-éI-;
— E"]:l &y bl'l E‘}:1 'ﬁrﬂf&'fﬁ "t EP:1 IS’-'rzl"E'l'f

E:?:l o E:'l'i EP:i IStfr.\‘n"il:'l'ﬂ et EP:i "-Ifml'bl'f

2.3 Matrix Representation of Linear Opera-
tors

Let {1717, be the basis for R". Then

n
T = E;f;'ﬁ’f'
=

Ar = Aji;ff ;= gfﬁ‘qﬁf

Let {oi}™, be the basis for R™. Then

By linearity of 4,

™

Ay = Z;c&.- Ui

I

By uniqueness of representation,

n=Af
where
i1 Ein
A= + 1
L T £ ey

Theorem: Let {u;}17%, and {v;}72, be the bases for R™ and R™, respec-
tively. Then, w.r.t. these bases, 4 1= represented by the v % 1 matnx

17



2.4 Rank and Nullity

Fact: Let A =[c; --- cq] where ¢ 1s the #th column of 4. Then R({4) =
@m({':f}j

Exc: Let AZ[% g].Then
_ _ _ 1 i ME] _ 1 2
R(‘qj—{?—‘d‘”— 23] w | M g +$2[3”
B 1 2
= Span K }

Definition: The rank (nullity] of the mixn matrix 4= domR (4] [ d&ma (4

Fact: rankl 4) + nulityl ) = n = dimp( 4)

Proof: Let {u;1%_, be the basis of A'[4). Complete that basis such that
{4}, s the basls of R™ Then 2 =T, G, and

Adr=A (i;flﬁ,l) = gﬁ Au; + .il f,-}lﬁ,'

Aui=0,0=1,--+, k becaunse u; £ [ A).

= {du}7, ., spans R{4).

Clalr: {Au;}R, ., is a linearly independent family. Assume the contrary.
Then 3 Ggy1,- -+, (not all sero] such that

0= i du, =4 i | .
I=k+1 (.‘:;;1 )

= gy Gt E A 4] = contradiction and the claim followe.
T 4wty Is a basis for R(A) with dimR(d)=n- &
One may conjecture that A'(A] and R( 4] are disjoint. But this is not

the case.
o1
Fu: 4= 0 D],then
_ . 01 Ty || . 1
=po=w=(g | [2] = |7} {5 ]




_ _ _ 01 Iy | Fa _ 1
Theorem: 4 and A7 have the same rank.

Proof: Let ¢y, -+, ¢, be the columns of 4. Suppose by,- -+, b, bethe basls
vectors of R(A) where r = rank{ A]. Then

o =dyyby -+ dipby
Cy =ty by + - -+ + by

Cn = |Q'Enl'g'l +---4 |-']'En.i;-'g'.i;'
This implies

1 dhby i+ + dhrbey il i
Uz | d’zibij‘F et d’).irbkj _} il geth o
: - : — Myl T RRE
& |:iral'ﬁ'l 7 +--- 4+ d;:.i"&'.i'; '-'inl d;'a.i'

Hence, the columns of AT arein the span of the & vectors on RHS and thus
rank{ A7) < rank{d). Through the exact same arguments, it holds that
rank d) < rank{ AT). Hence, the theorem follows.

Fact:

1. 0 < rankld) < min{m, n}
2. rankl(d) s equal to

(a) madmurn number of linearly independent columnns of A

(b] madmum number of linearly independent rows of 4

Proof: Notice that R{A4) ie the span of the columne of A
1) ¥ n > m, rank{ d) < meince R(4) C R™.
I n < m, rankl d) < nsince rank(d) + nulhty( d) = n.

2] Obvious from the above theorem.

Ex: Let A:JW% :é iw] Then rankl 4) = rank{ AT) =1.

Elernentary row operation [e.r.o.):

19



L. interchange two rows
2. multiply a row by a nonsero scalar
3. replace a row with the sum of itself and ancther row

Elermentary column operations (e.c.o.) are defined similarly.

Fact: An er.o. [e.c.o] corresponds to premultiplying |post multiplying)
A by aleft [right) elementary matrix.

Ex.: Let Abead 3 matrix

1) interchange the lst and 3rd rows

00 170 oy G2 s g hay  as
g1 0 oy g o | = | S dan O
100 oy Gaz has a1tz s

2] multiply the 2nd row by 2

10 077 &y gy s gy iz Mg
g 21 Gy Joa dmy = 2&31 Eﬂrgg Eﬂ-gg
001 fag  az  Oas a1 az  Ohas

3) replace the 3rd row with the sum of the 2nd and the 3rd rows

1 00 gy Ha ity thya tha
o110 Ty dan oy = Eaji 2 Lo 2!‘1@3
011 fay  ag s Bag &y Oag + dyy  Gaa 1 Sga

Fact: An elementary cperation doesn’t change the rank of the matrnx.
Proof: 1), 2] Obvious.
3) Let wy,---, %, be linearly independent. Let 4, = v, + 1 for ¢+ £ n.
Then
gty e gy + a0, =10

1l
Gty + e F dinatiog {8+ Ba Ui+ Bigaigs oo daty =10
iy
g == a, =10,

40



2.5 System of Linear Equations

Conslder a eystem of linear equations:
Ar==5 [+]

where A1z an ™M ¥ 7 matrix.
Fundamental Theorem:

1. {*) has sclutions iff 4 and A = [A#] hawe the same rank.
2. I the rankis n, then [*] has a unique sclution.

3. If the rank is less than n, then {*] has infinitely many solutions that
can be parametrised in terms of 1 — v unknowns.

FProof: 1) (<] & is linearly dependent on the columns of 4. In other
words, bis in the span of columns of Athat is equal to R 4). Hence, [ *) has
sol utione.

(=) bis the linear combination of the columns of 4 and, thus, is linearly
dependent on the columns of 4. Hence 4 and 4 has the same rank.

2] The n columns of 4 are linearly independent. I 2y and & are two
different sclutions. Then

0244.3?1—44.333:44.(131—1?3]

and thus n columns of 4 are linearly dependent sinee 23 =22 # 0. Thisis a
contradiction.

3) Let rank{d) =r. Let ¢y, -, cy be the columns of 4. WLOG assume
the first + columns of 4 are linearly independent. Then

G :dl'lcl +--- +GE.‘IPC,-, 1;:?“—|-1!---!ﬂ,_

Let [# --- &,]T be a unique solution of [ --- c][&, --- &£]F =& Then
[£1 «++ .0+« 0% is a sclution of (*) and thus

b:i“1C1+"'+i3,-C,-

= jtl":l +--- +ircr - pr-|-1":r-|-1 -ttt pncn +P:~+1Cr+1 +--- +pn":n
=& — Grgr1Prpr — o — GraPal 1+ o (& — drgg Prgr — o — dnePal e

41



—|'pr-|-1':r-|-1 +--- +pn':n
for any p; € R. Hence, {*) has infinitely many solutions:

[ & — dr+1,1pr+1 — = fgmjﬂn 1
T = ftr_ dr-|-1,rpr-|-1 —_ = d‘nrpn
Pry1
P

that are parametrised in terms of % — T un knowns i
Conslder a homogenecus system of linear equations:

Ar=10 [+4)
Theorem:

1. [**] always has the trivial solution o= 0.
2. Nontrivial solutions exdst iff ¥ 1= rankd < n.

3. M r <n, the set of all solutions to [**) s the null space of 4 that is an
1 — rank 4) dimensional subspace.

Proof: 1) Obvious.

2] Obvious from Fundamental Thecrem 2) and 3).

3) Obvious from the definitions of null space and nullity.
Constructlon of null space:

Due to homogeneity, we can assume WLOG &, =--- = &, = 0 in the
proof of Fundamental Theorem 3). Let
E-";':[_d;'l _d;'rl:l \_]‘;-P’ |:|:|T:I j-:?"+1,---,ﬂf.
ith
Then 1t holds that any solution & can be written as
[ _dr-l-l,lpr-l-l — = G'Emjﬁ'n i
_dr rlie ._"'_dm'n
T = 1,01 -|-:;;| vy :pr+1yr+1+...+pnyn_
r41
Pa

42



Hence,
N[ A) = Span{grisy -y ¥al-
Theorem: Suppoee | *) has solutions. Let 2 be any solution of {*]. Then
T s a solution of (¥

T=Zg+xn, an € A[A)

Proof: [«) Obvious.
[= ] Notice that

Alr—m) =dr— Ay =b—b=10.
Hence, 23, := £ — 25 € A7 A).

2.6 Determunant of Square Matrices

Definitions:

d&i(ﬂ]l = .ﬁ-; Si_qﬂ’qﬁ |l:_‘[ a.‘.ﬁ.‘}

L]

where P, is the set of all permutations of {1,---,n) and stgngd = +1
depending on whether @ e an even or odd permutation.

o minor of a;;: def{ M) where M;; is the matrix obtained deleting ith
row and jth column.

o leading (principal) minors: def{ M)
o cofactor of g,

Ciy= (1) ¥1det )

n n

det(A) = Z;c&,-;-c,-}- = Z(—ljl"'”a,-;-deﬂﬂai'}}-] column expansion

] n

detl A) = S a0 = S =1V det (M) tow expansion
Z; Fiy JZ;( i i

43



Second order determinant:

iy s
Aoy s

D= det(4) =

= gy — Gyaly

Third order determinant:

A1 da G
D=det{ld] =| g on on

s faz Gas

o day
a1 oy

oy daz
ay  az

dag Gy
=1 — I3 + s
an  an

= Oy gpllay — Gpq s fag — Sygliy fay + Syafo sy + Spatag dag — Eyallagiy
Properties of Determinant:
1. det( A) = det AT)

Froof for 2 ¥ 2 case:

iy
1z Gaz

det(4) = | M1t % = det[ AT).
oy Haa

= My lag — Eyptyy =

2. detlad) = a”det( A)
Proof: Obvicus from the difinition of def{ 4).
3. detl AB) = det( A)det[ B).
Froot for 2 % 2 case:
| by A raby annbi + ogaba
det{ AB) = B by + Gazby  Gubi + daaba
= (g byg + agaba J{om bys + agbon) — (abys + ayabos )l g by + agabyy)

= (kyy Kag (511512 — '51:4'511) +f&11f&22(511522 - '51:45:41]
=0
+C&12'5&21|{'521b12 - 522'511] + @2 (521&'22 — 522&'21]

=0

24



= |:'55*1195*2:4 - '541:45521”'511522 - '57'1:4'57':41:|
by by

bﬁl '522

thyy
L R

= det{ A)det( B).

4, If a row or columnn of 4 1s zero, then deif ) = 0.

Proot: Obvions from the row and column expansion.

5. If a row (columan) of 418 a sum of two row [column) vectors, then
det{ A) = det{ &) + det( A7) where 4 has one of row (column) vector
and 4" has the other.

Bz
Gip + by @a s
A= Gy +by @ on
Gag + B Gan  fas
Then,
By Mg TP
A=y m o A= by on on .
tay  Oaz  das by ez Gaa

Proof: Obvious from the row and column expansion.

Ex
a

det(4) = 2;(—1]"41'{'55{1 + byy ) det{ M, |

= Y1) e det (M) + S 1) b det{( M) = det( &) + det( 4).

f. Let 4 be atriangular matrix. Then def(d) = [T, a;.
Froof for 3 x 3 case:

11 0 0
Gy oz 0 | = 00,
oy ez das

45



Theorem 1: I A 1s obtained by interchanging two rows (columns) of 4,
then det( d) = —det{ ).

Proof: For . = 2, the theorem is clearly true. Suppose (n— 1)th order
determinant has the property. Bxpand def{4) and deﬁ(ﬁ] by a row that 1=
not one of those interchanged, call it the tth row. Then

det{ 4) = i(—l)"”m-;deﬁMfﬂ, det{ ) = En;t—ll"“a.-;deﬂﬂ”frl

= =

Wher§ ﬂ:i,r-;- iz obtained from the minoI M by interchanging two rows. Then
det M;) = —det| M) and thus dei ) = —det( 4).
Theorem 2: I two rows (columns) of 4 are proportional, then def{d) = 0.
Proof: Let a = cag for k= 1,---;n. I c =10, then det(d) = 0. Let
¢ # 0. Then ;
detl 4) = ¢ det( 4]

where Ais obtained by dividing the tth row of 4 by c. Interchanging the ¢th
and jth rows of 4,

det( A) = —det( A)
Hence, det{A) =0 and, thus, det4) = cdet(4) =0,

Theorem 3: The value of a determinant is left unchanged if a row [column)
ie replaced with the row [column) subtracted by a constant multiple of any
other row (colurmn ).

Proof: Obvicus from Froperty 5 and Theorem 2.

Theorern 4: The rank of an 1 x n matrix 4 1s n fE def] 4) # 0.

Proof: [« Suppose the contrary; rank{d) < n. Then the columns of
A are linearly dependent. WLOG assume the first column of 4 18 linearly
dependent on the cthers. Let A=[c; -+ c;]. Then ¢ = 5, a;c;. Define

;1:[61 — NG O vee Cal

=0
Then det{ A) = det{ A) = 0.
(= (2% 2 case) Suppose the contrary. I a row is zero, then the rows
of A are linearly dependent and, thus, rank{ 4) <2 2. Otherwise, a,/'s are all

nonsero and
0= GﬁE’f(A] = Hyqday — Sqadty .
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I

S QL [
2 taa

I
i
|-, i _
] oz

Hence, the colummns of 4 are linearly dependent and, thus, rank d) << 2.

Lemma: Let 4 be a m % n matrix where m > n. Then rank{d) <<n it
the deterrminant of every n % 1 square submatnxis sero.

Proof: [= ) Similar to Theorem 4, replace a linearly dependent row with
the sero row vector that 18 equal to the first row subtracted by suitable
constant multiples of other rowe.

(<) Supposethe contrary. Let 4 bethe nxn matnx containing » linearly
independent rows of A Then rank{d) = n and thus def(d) £ 0.

Corcllary: Let 4 be am x n matrix where m > n. Then rank{ 4] =n it
there exasts an m % n square submatnx whose determinant 12 not zero.

Theorem 5: An mx 7 matrix 4 has rank vt 4 has an v x v submatnix
with nonsero determinant whereas the determinant of every square submatrix
with ¥ 4+ 1 or more rows 1= serc.

Proof: [«) From Lemma, any r + 1 columns are linearly dependent and
there exasts + columns that are linearly independent. Hence, the rank 1s 7.

(=] Obvious from Lemma since there exdsts rlinearly independent column-
s and any set of ¥ + 1 columne are linearly dependent.

2.7 Inverse of Square Matrices

Def.: Inverse of an 7 % 7 matrix A1z an 1 ¥ % matdxsuch that
AAd ' = A1A=1.

Def: If 4 has an inverse, it 1= called nonsingular. Otherwise, 1t 1s called
singular.
Fact: The inverse of a nonsingular matrix 4 1s unigue.
Procf: Let Band € be the inverses of A Then AB=7and &4 =1 and
thus
B=IB=(CAB=ClAB) =CI = (.
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Theorer: TFAE

1. &nnxn matrix 4 has ite inverse. In other words, 418 nonsingular.
2. rankld) =n.

3. detd # 1.

4. The columns of 4 are linearly independent.

Proof: (1 = 2) For any b, dr = b has the sclution & = A-'h. Henee,
rank{ A) = n.

(1 « 2] For any &, dr = b has the solution #{b]. Let 1,33 be the
solutions assoclated with &y, by, respectively. Then it is clear that oy + ozt
ie the solution associated with @by + @302, Hence a(d) iz a linear operator.
By the matrix representation theorem, 2{b) = Bb. Then for any b,

b= Au(b) = A[Bb) = (AB),

() = Bb = B Ax(b]] = (Bd)a(d).
Hence B = 471,
(2 & 3] Obvious from Theorem 4 in the previous section.

(2 & 4) proven in the previous rank and nullity section.
Some Useful Inverse Formulas:

N [Grame:r’s rule]l:

The adjoint of 41s defined by adyd = [C,]. Then
adfl A) - A = A adp( A) = det( 4) - L

If 4 has an inverse,

o o 4)
det( A}
2% 2 example:
4-1 = 1 oz —fa |
U1thay — @adyn | —dn O
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o If A =dag{d,---,dp}, then A7 = drag{$,---, 1
o (A=A

o [AB)-1 = B-14-1,

» Partitioned inverse for R7%7

.5111 Au _1_ Bll -BIE
| Ba By

where
By = A7 + (47 40) 27 [ Aa A7)
B,;= —(4511_114‘112]|E_I
By = -2 (Au 4]
By=-2"
Z=Ay- *‘121(*41_11*5112}|-

Theorem: Let 4, B, &' be nx n matrices.
1. Hrank{ A) =n and AB = AC, then B=C.

2. If rank{A) = n, then AR = 0 impliese B = 0. Hence if AB =0 but
A#0aswell aa B#0, then rankl 4) <X n and rank{B) < n.

3. If dissingular, so are 48 and B4

Proof: 1) Premultiply 4-1.
2] Obvious from 1).
3) det{ AB) = det{ BA) = det{ A)det(B) = 0.

2.8 Change of Basis: Coordinate Transform

Let fuptP_, and {#1™, be two bases for R™ and {w P, and {17, two

bages for B™. Then .
ﬁ’f = z;pklﬁk
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|l
g@m =1= gf.-ﬁ.- = .', ilpk.-ém.
|l

G = g}?h%
|l

fi P11 o Fhn 51
6?1 jﬂm jr-"nn En
Notice that the tth column of Pis the representation of # w.r.t {u;].
S1rml arly,
1=an.

Notice that the #th celumn of Qs the representation of o ward {#;}.
Lt y=Axr = n=A =

fi = QAL = QAPL.

iy
the representation of linear cperator w.r.t. {&1 and {#] 1s
A=0QAP.

Special Case: ™M = 1 and use same basis for both domain and range.
Then
PO=1 = Q=P'! = A=P'4P

Such transfermation from 4 to 4 1s called similarity transformation.
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2.9 Eigenvalues and Eigendecomposition

Def: A £ Cis called an eigenvalue of a square matrix A if 3 right (left)
eigenvector 2{y) 7 0 such that dr = v (¢4 = A,

Fact: I ¢ 1s an elgenvector assodated with A, =0 1= av with ¢ # 0.

Fact: A is an elgenvalue of 4 iffit 1= a solution of the characteristic
polynommial

wal Al = detl A— AT = 0.

Fact: The eigenvector ¢ assoclated with an elgenvalue A is a nonzero
vector in the null space of AF— A Hence, the number of linearly independent
elgenvectors is equal to nullify( 4 — AT).

Theorern: Let Ay, ---, A, be the distinct dgenvalues of 4 and v be an
eipenvalue associated with A;. Then {%}™, is linearly independent.

Proof: Suppose the contrary. 3a’s (not all sero] such that

ity -+ gty = 0.

WLOG, we assume & 7 0. Then

(A= o) (A= D) ( aq-ﬂ.-) )

Motice that
(4 - }.;-I]I’u,- =4 - }'.J.-]I’t.',- if 5 #1
and
(d— ALw =10,
Hence,

'1'1'{}'1 - }-2] (}-1 — }I‘un]’th =1.

Since A's are distinct, this implies @, = 0 {contradiction!).

Def.: A square matrixie simple 1f it has # linearly independent eigenvec-
tors.

Corcllary: If eigenvalues of 4 are all distinct, 4 1s simple.

Fact: Suppose 4 has some multiple elgemalues. Then 4 i1s eimple ift
nalify( A — AIl = p for any dgenvalue A with multiplicity p.

B Suppose
10
A= [U 1].
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Then A = 1is a double elgenvalue and nulbiy(d — A) = nullity(0) = 2.

Hence, we can find two linearly independent elgenvectors L , [ E . Howr-

I
11
“[31]
Then A =11is again a double eigenvalue but

pullity( A ) = nullity ({ b1 D 1,

=Vl S PPOse

Hence, we can find only one linearly independent elgenvector [ é ]

Let A be simple. Note that

AV =TA

where

V=1[v, - w), A=diagli, -, AL

Since iz nonsingular, we hawe
VAV = 4.

Note that A 1s the representation of 4 in terms of its agenvectors.
Fact: Higenvaluee are invanant under simlarity transform.

Proof: Suppose v = M. Let A= P-1AP and 4 = P-'9. Then
Aii = PP APP 'y = AP o = M.

2,10 Hermitian and Umtary Matrices

Def.: Ae C™7[R**") is Hermitian (symmetric) if 4* = A[ A7 = 4).
Theorer: Let 4 be Hermtian.

1. 2* Ar 1= real.

32



2. elgenvalues of 4 are all real.

3. n elgenvectors exist and are all orthogonal.

Proof: 1) (2* dz)* = 2* A'x = z* Az

2) Let A be an elgenvalue and ¢ be the corresponding elgenvector. Then
#* dv = Av*v. Note that LHS is real and v*¢ iz real and = 0.

3) [Proof of orthogonality) For multiple eigenvalues, we can always choose
mutualy orthogonal eigenvectors. Suppose Aw = Au and dv = g with
A Z u. Note that w*d = Au®. Hence

w'dv = Autv and utdv = putv

= AutY = gty = we = 0.
Def.: & Hermitian matrix Ais positive semidefinite (PSD) if 2* Az > 0
for all @ B
Def.: 4 Hermitian matrix 4 is positive definite (PD) if 2* dr = 0 for all

0.
Theorem: Let 4 be a Hermitian matrix. Then TEAR

1. 4is PSD (PD)
2. all its eigenvalues are nonnegative |positive)

Proof: [1 = 2) Let A; be an dgemvalue and ¢; be the corresponding unit
elgenvector. Then

Av = Av = 0 (<o A = Avie = A
(2 = 1) {]} orthonormal elgenvectors
Ar=Alogw +- - Fomvn) = advy +--- F i dv, = Ao+ g A
I
ot Ar = {agv - - Favh) oAty - Fag A, = afA 4 aiA, > (0.

Def.: A C**7[R"™") iz unitary [orthogonal) if 4* = 4-1.
Theorem: Let 4 be Untary. Then the elgenvalues of 4 have absclute
value 1.
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Proof: Let A4 be an elgenvalue and v be the corresponding unit eigen-
vector. Then

1= |5]* = vto = et A v = v Ade = | AP0 2 = | A%

Theorer: B 41 wmtary, 23v; = v3d* v, = vy, where 41 = A and
¥z = Az,

Femark 1: From the above theorem, the inner product 1s preserved under
unitary transformation.

Remark 2: From Remark 1, the norm 1 preserved under unitary trane-
formation. Hence, unitary matrix rotates a vector without change of slse:

U: unitary matrix

Theorem: A square matrix is unitary iff its columns (or rows) are or-
thonormal each cther.

Froof: Obwicus from A* A= 1.

Theorem: The determinant of a unitary matrix has absclute value 1.
Proof:

1 = det(I) = det(A* A) = det( A*)det(A) = TeAl AJdet( A) = |det( A))".
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Let Abe a Hermitian matrix and {t;} be the set of n orthonormal eigen-
vectors. Let 7 be the unitary matrix whose tth column 18 9. Then the
representation of 4in terme of ite orthonormal eigenvectors 1e

A=Tr Al

2.11 Singular Values and Singular Value De-
composition

Def.: Singular values of an mx n matrix 4 are the square rocts of min{m, n}
elgenvalues of 4* 4.

gl 4) =, /Al 4+ 4).
Def.: Right singular vectors of a matrix 4 are the elgenvectors of 4* 4:
gl Ay — 4 4w =10,
Left singular vectors of a matrix 4 are the eigenvectors of 44°:
gl ) — A4 = 0.

Remark: Since 4* 415 a PSD Hermitlan matrix, singular values are non-
negative reals and neingular vectors can be chosen so that they are crthoner-

mal.
Theorem [Singular Walue Decompoeeition): Let 4 € R™™ Suppose 0;

be singular values of 4 such that
0y Oy e > 0, > 0, p=min{m,n}
Let
U= [t bz, tm] € R™™, V=1, 1, -+, 0] € R™,

where w4, ¥; denote left and right orthonormal singular wectors of 4, respec-
tively. Let

T, 0

g 0 ]

35
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where

ot} 0 0
0 T 0
= .
a0 g
Then
r

A=UEI"* = ZJ,-[A]I%,-*U-*.

Froot: Consider 4 = Az, Then % 1s simply the representation of 4 when

T and ¥ are represented in the cocrdinate systems consisting of right and left
singular vectors, respectively

V2
_ul

coordinate coordinate
system fory system for x
Eemark:
.t'-li-'1 = J1y
Avp = g,
I

 [vp): highest (lowest) gain input direction.
iy [1p): highest (lowest) gain observing direction.
Bacample:

A= 08712 -1.3195
T | 15783 —0.0947

11—t 20 143 1
I Y
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2.12 DMatrix Norms

Norme for BFxn
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thay g
A= )
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§ norms:
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14llle = (3 loif?)F 1 <p <oo
I

[11Hl] 20 = maoc] g

[|] - 1]]2 i& called the Frobenius norm.
What 12 the difference betwesn R™*" and R™"7
A matrix in R™*" definee a linear operater from R™ to R™; ¢ = A
induced (or operator) p norms:

Al ==u HAﬂ—b:maxﬂx 1< p< oo
” ||P S#E ”a.:”p ||s||:1|| ||P _p_

1

191l = || 4=t> < [ Allellzlle  ¥x € R™.

m
14 = e e -

p=i ]
4|2 = Toas{ A) 1= [Aras (AT A]]3

where Ty 18 the masdmum singular value of 4
P = ca:

n
s = ruc i,
=
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Chapter 3

Computational Linear Algebra

3.1 Gauss-Jordan Elimanation

Cuestion: How can wefind the solution of the aystem of linsar equations:
Ar =187

A unigue solution exdste 1t 4 1s nonsingular. Hence, we assume 4 s nonsin-
gular throughout this chapter.

If Ais nonsingular, it is clear that the unique sclution is £ = 4715, Howr-
ever, the sclution can be found without computing A= using more efficient
method. Hence, if what you want 15 only the solution but not A-Y, do not
try to find A7

A standard technique to find the sclution of the above problem 1s the so
called Gaussian elimination.

We 1llustrate the Gausslan elimination ueing a 3 x 3 eystem:

11 tha Oha NE] 51
oy oz o In | = E?z
fay  az  ay I &'3

Mfain idea 18 to transform dinto upper triangular matrix and sclwve the re-
sulting problem by backward substitution.
Forward Elirmination:

s Rearrange the rows so that @, nonsero [ This is always possible if 41s
nonsingular).
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» 2nd equation - 2L first equation

drd equation - FaL first equation

11 i3 &y T
0 gy — J8ayy  dp — J30, Ty
0 Gz — E—‘ﬂ'f&u s — E—ﬁﬂm T
1l
My M I

where
t'.!'r(” = Jpn — —0&
52 — g 12
11
1 a1
'55(23} = (gn — — 42
11
1 1
aﬁ,;ﬁ' = gz — — X2
11
1 a1
a'ga‘:l = s — — s

Y = b, - 22y
11

U —p, - Py

3 A Gy 1

o Rearrange the rows so that {&':212:' nongero | This is always possible if 4 is

nonsingular).

. (2 .
» Ird equation - z—i‘?,—}{ 2nd equation
a3

a1 42 s T

0 A dy 2 | =

11

00 oy —Bab) | |

40

by
= &'3 — E?':-E'l
by — Eip,

b
Ko
(1
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By1 Mg B I by

0 oy ab) || | =] &Y

00 a¥ || @ B
where

1
R ORIy
a3 a3 a-(zlj 23
2

(L)
v
b{gz) — IE'E_III _ bag H:glj

by
Bacloward Substitution:
5
BEm
iy
Ty = H:zlj - 'f&{zle.:'ﬂ?e.
by
T, = '51 — Gyl — @2l
| =

11
Remark: Notice that the elimination step can be done in the matrix [4 8].
Indeed 47! can also be found ueing elimination method called Gauss-

Jordan elimination that consiste of forward Gaussian elimination and back
ward Jordan elimination. Starting from

My g s 10
gy (ag @as 0 1
Oay Gag O O 0

— o

apply forward and backward elimnation to get

1 010 ryp Orpy O
o010 oy CFan CFa
00 1 era g Cos

Then
ryp Mo Crs
A= an oy o
Crag  Cfsn Cras
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MNotice that finding 4-! 1s computationally more involved than finding the
solutlon of the system.

When we perform the Gaussian elimination in computer, the small diag:
onal plvot element becomes problematic due to truncation error. Consider

o 1{3)-[]

Asgume we only represent 3 eignificant digit. Then the sclution by Cramer’s
ruleis 2y = 1.00 % 10% and 25 = 1.00 % 10° Now apply Gausslan elirmination.
Then

Iy
Ta

1 _ _ﬂ&gl _ " 1':”:'}{1':'0 o_ 4
Ggg = & _ﬂ«“au =1.00 x 10 —1|:”:| > ]_I:I—‘ill:”:l w 108 = —1.00 « 10

(1 _ g far, 0 1.00 3% 10° 0o_ 4

By = by _a“bi = 24.00 x 10 100 % 102 m_&l.UU w 107 = —1.00 % 10

Hence,
AU _1.00 x 10
=2 =T Mo =100 x 1P
PT YD T T100 108 .

b anms 100 10°- 100 10°
=T 1.00 % 10-2 =

Hence, the result 1 wrong! Notice that the problem iz caunsed by the emall
pivot element @y;. Hence, a possible resclution of this problemis to rearrange
the matrix so that the pivot elements are alwaye large. Such technique 18
caled pivoting.

Column pivoting: plvoting by interchanging rowes

Row pivoting: piveting by interchanging columne.

Full pivoting: pivoting by interchanging both columns and rowe.

The column prvoting e the easiest sincelt does not scramble the vanables.
MNotice that in column plvoting case, we are only allowed to consider rowe
below the piwvot element as interchange candidates. Otherwise the uwpper
triangular structure iz destroyed.

If we interchange the first and the second rows in the abowe example,
then the correct solution 1s obtained ueing Gausslan elimination.

€
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3.2 LU Decomposition

Suppoee A can be written as

4= LUr

where L 18 a lower triangular matrix and {715 an upper triangular matrix.
Then
Ar=(LU)x = L{Ux) = b.

Let 4 = Uz, Then
Ly=4%
Ur=y.
Then Ar = & can be sclved by first sclving the first equation by forward

substitution and then solving the eecond equation by backward substit ution.
Juestion: How can we get the LU decompesition?

Clonslder
11z s g 1 0 0 0 M1 gz Uia the
oy oz g dae — fm 1 a0 0 g taa e
Hay  Caz  Oaaz  dag f31 1?3:4 1 0 0 0 fhas  tos
thyy thay llga lgg f‘n Eu E&e. 1 0 0 0 tigg
11 Uiz Uy 4
_ bt datis + Bti s + s btire + e
batinn atein + batbm Dt 4 Batias + tas bitiie + bating + thae

IE&1’“11 f‘ﬂﬁu + f&zﬁn Euﬁm + Euﬁza + f&aﬁaa E‘uﬁm + E&zﬁ:& + E&aﬁae + Tigsq

iy
&y = El'lﬁlj + -‘rl'zﬁﬂf' + e gy 1= j
&y = Eflﬁ-lj + -lrl'ﬂﬁ'ﬂj +--- 4 Uigy 1- = j
iy = fthy 4 fatbay oo hijthyy, 17
iy

i—1
Wiy = &y — “,‘11‘,&-1}' + *rl'ﬂﬁﬁj +---4 *rl'l:l'—ljﬁ{i—ljfjl =y — ;;Ef.i'ﬁk;' t i: T
b= o= Sk i35
i = u_ﬁ-(a” - Z; i) 17
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We need to start from the upper left corner and work toward the lower right.
Remark 1: In the abowe algorithm, the pivots are diagonal elements.
Hence, we may ne=d piveting similar to, but different from, that in Gauselan
elimination.
Remark 2: 4-! can aleo be found ueing LU decomposition. Let o be the
solutlon to

Ay = Loy = &,

Then
A =y g oo gl

Thomas Algorithm (LU decompeeition for tridiagonal matrix)

Consider
[ &'1 1 0 0 o Tr I ] i Ty 1
s E?'g s 0 0 Xa Ta
0 &L &'3 Ca | T _ Ta
0 0 0 1 bn—l Cn-1 Tr-t Fa-1
o 0o 0 0 e b Tn ¥n
Then
1 0 0 0 - 0
d o1 0 0 e 0
0 d 1 0 -0
L=|. . .
0 0 0 dpey 1 0
o0 00 0 4 1
e 00 0
0 Ea fg 0 0
7= o 0 .'53 a E'
0 0 0 0 ey faa
o 0 0 a0 ] En
Then

ci=fi, t=1--n-1
&',‘ = E.‘+ﬁ'_1l."«!r|'] 1;:2]"']171 &'1 =&
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@ = digi_y, =2, 0
Then
fi=c, t=1---n-1

&
i =—— t=2,-, 1
€1

g = IE'.' - f{-id[ = 'E'f - ff—l;i:l 1= E:I' SRFELS

-1

3.3 Round-Off Error - The Condition Num-
ber

The round-oft error 12 nnavoidable in computer calculation.

Question: Can we roughly detect how much round-off errors are in the
compnted sclution?

Answer: Yes. Compute the condition number.

Let 8b be the round-off error in & and 42 be the corresponding error in 2.

Then
Alx+ dz) = b+ b
|
bz = A-14h.
I
[15A] < |14 11| 681-
Sinee ||8]] < || 4]llJdl,

l6(l18l] < 1147111814111

iy
=]
B < 1410147 =: cond 4)

[Ell
where Cm'.!,dli A]I ie called the condition number.
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Simnilarly if 84 1s the round-off errar in 4, then

e
Ii%llll < cond| 4).

In LU decompesition, LU & A

In Gaussian elimination, the triangular matrix and the corresponding &
vector are not exact.

Hence, for accurate computation, it is highly desirable cond| 4] ¢ 1.

The calculation of A-! to compute cond 4) is infeasible. Instead of com-
puting exact cond| 4], a common alternative is

NEENE
cond{ 4] e[ A)]

Question: What can we do if cond( 4) 3 17
Answer: Improve the solution using the iterative techniques in the net
sectlon.

3.4 Iterative Techniques

Jacobl Tteration

Notice that
11 Mg G
A= an a2 2
fap Oag das
@y 0 ] I | | 0 —dyy —ds
= 0 Han 0 — | —&a 0 0 ]1—=10 0 — s, =L
|: 0 0 Haa |: —ay  —az 0 0 0 0 ]

Then
[D-L-Ulx=1t

Jacobl Tteration: Starting from the initial guess 27,
27t = Db 4+ (L 4+ Ujz™]
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or

1 n
= b o a7 |
iy [ ;':;:#f !

Question: Does Jacobl interation converges to the solution of dx = 6.
Answer: From the contraction mapping thecrem, the iteration converges

if [|[D-HL + Ul <I1. However,

ﬁ 0 0 0 =tz —a 0 —E—ﬁ —E—ﬁ‘
DUy =| 0 ﬁ 0 -ty 0 —gp |=| - 0 0=
] ] ﬁ —%a1  — g I —Ei-:- _g—ﬁ- 0

Then [|[DF YL+ U)||ee <1 reduces to

1 n
Jriax - |y ] <1
B\l £

|aii| = |C&,-J.-|.
i
This 15 the so called diagonal dominance condition for convergence.
Ganss-Seidel Tteration
iZuass-Seldel 1feration 1= a variant of Jacobl iteration where the newest
poseible estimate 1s used to hopefully improve the convergence spesd.
Fanss-Seidel iteration:

1 -1 n
a:f'n+1 - — bl. _ lﬁ.‘;‘ﬂ?m'l'l _ 2 '55|';'$m .
&y [ _; ! H=E 3! !

Guase- Seldel 1teratlon converges faster than the Jacobl iteration 1f it con-
verges. However, 1t 18 more Likely to fall to converge.

To attaln the convergence or to enhance the convergence spesd, the re-
laxation i often employved.

A" = ™ (1 - wjal™ = 2™ sl ™),

or

o 0 <w<1: underrelaxation [better stability than Gauss-Seidel)
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o 1 < w <1 overrelaxation (faster convergence speed than Gauss-Seidel]
Fepeated application of overrelaxdion 1 called successive cverrel aation
(SOR) that s moet popular.

o w> L diverges

3.5 Eigensystems

Let 4 be Hermitian. Let A; be an elgenvalue of 4 and v; bethe corresponding
elgenvector. Then
ol duy = AT
or
= ﬂ?ﬂﬂf
i =

T
v ;

This equation 1s called Rayleigh quotient.
Goal: Find the largest eigenvalue and the corresponding elgenvector.

Consider
y:C1ﬂ1+"'+Cnﬂn.

1
Ay =cidv +--- +cado, = a v +- - + SoAntn.

iy
A™y = 3 Cr AT Y
; ;
Suppoee A is the largest eigenvalue. Then for m 3 1,
Ay o AT,

Hence, for m % 1, let
W™ = A"y

and

(™) TeA™ _ (™)™
(o™ T ERE

A oy
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Part 11

Vector Calculus

44



Chapter 4

Vector Differential Calculus

4.1 Derivatives of Vector Function

Convergence of vector sequence: {4172, is sald to converge if there exdsts J
such that

i [ — || = 0.

|—+ 2

{12 called the limit and we write

lim o =1

| =0
Fac: Consider the vector s=quence

IBHHREINHES
o)

Convergence of vector function [ f: R — R™): v(f) is sald to converge as
f — fqif there exaste {such that

lir [[oft) — ]| = 0.

T i =

Then the lirit 1=

{15 called the limit and we write

lim wft) = 1.

i— f|:|
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Continuity of vector function: ¢(f) is sald to be continuous at f5 if

lim () = ufq).

f— f.:.

Denvative of vector function: ©(f) is differentiable at fq if

Lo wlta + or) — vlig)

& —0 rr

0

existe

Inia) € R such that

i lto + &) — vita) — cmito)

= —0 rr

=1.

Alta) is called the derivative of v, denoted 42 or o (£;).
In Cartesian coordinate,

¥l o)

Fact: (cu(f)) = c'(£).
Froof: If ¢ =0, trivial. Suppcse c# 0. Then

_ _ ; _ _ pyle(a)
0 = i cult + a) — cvlt] — afen(t)) _ . vt + o) — vff) — ot .
=0 or o =0 or

Product Rules:
o (t-v) =u v+t
o [wxv) =uw xvtux e

o [u-lvxw)]) =u-(vew +u-(¢w +u-(vxw)
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4.2 Derivatives of Scalar Fields

Gradient

Scalar field: f:R" = R.
Definition: [ : R® — R is differentiable at £ € R™ if 39(2) € R™ such

that
AR )T
A0 7]
where 1s an 7-D vector. (2 is called the gradient of f, dencted az ¥ f(Z).
Fact: T [ :R" — R ie differentiable at 2, then 9(2) 1= unique.
Proof: Suppose #{Z) s ancther gradient of f at &. Let A = ae;. Then
flz +ae) - fl2) _

lim = =l = wix).

Hence, the fact follows.

Geometric Interpretation of Gradient:

Consider the tangent plane of [ at . Then the direction of the gradient
1= the stespest ascent direction.

tangent plane

=

Equation for tangent plane:
fla) = [0+ Vf(@)(e-1) > Af=v Az

52
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Note that |—-'r— 1= the slope 1n the direction of Ax. Tofind the steepest ascent
direction, Lonmder

Af = max ¥ fTAr

|Bs ot |faf e |Be o
= i [V Aafcos{ £ f, ) = g 9] ces( 49 f, ).

|As|=1 |s|=1
Notice that the maximum is achieved when L[ ¥ [, Ax) = 0.
Moreover, consider small Az in the tangent line of the contour. Then

0=af =viTAr

Hence, ¥ [ and Az are orthogonal.

Fartial Dervatives
Definition: [ : R = R is sald to have a partial derivative at T with

respect to 4y if
o fle+ae) — fl2
= —0 T

)

exdets.

3u(Z) € R such that

o S+ ae) - flz) - ai(a)

c—0 rr

=1.
(%) is called the partial derivative of f w.r.t. 4y, dencted %%1. Let

fll{i:lzl = fli:h, sy Tioy Ty Figay e 1£ﬂ}|'

Then a1 &,
Eii‘]‘ = E(i‘f}'-
Fact: T [ :R™ — Ris differentiable at , then f has partial derivatives
at T
Proof: Since | is differentiable at Zthereis a vector 0{2) so that

o etk - fln) - _
A0 [E]
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This iz true no matter how the vector b approaches to 0. Therefore, let
Al = cre; and then M) = 0 as v — 0. Then

i 1 01) = f(2) — (e _

o —] rr

This implies, by uniqueness, that (2] = 57 Z)er = mi(z). Hence ni(z) =
s
oz - .
From the proof of this theorem,
2
b
viiz)=| @
aflgs:_u

LL!-'E“

Directional Derlvatives
Definition: f ‘R" = R i said to be differentiable at & in the direction

of dif
lim flz + ad) — fiz) exaste.
a0 o d|
When this limit exdsts, we will write it as Dy f(2).
Neotice that

o S+ 0d) = f12) = aDuflalel]

0
a0 o d]

Note: When d = ey, we have D f(2) = ié'if—.l.
I dy #£0, let

o) = o2t Pl - 2,20t Pl - 2))

Then
d
Difix) = ()
Fact: Let f:R™ = R be differentiable at 2. Let d £ 0 be any direction.
Then
v iTz)d
D f(a) = T2
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Proof: Since fis differentiable at &, we know that

. JlEtA) - fl2) - v A
& I -

no matter how A approach 0. Now let e = cedy then Ala) — 0as o — 0.

Therefore,
o fEtad - flz) - ovfiz)d
@0 I::‘r”'f"!ij”

Herrrenver,
oo A+ ad) — f(2) — el flz)lld] _
& 0 C{”ﬂﬂl

Therefore, by uniquensss, we must have

v [*(z)d = Dy fiz)ld)]-

Corcllary: the norm of the gradient is the slope of the steepest ascent

direction.
Froof:

_vifav iz _||Ivflz)? _
Dorofo) = =i = ey P/

4.3 Derivatives of Vector Fields

Jacobian
Vector field: f:R™ = R™
Definition: f:R* - R" is differentiable at ¢ R™if 39(2) € ™" such

that
o feh) - )l
A0 1211
where A1s an 7-D vector. (%] is called the Jacoblan of f, denoted a= ¥ f(2).
Fact: I [ :R" — R"ie differentiable at &, then #(X) is unique.
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Fact: If {: R™ = R™lis differentiable at &, then f; has partial derivatives
at T and

vﬂﬂ — -:"'a;: -:"'a;: : -:".'a;n — 3':
Su(s) Oale) .. s} v /T[z)
lﬂS] lﬂs:: lﬂ-!‘n

Hesslan: The gradient of a scalar field 15 a vector field and its Jacobian
iz called Hesslan:

sy Af(ey | FLls)
Sz3 Sz 8xg Ox155y

1
-i"fgs; iy, @“fgs;
iz G zd - .
i) SRf(x (s
Indeed, the Hesslan 12 a second dervative of a scalar field.

Note: Hesslan must be distinguished from the Laplacian:

Hir)= 2L = viv i) =

o f o f
vVi=v-¥V/=—= 4+
f f ot toe od
Divergence
Divergence:

ofs O

v.f:a_aa_|_..._|_a$n_

Notice that the Laplacian is the divergence of the gradient of f.

Curl
Curl: -

g k

Vi f=det | % 5 &

Lﬁ A ﬁ]

(3% (3-7) (F-5)

QJQJQJE?
] Chniyy [ iy | Sl
wa [THEs by

Oz ot dr oy

o
&
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Chapter 5

Vector Integral Calculus

5.1 Line Integral

Smocth Curve Ct for o < £ < b,
(1)
rie) = | ¥(7)

where ¥ 18 a differentlable vector function.
Line Integral of a vector field F over a emooth curve £

[ #r)-ar= [ Fist). g

or

((Fdo+ Fdy + Fyde) =f(ﬂaf + Fyy' + B2}k

If {is aclosed curve, we use fp Instead of .
Special cases of line integral:

o When F = Fe, Fie; Fie,,

f Fidx, f Fudy, f Fdz.
i i o

[ ctri)d = f Gir(t)) .

s When F= 581,

BT



Between two end points of a curve, there exmst numercus curves. In
general, the line integrals for different paths are different. However, 1n some
cages, the line 1ntegral 1s independent of path. Indeed, we have the following
thecrems.

Theorerm: The line integral is independent of path it

F=vf
o o 3f af
a 1 Fﬁ é‘y’ ﬂ__

Proof: [«) Let € be any path from any point 4 to any point B, given

by
]
HHE {y(fj ], a<t< b

Then by chain rule,

ox Hy

fi= f Yt = flafe), olt), A2 = /(B) - f(4).
(= :ILEt A (%oy %0, %) and B= (3,3, 2). Define

ﬁ(ﬂix+ﬁ’;@ + Fdz) :j; (ﬁc&w Wy + %dz)

fley, 2 = fot j;(ﬂfiﬂ:* + Pody* + Fadz')

with any constant fy and any path C'from 4 to B. We may integrate along
a path € from dto B, = (2,7, 2) and along the path ) from B, to B
parallel to & aas. Then

fzp,2) :fn‘l‘j; (Fde' + Fdy* + Fd2*) +L(Edm*+ﬂdy*+ﬂiz*j.

:f.:.+j; (Fde' + Fady® +E.dz*]l+ff{(:r*,y,z]dx*.
Then



Sirlarly,

F =Py, L=Ryo)

The differential form
F.dr = Fdr + Fydy + Fdz

iz gaid to he exact it

F=vf

such that
Fldr + Fdy + Fydz = df.

Hence, the line integral 1 independent of path it the differential form 1e
exacth,

Theorem: The line integral 18 independent of path iff its walue arcund
every closed path iz serc.

Proof: (=] Sincethelineintegral isindependent of path, theline integrals
from 4 to Balong & and along €5 give the same value. Notice that € =
Cy U G 1e aclosed curve, I we integrate from 4 to B along € and from B
to 4 along €5, the sum of two 1ntegrals 18 zero.

(<] Given any points dand B, let € be any clesed curve passing through
A and B. Let €] be a part of Cfrom 4 and B and €5 the rest. Since the
line integral arcund <15 sero, the line integrals from 4 to B along & and
along € must have the same value.

Theorem: The line integral 1s independent of path ift

vy F=10

o OF, OF, OF, _0F 0OF _OF

My dz' dx oo’ dr oy
Proof: {=) Since F= V¥,

E
E

v F=vux(vfl=

e
I
il
Il

Cla
B
Cl
uz
Cly
pat
B
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(<] The proof requires the Stokes’ theorem and thus, will be given in

Stokes’ theorem section.
Meotice that in 2-D cage, ¥ % F = 0 reduces to

oF, _ oF
e

5.2 Green’s Theorem in the Plane

Green’s theorem in the plane (Transformation between double integrals and
line integrals): Let B C R? be a dosed bounded region wheee boundary 0R
conglsks of finitely many smooth curves. Let £, F be continuously differen-
tiable. Then

I (%—%) iy = | (Rs-+ P

where line integral 12 done 1n the direction such that A is on the left as we
advance.
Froot:

We first prove Green’s theorem for a special regon & that can be repre-
sented in both the forms

e<2<h, 2 <y <o)
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and

c<y<d, ply) <z <yl

- 054
f[ﬂﬂ:ﬂ — Fx,uz))]dr = fF:r:ﬁ 1 — fﬂ:{:ﬂ x) Jdx

_j;ﬁ{ !y.ix—j;“ﬂ ,y.s:lx——jgﬁﬂ 2 y)d
ffaﬂ.m—jg Fy(3,3)dy.

Hence, the thecrem for epecial regon follows.
In general, eplit the Rinto several pieces of specal regions.

MNetice that

Sirmlarly,
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5.3 Surface Integral

Surdaces
Representation of a surface 5:

o BExplicit form: 2= flx, y].

o Implicit form: gz, 4,2 = 0.
Note that explicit form is a special case of implict form | flz, 4) — 2=
0.
o Farametnc form:
o, v)

rluv) = | wlwv) | (w0 € R
(i, V)

X
Note that explicit form is a special case of parametricform |+ = i

fla,y)

Tangent Flane and Surface Normal

Suppose the surface S'1s gven by the implicit form. Consider any curve
r(t] on S, Then

_ iy
=%

Since 1 18 in the tangent plane, ¥ ¢ ls normal to & Hence, the unit normal
vector s

=V

vy
n= :
|I% 4|
Suppose the surface i gven by the parametric form. Consider any
curve [u(f), v(f]] in B Then
% =1yt + 1yt

where

I
Y

I
¥y
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Since the tangent plane 1= spanned by v, and r,, the umt normal wector 1s

_nxrn, _ N
el (N
where
N=r, ur,.
Surface Integral

Surface integral of a vector function F cver 5:

ffFﬂdA fff[:r*uﬂ N, v)dudu.

Notice that since || V]| = |7y ¥ 74| 18 the area of the parallelogram formed
by v, and 7,

dA = df||[[dury) % (dory]|[] =||7a % 7yl |dudy = || N]|chdo.

Meorecwer,

fﬁF%M:fﬁmﬁﬂﬂfmﬂﬂ£MbMMA

fl[ﬂ cos cr+ Foos ff + Flcos ) dd

where oty f,7 are the angles betwesn n and positive aves.
If 715 a normal wector, so 18 —M. Indeed, if we interchange 4 and v,
Ty M Fy =—F, 31 =N, I—Ienn::e the integral depends on the cholce of unt
normal vector. Such an integral is called an 1ntegral cver an criented surface.
Suppose the surface can be defined by

r= fuly,2), (y,2] € Rs.

ffﬂmsadd:fﬁf{dydz

U el 2, 2)dyde feosa =0
£%ﬂﬂif (F:KL?;E}'@F@ fcoser=0 "

We have similar results for &, and Fi. Hence,

fﬁFﬂM:fﬁm@&+ﬂﬁm+EM@.

Then
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Integrals over a nononented surfaces:

f ﬁ%)dk f qutu,w31||wtﬁ,w1||dudw.
If Sisgiven by 2 = fln, ), let w =2,v =y, 7 =[uv f]7. Then
[N, )| = llry 5ol = L0 AT 5 [0 A7)

=~/ - L1 = m
ff;qﬂd**‘:fj; Gz, 9, f(a:,y)]\/mimdy

where R* 1z the projection of S onto the oy plane.

Hence,

5.4 Gauss’ Divergence Theorem

Gauss’ Divergence Theorem [Tkansformation betwesn wlume 1ntegrals and

surface integrals): Let T be a closed bounded region in R?* and oF be its

surface. Then
ffﬁv-ﬂfvzfﬁTF-ndA

OF , OF,  9F,
fff;(ax e )mydz
:fﬁTEmsﬁ+ﬂtmﬁ+ﬂms’}f]dA

or

where 18 the cuter unit normal vector of 3T
Proof: We first prove

f f ﬁaﬂmdﬂ: f j;T F coendd

for special region T represented in the form

A2,¥) <z < hx,y)
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where [, ¢) varies in the projection B of T on oy plans. Notice that

J]Ribie= [ S

_ f 1; [Blz, 4, Az, v)] - Polz, v, gl )] dody
_ f j; Pz, v, 2, y)]dvdy — f j; Filz,y, gz, y)ldwdy

= f J[;Tf;my: f j;rf; cos YA

ffﬂaﬂdxdydz:ff P cos i,
[

Hence, the thecrem for epecial regon follows.
In general, eplit the T into several pieces of speaial regions.

Sirlarly,

5.5 Stokes’ Theorem

Stokes’ Theorem | Transformation between surface integrals and line integral-
g]: Let S be a plecewise smocth oriented surface and 85 is plecewise smocth
cleeed curve. Then

fj;(v x ) -ndﬂzﬁsﬁ-mms

8F, OF, BF, 3F, 3F, OF,
- (22 (43

_ ﬁﬁ(ﬂm+ Fidy + Fodz)

or

where 118 a unit normal vector of & and #' 1e the unit tangent vector of a8
such that
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Moreover, Ris the region in (%,%) corresponding to S represented by A, v)
and N =h, x h,.

Proof: We first prove

ff (aﬂ aﬂm) dudﬂ:jgﬁﬂm

for epecial surface S represented in the form

= flag)-

’iu[ﬁ:lt"jl = ﬁl[:t:‘, 3") = |: ¥ ]
flzy)

_fs
N:hu}(hu:hxxhy:{—fy
1

Settlng w = ,v = ¥,

and thus

Notice that R is the projection S* of S onto the oy plane with JH = C*.

Hence,

{1 (‘Eiwg ‘E}Ng) indo = [ [ ( - ay)dm
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-5 O ey y= B

The second equality follows from the chaln rule:

OFi[ny, flmy)] _ oH[ny,2] | oR[ny, 40f
% %

Sirlarly,
o F; o F;
f ,,[% (——le + a_ﬂwg) dudy = ﬁﬁfgdg,

f f oF aﬂm dudy = ﬁﬁﬂdz.

Hence, the theorem for speclal region Tollows.
In general, eplit the T into several pieces of spenial regions.
Remark: Stokes’ theorem is a generalisation of Green’s theorem.
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