Process Optimization

Jinhoon Chao

Department of Chemical Engineering
Sogang University

(©Copyright by
Jinhoon Chol

June 27, 2000



Part I

Preliminaries



Chapter 1

Introduction

Optimisation 1s assoclated with decision.

o When there are some alternatives [degree of freedom) to chocee, the
goal of optimisation 1e to find the one that we like moet.

In this lecture, we wall focue on the mathematical programming among
vanous optimisation problems.
Ingredients of Mathematical Program

s Declsion variables (2 € R™): undetermined parameters {degree of free-
dom)

s Cost function (f : R™ = R): the measure of preference

o Constraints (A{x] =0, g{x) < 0): equalities and inequalities that the
decision variables must satisfy

Bia /1

M) =10, g0
Typee of Mathematical Program

o Linear Program

min CL
zeRe

Az+b=10, Dr+e<i
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» Unconstrained Nonlinear Program

xin flz)
» Constralned Monlinear Program

min flx)

el =0, glz) <0

Terminologles

Feacible get:

D= {2eR": M) =0, da) <)

Feasible pant: any & € 0

Local minimum: 2* € {2 such that 3¢ 2> 0 for which f{z*) < f(z) for all
redn{re R ||r— 2| < e}

Global minimum: #* € {1 such that fla*) < fl#) for all x € (0.

[ocal local
minimurfinimum

global
minimum




Exarnple (Optimal Design of an Cxygen Supply System):
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Figure 13. Design of oxygen production system, Example LI
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Figure 1.2. Oxygen demand cycle, Example 1.1.

o Declzlon variables:

— the coygen plant production rate [ F (i Gz,(hﬁ””
— the compressor capacity (H (Ap]]
— storage tank capacty (V[ f#*])
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madrmurm tank pressure (p (pst))

¢ Cost function: total annual coet that conslsts of

capital and operating cost of cogrgen plant

Gl fyr) =0 + 0 F
where &, are empirical constants for plants of this general type
and include fuel, water and labor cost.

capital cost of storage wessel
Cyf) = b 1%

where by, by are empirical constants appropriate for vessels of a
specific construction.

capital coet of compresscr

Gi(8) = buF*
COMpressor operating cost per cycle [ power consumption)
Cul8) = bt H

where g is the coet of power.

Tatal annnal cost
C: G&l + ﬂgF-l-dlibl-[-"b: + bgHﬁ*] + NEI5-£1H

where W iz the number of cycles per year and dis an appropriate
annual cost facter.

s Constrainta:

The maxamum amount of cagygen that must be stored

Imns = (Di - ‘Fr:”{ﬁﬂ - ii]'
Then by the corrected gas law
Lo BT, (D= Flts=6) BT,

M p M P
where ft pgas constant, Tt gas temperature, z compressibility

factor and M: molecular weight of O,

¥ =

]



— The compressor must be designed to handle gas at the flow rate
‘r—“f’]ﬂ and to compress the gas to the maxmum pressure p. Under
1eothermal 1deal gas compreseion assumption,

(D~ F){t,— t,) BT
#= fl ik (E)

o
where ki: unilt conversion factor, & the compresser efRciency and
Po: the Oy delivery pressure.

— () production rate F' must be adequate to supply total cogrgen

demand
F> Ihty +D1|[f2 - fi]
il i
— madmum tank pressure must be greater than the { delivery
[ressure
P
To this end,

FH

lTL-ltl'Jl_pEEri + tIgF-F dl{ﬁi-l}“b‘ + bgHﬁij + Nlﬁ's,fiH

subject to

_ D - F)lta—4) BT
¥ = i ?z

_ D - Flli:-8)RT, fp
= RR" (pc.)

Fs Ly +J?1(fz — 1)
2
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Chapter 2

Mathematical Preliminaries

2.1 Multivariable Calculus

f:R — R1is differentiable at € Rif
g [+l = 100

exists.

1
—0 °r

0
Inz) € R such that
o flzta)- i) - anle)

o —0 oy o

7(z) is called the derivative of f, dencted L& or f(2).
iGradients
When f:R" — R, what do we mean by differentiability at £ € R"7

Definition: [ : R® — R is differentiable at £ € R™ if 39(2) € R™ such
that
o fe R - () -
A0 171l
where file an 7-D vector. 77 is called the gradient of [, dencted as ¥ f(2).

Fact: T f:R" —» R ie differentiable at £, then 9(2) i= unique.
Proof: Suppose #{Z) s ancther gradient of f at 2. Let A = axe;. Then

flz+ae) - f2)

= lim
o "y or

vilz) =i (Z).



Hence, the fact follows.

Geometric Interpretation of Gradient

Conslder the tangent plane of f at 2. The the direction of the gradient
1= the stespest ascent direction.

tangent plane

contour

D¢ ?
4/\ x*k

R\
-/

Equation for tangent plane:

fla) = fla) +vj(2)z-2] = Af=v[TAx

Note that I%i_l 1z the slope in the direction of Ax. Tofind the steepest ascent
direction, consider

af
R ag — BE A = e v/

= g 9100 cs( (% 1,0) = e |9 | cce( (7 f, )
Notice that the maximum is achieved when £{¥ [, Ax] = 0.
Moreover, consider Axin the tangent line of the contour. Then

0=af=v[TAL

Hence, ¥ and Az are orthogonal.



Fartial Dervatives
Definition: f: R™ = R is said to have a partial derivative at T with

respect to a; if
o fla+ae) - 2
o0 cr
{1

exdets.

Fui(2) € R such that

i [0+ ) = fl2) - aw(a)
&0 o §

=0

¥i(Z) 1= called the partial derivative of [ w.rt. 2, dencted a’r;f . Let
Silwi) = JZy - B, B Bigry oo Il
Then
0 3 - gy M) = 00 _ St =it

&0 rr & —0 or

= Iim)

Fact: I [ : R™ — Ris differentiable at 3, then [ has partial derivatives
at TI.
Proof: Since f 1= differentiable at %, there is a vector #{£) so that

o Stk - f(n) T _
h—s0 [1A]

This is true no matter how the vector b approaches to 0. Therefore, let
Aler) = ey and then M) — 0 as v — 0. Then

o f(ztae) - fiz) - epime

0 fu §

This implies, by uniqueness, that »;(2) = 77 2)e; = 0(2). Hence ni(2) =
From the proot of this thecrem,
3f(£)
it
vils)=|

aflgs:_u

=T



Directional Denvatives
Definition: f:R” = Ris sald to be differentiable at & in the direction

fdif
o lim flz+ ad) - fiz) exdsts.
oD of e
Vihen this limit esdste, we will write it as Dy f(z).
Neotice that
o B+ od) - f(2) - aDaf)lld)] _
o %0 o ||
Naote: When d = g, we have I} f(2) = %‘Iﬂ.
Let
_ - L T o
f“’”‘f(ﬁ”nfm@ﬂ”ncﬂw ’ﬁ””ndn)'
Then
i JEted) - flz) L falalld]]) - B(0) _ df
Diw=lg g TR &

Fact: Let f : R™ — R be differentiable at 2. Let d # 0 be any direction.
Then )
VIoT
Proof: Since fis differentiable at &, we know that

. flzta) - flz] - v HE)h
Aoy 1A !

no matter how A approach 0. Now let A e = cedy then M) — 0as o — 0.

Therefore,
i [l e = flz) = e (T _
o\ 0 oo ||
Hermrenrer,
i (2 ) fi3) — aDufladl _
o \0 o ||

Therefore, by uniqueness, we must have
v fHiz}d = Dy f{z))1d.
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Corcllary: the norm of the gradient is the slope of the steepest ascent
direction.

Froof:

_vAEv iy _1viEl® _
Doreo 0 == = ey~

Taylor's Theorem

Taylor's Thecrem for f : R — R: Let f have an nth derivative and
assume the (n — 1)st derivative 1= continuous. Let & # 2. Then 3 A g [0,1]
so that T=2*+ Alr— 2*) and

T— )"

O TN Gl A T TN
flo) = o)+ T 1001 B 4 o2
Note: For two vectors -, ° the line through these two pointe iz
{v:y=Az+(1-A)z%, Ae R}
The line segment joining these two points is
vy =Ar+(1- A, Ae[0,1]}.

Taylor's 1st and 2nd order results for f: R® — R: Let [ have continuous

let partial denvatives. Then, for any two points 1, 2* so that ¢ # 2°, 3
A€ [0,1] so that

) fla) = fla*) + v e+ (1 - Aa')(z - o)
and if in addition f has continuous 2nd partials, 3 de [0,1] o that
() f(ﬂﬂ=f(it»‘*llJr?f(iF*]lT(ﬂ?—ﬂ?*}'+%($—$*]H(jﬂﬂ?+(1—jﬁ}lﬂ»‘*liﬂ?—ﬂ?*ll

where H{z) iz the n % n Hesslan matrix for f, evaluated at 2z That is,

P Ffla) | Ffan

o3 dayday dzyday

A=y FAflny | il

H(Z] — [=F- =¥ =5 [=F- = F.
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Froot:
(1] Let glA] = flar+(1— A)z*). Then g{1) = flz) and f0) = flz*).
Using Taylor's Theorem on R, we get
g(1) = g0) + ¢(A)

for sorne A £ [0,1]. Then, by the chain rule,
fle) = fle )+ v M Ar+ (1 - Atz — 2°).
(ii) Recall we have

& fla] _ =)
oridr;  Ox;0

Le., H{x) s a symmetric matrix. Using Taylor’s Theorem on R, we have

o(1) = f0) + 4(0) + 74N
for some A € [0,1]. Then by the chain rule,

fla) = fla) + 95— o) + %l[af— £)TH e+ (1= Dat)(z - o).

Definition: For a differentiable function f : R* — R, the first order
approddmation at 2* 1= defined to be

fla) + v )z - 2).

Definition: For f: R* — R with continuous 2nd partiale, the second
order approsdmation at &* 1z defined to be

fla') + v [ Yz - 2*) + %iﬂ?— o' Hiz' )z - 2*).

2.2 Quadratic Form
Let 4 be an n ¥ n matrix and define the quadratic function @: R™ — R by
N x) = 27 Ax.

12



X x) 1e called a quadratic form.
Note that,in Q{z) = £74Ar, we can assume WLOG that 4 is symmetric.
Indeed, if 41= not symmetric, we may replace 4 with the symmetric matrix

A=L{A+ AT) since
2TAr = (27427 = 27 A% = 27 EI{A + ATJ] L

Hence, whenever we consider a quadratic form, we will assume 4 is symmetric

unless stated ot herwise.
Def.: &nn x n matrix 41z said to be positive semi-definite (PSD) if

) =274z > 0, ¥zeR™
It is said to be positive definite (PD) i
z) =2TAr >0 ¥Yre R™ x £0.

It is said to be negative semi-definite (NSD) if — A 1s PSD.
It is said to be negative definite (ND) if —4 1= PD.
If 41= nather PSD nor NS, it 1= called 1ndefinite.

PD PSD ND NSD Indefinite

Fact:
1. A1 FD, a;; = 0,1 = L--e,m.
2. If A1 PSD, o >0, 1= 1,---,n.

Froot: Set = e;. Then the fact followe.
Fact: Let 4 be PD. Then

13



1. 41& a nonsingular matrix

2. 4711z PD

Proof: 1. If Ais singular, 3 nonserc v suchthat 4v = 0 and thus v%aw = 0

[contradiction ).
2. Since 41is nonsingular, -1 # 0 for all £ # 0. Moreover 44-! =1

implies (A™1)7AT = I. Hence,

2T A e = 2T A NTAT A e = 2T (A TAA e >0 Yo 0.

Consider a 2 ¥ 2 symmetnic matrix:
A= 11 g _
g daz
Then £Tdx = 1125 + 20201 %s + daadi. Now assume @y £ 0. Then

2T dr = ay, [:rf + 2—:1:1 T+ @:r:g]

rTdr = ay

19 i Lo
o1+ 282 g, 4 Gagz O | Om
11 @ a1 11

i1 2 11 %aa D;u
=y | [T+ —T + —5122
%y e

Now, if @11 = 0 and def(d) = e — oy, >0, 274 > 0for all ¢ £ 0
and, thus, 41z PD. We now show that this condition 1= also necessary. Since
1 =0, we need only to show that deff 4) > 0. Now

det( A)

iy

JTTA.’,I?Z&H (51?1-|'ﬂ ) +

&9

3.

If det{A) < 0, let 3= |—2n l]T. Then 2747 < 0 where  # 0 and, thus, 4

i& not PD (contradiction).
The above motivates the next fact which we state wnthout proof.
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Fact: Let 4 be a symmetric # ¥ n matrix. Then 415 PD o

@ @ [ @1 M2 s
ay =0, def | 0 T 0, def | aa tan das | 0, -ee, det{d) >0
s @az
_'5!13 das  daa

and, thus {since def( — A) = [—1)"det( 4], 41 ND it

[y g s

ay <0, daﬁ[““ “”]:::«0, det | @ Gan o | <0, .-, (=1)7det(d) =0
1z Gaz
_'5!13 Pas oy

Let 4 be an nx n PSD matrix. For €2 0, define A{e) = A+ eI, Then
Ale) i PD.

As aresult of this, we have the following corcllary.

Corollary: If A1s an n % n symmetric matnx which 1z also PSD, then

G 1 Gz Jqa
E&u :}" U] dElﬁ ! 2 :}" U] d&i C&u a-gg a-ga }' |:|:| - '] dd(ﬂ] .:\:' |:|.
- Ma oz | — Gis Gy (g - -

Proof: Since Ale) is PD, we must have

M1+ @3

ity + € 2= 0, det s Gy + €

S0, -ee, def( ) >0,

But the determinant is a continnous function of the elements of the matrix
and, thus, by letting ™, 0 we hawe

1z

s > 0, det[““ “”]:30, e det(d) > 0.

The above corcllary 15 only sufhcient. To ses this, consider
o 0
o =11

=020, det{d)=02>0.

A= dei

Then

15



However, for £ = [0 1]7, #Tax = —1 and thus 4is not PSD.

So far we have developed a necessary and sufhcent condition for A to be
FD [ND). However, we have developed only a necessary condition for 4 to
be PSD (NSD).

We now sketch a condiflon which 12 both necessary and sufhicient for 4
to be PSD.

Fact: Let 4 be symmetric.

1. #* A7 18 real.

2. eigenvalues of 4 are all real.

3. nreal elgenvectors exast and are all orthogonal.

Proof: 1) (2* dx)* = 2* 4o = 2+ A

2] Let A be an eigenvalue and ¢ be the corresponding elgenvector. Then
vt du = Avtv. Note that LHS is real, and v*v 1s real and == 0.

3) [ Proof of orthogenality) For multiple eigenvalnes, we can always choose

mutualy orthogonal eigenvectors. Suppose Aw = Au and dv = pw with
A p. Note that 474 = AuT. Hence

w Ao = AT and wTdv = uuTv

= AuTy = puTv = wTv = 0.
Theoremn: TEAR

1. 4is PSD (PD).
2. all its eigenvalues are nonnegative {positive).

Proof: {1 = 2) Let A be an elgemvalue and o be the corresponding unit
elgenvector. Then

Avi = A =0 0 [<uf = Avi = A
(2 = 1) {]} orthonormal elgenvectors
Av=Algyw 4+ tagvy) = o de +--- Fa, dv, = ag Ao+ + 8, Aty

I
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e = (v 4 Fagvi) e Aty - FagAgva) = af A el = (0.

Note: The abowe fact 18 not true for a nonsymmetric n % 1 matnx A

Conelder
1 10

-3 1|
Clearly 11s the double elgenvalue of 4. However, for £ = [1 1]%, 274xr = -1

and thus 4d1is not FD.
2.3 Convexity

iConvex Sets and Functions
Let z,7 € R™. Define

[#,2] = {yly = Az +(1- Az, A€ [0,1]}

and
(%,2) = {ply = Az +(1- Az, Ae (0,1)].

Nctice that [z, 2] = [2, 4] and (2, %) = (7, z).
Definition: A eet & C R™ 12 convex if

[ 4% c C ¥al, e €

Convex Nonconvex

Definition: Let € C R® be a nonempty convexeet. Afunction f: = R
1= convex if

fOA (1= A)?) < Af(at) + (1= Af(a?) val,2? € € vAe [0, 1]

f 0 Ris concave 1f —f 18 ConwE.

17



X y X y
Convex Nonconvex

Definition: Let € be a nonempty convex st of R™. f: &' —= Risstrictly
convex 1f

flasdt +H{1-A)2%) < Aflat)H{1-A) fla?) ¥ad,x?e Ot #£ 2%, ¥ae (0,1).
Simple Facte:

1. Let fi and f3 be two convex functions on a convex set € o fi + o f
1s convex on C'if oy > 0, o > 0.

2. The intersection of any collection of convexsets in R™ 12 convex.

Proof: 1. Suppose 2, 3% € €. Then for all A g [0, 1],
(g fi+oafa)l Axt (1= A)2?) = oy il Azt {1 — A2 o fal Art +(1 - A)2?)

< ey Af1(2') + el — A) fil2?) + e A fa(2') + a1 — A) fal2?)
= Aoy fr +enfalla?) +{1— Aoy fi + o f2)[27).

2. Suppose & = n;( where C's are all convex. Then 4,28 € € =
5t eCloradlt = [17r]e Gforalt = [r,4]e O

Theorer: Let € C R™ be convex and let f: € — R be convex. If 2* 1s
a local minimum for

mig (2]

then z* 18 a global minimum.

Proof: Suppose 2* is locally optimal but 3 € Ceuch that flx) < fla*).
Consider 2 = Ax+ {1 — A)a* with A € [0,1]. Thenforall A g (0,1], 26 &

and
flz) = flae+ (1 - Ae*) < Aflw) + (1= A)fle*) < fle).

18



This 15 a contradiction and the fact follows.
The level sets of convex functions have an impeortant property.
Fact: Let € be a nonempty convex set of R™. Let [ : €' — R be convex.

Then
Lifc) = {ze Qf(z) < a}

iz convex for &l v R.
Proof: Let 2!, 4% € Ly{c). Then fio') < o, t = 1,2 Then by convexdty
of f, we have

fAS (1= A8?) < Af(ah) +{1- A f3%) < dat (1= Na=a YAE[0,1]

U
Mt (1— Nae Lia) ¥Ahen, 1l

Nate: The above showe that if fis concave on C'then {x e O flzx) > o}
18 convex for all & £ R. B

Corcllary: Suppose fil £)'s are all convex. Then the feasible set satisfying
the inequality constraints fi(z) < ¢

O={reR": f{z)<c, M} =nfzeR": fir] <}

& conver.
Differentiable Convex Functions

>
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This picture motivates the followng theorem:
Theorem: Let f: R® — R be differentiable. Then fis convex on the the
convew set & RO

fle) = flz)+ v flz){z - 2] ¥o,ze C
Proof: {=) For ;2 € €, we have

flaz+ (1= A)z) < Afl) +(1 - A flz) vae(0,1]

flz+Alz—2)) < fl2) + A fla) - flz]) ¥Ae01]

|z — 3 = L5 /(7] :}\1{1}3 pE
_ |:1:‘i i e +(1 —;]lar:]l - flz) < |a¢ix| il () - (2]
_ 1 ol
_Iﬂ?—ilm ) - fizl].

(<) Let 28,47 € C'and let A€ [0,1]. Define £ = Azt 4+ (1 — A)2®. Then
flat) = fla) + v fla)(2! - =)
f#) > fla) + v fle)(2* - 2)
1l
Afla') +(1 = A (2] > fla) + 7 fle)Ae’ +(1 - Az” - 2)
= fla) = f0 + (1 - A1),

We now provide a necessary and sufficlent condition for f: & = R to
be convex when, in addition, f has continuous second partiale. For this, we
need the following rather obvicus geometnc fact.
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Lemma: Let f: R — R be convex on the open interval € and have a
continuous 2nd derivative, f*. Then f* is nonnegative on C.

Proof: Let & # X be polnts of € and let 2{er) = T4+ alz— ) for ar e [0,1].
By Taylor’s theorem, for o € [0,1], there s Ax £ [0,1] so that

flde)] = flz) + flz)a{e) - 2) + %f”(?'axiﬁl +(1- A z)(2le) - 2)°

= flz) + flz)ala) - 2) + %f”(iJr ata( T — 2))(x(a) - 2)°.
By the convexdty of f, we have

Jlaled) = flz) + fia)(a{a) - 2) Voe [0,1]
Y
fztadslz-2)) 2] -2)* = A flala)) - flz) 4] (2)(ela)-2)] 2 0 ¥are[0,1]
U
2+ adalz—12)) >0 Vae (0,1]

Then by the continnity of f* we must then havwe f¥[2) > 0.

Theorem: Let € < R™ be open and convex and legf : & = R hav
continuous 2nd partiale on €. Then fis convex on & Hf the Hesslan matrix
Hiz)of fie PSDforall z e €.

Proof: (<] Suppose 2,2 £ €. Then by the Taylor's theorem, we have
for a A e [0,1]

fl) = flz) + v/l (z— 2) + %I{dﬁ— TTH{Ax + (1 - Ax)(z- 2.
Since H 18 FSD on |
(z—2)TH{Az+ (1 - Az)z-3) > 0

|
flz) = fl2)+ v 7 z)z - 2).

Therefore fis convexon €.

(=) Let x€ C,let de R”, and define ¢ by
g7} = fla+7d).

41



Since €'l open and [ is convex on ) 1t follows that ¢ls convex in some
neighborhood of 7= 0. Therefore, from the previous lemma, ¢'(0) > 0. Now

notice that
glr) = ?F{$+Td]d
and
flr)=(Hz+ Tfﬁ]d)Td = dTH(ﬂ: + 7d)d.
Hence,

b < 1(0) = dTH(z)d
I
Hiz) e PSDfer dl x e

Corollary: The Quadratic form #7Q 1= convex iff @ i PSD.
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Part 11

Linear Programming
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Chapter 3

Fundamentals of Linear
Programming

3.1 5Standard Form

Standard form of linear program:
min 2y + Ly + - -+ + 0L Xy,

subject to
G111 + G1a%z -0+ Gl = B

STy + BaaTy + - + Sann = by

Bt 1 + Gmals + + v o + Orann = b

Ty 20y oy =0 eeey 25 =0

or 1n vector form
min c 4
SED

subject to
Ar =14

Hewrever, in general, a linear program is given in the form of

min cFx

24



subject to

.511:1?: &'1
Ax < by
..4.\351?:2 &'3.

Clearly the last inequality can be rewritten as

and any inequality can be rewritten in the form of the first inequality. We
now show how the above linear program can be transformed into the standard
form.

Inequalities

Glven an inequality, it can be transformed into an equality by introducing
an additional variable. Consider an inequality

Uy 4 aF + -+ oy < B
This inequality 1s eguivalent to the equality
Gy + Gyt E 3 = b

with 5 > 0. 3 1= called "slack” varable.

Free Variable

Suppose we don’t have the constrant #; > 0 and thus 3; can be negative.
Then o can be decompesed 1nto two nonnegative vanables.

= af — 1

with o, 27 > 0.
To this end, any linear program can be transformed into the standard
form.
Hete: (Hlven an equality, it can be transformed into two inequalities. Con-
sider an equality
WTy + oty + o0+ dnln = b

Thiz equality 12 equivalent to the inequalities
Uy + gy + - F il <D
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— gy — Gy — - — gk, < —h
Hence, alinear program can be transformed into

min ot

subject to

Az < b
This form 15 called the ineguality form.

3.2 Basics of Linear Program

Consider

Ar =14

where dis an m ¥ 7 matrix with m < n {for degree of freedom). H the
rank of 4 1s m, there exdsts m linearly independent columns. WLOG, we
asgnme first 0 columne are linearly independent. Now we rewrite the above
equatlon as

BN]| 2 | =

where B be rn % vn matrix composed of first #n linearly independent columans.
Then Fis invertible and
BSFB :E'

have unique solution and (xg,0) is a sclution of the full equation.
Definition: Among many solutions, (g, 0] type solutions are called basic
solutions. Moreover, £ is called basic variables. If (xg,0] > 0in addition,
1t 18 called the feasible basic sclution. B
In the inequality form, a basic solution 18 a corner point of the feasible
set defined by
O={rcR":x>10, dr < b}
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Standard form:

variables Ty, T, 51, -, B> =T

5 equalities = =2~

Definttion: If one or more of the basic varables 1n a basic solution has
value sero, that solution 1s said to be a degenerate basic solution.

MNote that in a degenerate basic solution, the sero valued basic and non-
basic variables are indistingmshable.

Fundamental theorem of linear programing: O there exsts an optimal
feasible sclution, there 1z an optimal feasible basic sclution.

Note: If there are no constraints, the optimal solution of a linear program
doeen't exst.

» Unigque optimal solutlon:
» Iultiple optimal sclution

s No [unbounded) optimal sclution:

27



Multiple (Unbounded)

Unique /
Optimal Optimal Optimal
Solution Solution Solution

Thanks to the abowe theorem, the task of solving a linear program ie
reduced to searching over basic feasible sclutions. Since at moet

oy n!
=l m — miin —m)!

basic solutions exast, there are only finite number of poesibilities.
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Chapter 4

Simplex Method

Main 1dea: proceed from one basic feasible solutlon to another in such a
way to continnally decrease the objective function value until a minimum is
achieved.
4.1 Gauss-Jordan Elimination
Goal: Given dr=[BNJx=bor

{&11:1:‘1 +-- 4 a1n$n = bl

By + -+ Gandn = b

Uty + -+ Gndn = &'mj
transform it into canonical form: [J B-'Njx = B-thor

T+ ¥ mi1Tmgr T+ ¥10Tn = Tio

Tyt ¥ami1Emps T+ ¥2nfn = o

T +ym,m+1$m+1 +e Veand'n = Ve

from which we can easily find a basic solution.
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Answer to the goal: Gauss-Jordan Eliminaticn
Tllustration of Ganss-Jordan Elimination Steps with Example:

0 -2 00 F 12
2 =10 4 6 13 |x=| 24
-1

4 =5 4+ 6 =5
o -2 00 7 12
4 =10 4 6 13 48
4 -5 4+ 46 -5 -1

s Step 1: make the tablean [4 ]

o Step 2: reshuffle the variables so that Bis nonsingular
0 -2 7 00 12
2 10 12 6 4 28
2 =h -h 4§ 4 1
o Step 3: reshuffle the equations so that a;; # 0.
2 =10 12 6 4 2§
o0 -2 7 00 12
2 -5 =h 6 4 -1
o Step 4: divide the first equation by the first element
1 -5 6 3 2 14
o -2 ¥ 00 12
2 =h -5 i 4 -1

o Step 5: make 4 = 0, ¢ = 2,---,m by subtracting an appropriate
rmultiple of the first equation

1 -5 & 3 % 14
0 -2 7 00 12
0 5 =17 0 0 -29



s Step f: repeat Steps 4,5 with [m—1) % (n—1+1) right and down most

tablean:

1 -5 & 3 2 14
001 -Z 00 -6
g &5 =17 0 0 -—%9
[1 —5% & 3 2 14 ]
001 L 00 -6
o000 L 00 1

[1 —5 6 3 2 14 ]
001 —I00 6
0 0 1 00 42

o0 0 1 00
1003 27
010001
001 00 4
Hence, a basic solution s 2 =[71 00 2].

4.2 Pivoting

Goal: Given a canonical form, find new canonical form by swatching a basic
vanable with a nonbasic variable so as to find ancther basic sclution.
Answer: plvoting

Switching basic variable xy, 1 g P < min the cancnical form with a
nonbasic vanable 2 1s pessible it 45y # 0.
Pivoting:
o Step 1: divide pth row by the plwot 4
v ¥er
¥ pr Yo

where 4''s are the coefhcients for the new canonical form.
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o Step 2 subtract suwitable multiples of p th row from each of the other
rows 10 order to get a sero coefiident for 1 in all other equations.

Ui '

e VED

"

¥ iy = iy —

Tlustration of Piveting Steps wath Example:

T
T Ty Ty Ta In s 3
L oo 1 1 -15 baslc sclution: -1
o 1 0 2 -3 1 3| ' 0
o 0o 1 -1 3 -1 -1 0
0
Switch 2y with o4 by plvoting
-0
Ty Iy Ty Ty Iy I —7
1 0 0 1 1 =1 & bas] Lution: 4
21 0 0 -5 3 _v |y bmsiceo utiomn: K
1 0 1 0 3 -2 4 i
0
Switch o3 wath ¢ by plvoting
S
Iy Ta Ty Iy Ix Iy 0
d1 o0 1 0 -2 B I L
505 001 8 % |, basicsclution: | 44
I _? 3 5
1 2
-t 8 1 00 -p ¢ 3
0
Switch 2a with e by pivoting
e
T I I Ty Ir Ip 0
1 -1 -2 1 0 0 4 basic solubion: 0
{ _2 _3 0 1 g g | basicsolubion: |,
1 -3 -5 0 0 1 1 a
1
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4.3 Adjacent Basic Solutions
For linear program, we need to conslder
dr="1

SIC‘ZEU.

Hewrever, pivoting may not yield nonnegative basic solution.

QJuestlon: (Fven a new basic variable, how can we guarantee the new
basic solutlon obtained from the plvoting satisfes o > 07

Temporary nondegeneracy assumption for easier illustration of simplex
method: Every basic feasible solution 1e nondegenerate.

Determination of Vector to Leave Basis to Obtain the New Basic Solution
with x> 0

Consider the basic feasible solution £ ={2y,- -+, &m, 0, - -+, 0]. Then

Bl = [IB_lﬂT];F =Ie + T+ + Tl

Assumption = i >0,1=1,---,m
Let @; be the (1 — mjth column of B~'N. Then

'I‘q :quEI +3"2q'92 ++qu5m g:}m

Then for € > 0,
B =[I B 'Nlx — ea, + ca,
= (21— eyg)en + (T2 — eva)en + oo+ (T — g} Emn + €6
Hence, [T1 — €lf1g T2 — Efag =+ T — Efmag 0 +-+ 060 --- 0] is a sclution
of Axr =
For £ =0, this sclution reduces to old basic sclution.
For emall enough €, this sclution ie a feasible but nonbasic solution.
Iy, =0, o — ey N a8 €7
i <0, & — eyig /a8 € 7
Casge 1: 4, =1
Note th.at -y =0=e=4
Hence, if

£ in ) 20 =0
= min 8
Y v Hig 1



then [ —eyy, - Tpo1— E¥p-1) 0 Tpp1—Elpt1)e """ T~ g 0 --- D el - ]
18 a new basic feasible solution with o > 0 that iz obtained switching 1 and
Tp where pls the minimising index.

Case 2: yjg < 0 for all ¢

€ can be arbitrarily big and thus the new basic solution cannot be obtalned
switching &, and any basic variable. Notice that there exist unbounded
feasible sclutions in this case.

Eacample:
(hy Gy Oy Oy O g b
1 00 2 4 &6 4
g 1 0 1 2 3 3
o 01 -1 2 11

Basic feasible sclution: £=1[4,3,1,0,0,0]7 > 0.
Want to bring @4 into the basis. Then i{;’s are

ﬂ:izﬂj E:EZBJ x_e':i:_]_
14 2 i e 1 iag -1
Hence, 414 =2 1 the pivot and
Gy Oy Ga Oa O g D
% g 0o 1 2 3 3%
—% 1 00 0 01
% o 1 0 4 4 3

New basic feasible sclution: Z[U 1,3.2.0 U]T =0

1-1r=1 |

4.4 Mimmmality Condition

We want to change basis in such a way to decrease the objective function.
From the canonical form, the basic feasible sclution 12

($Biﬂ] = (3"1'313"331"'13":?101 U,---,D:I.

Now the objective function for any o 1=

=0 + St + oo+ Caln.
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Hence for the above basic scolution,
% = Chra, where cf =[cy o+ Cm)

Instead of o3 = 0, pick some o # 0. Then a7 =B Y- BNty and thus

n
Ty =i — Z 3"1f'$;'
H=LE 3]

n
Ty =¥ — z; yﬂ;m;'
=m+1

n
Trn = Y — 2 e i T4
H=LE 3]

Then
z=cTr
n n
=0 | to— 2 1%y |t Tl [ oo — 2 Yo iTi | Fomp1 Tragr - Ty
i=mtl STt
n n
=z — Z C1ffs @5 — - — Zr CrlimiTi + Cmg1Tmps +- -+ Cnln
i=mtl r=mtl

=xn+ (Cm-l-l - m-|-1:|$m-|-1 + (Cm-fﬂ - 3m+2:|$m+2 +et (Cn - znjirn
where
% = CBO; = Oty + Caiay + - + Gy M1 < 5N

z for all feasible sclution 18 now parametrised in termes of Ty
He;— 2 <0, 2N as 2; 2

Theorem (improvement of basic feasible solution):
o If c; — z; <70, there exaste a feasible sclution such that z <z,

o If a; can be switched with one of the basis, the new basic feasible
solutlon nelds # <7 4.
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o If @, cannot be switched with one of the basls, the optimum 18 un-

bounded.

FProot: WLOG suppose Cry1 — Zmg1 < 0. Then the new feasible sclution
s of the form (2'y, -+, 2001, 0,- -+, 0) with &4y > 0. Then

E— = (Cm+1 - 3m+1]|$fm+1 < (.

Hence, we want to malke 5,41 as large as peesible. o'n 41 can be increased
until one component of Tz becomes sero and plwoting 1 complete. T no
elements of &5 decrease, the opfimum 15 unbounded.

Cptimality Condition Thecrem: I for some basic feasible sclution c; —
# » 0for all 3, the solution iz optimal.

Proof: Any other feasible solution must have > 0 fer all 1. Hence, the
valne # of the objective will satisfy 2 — 2 > 0.

Definition: relative (reduced) cost coefficient

Ti= 0 — 2

For basic variable o, z; = che; = ¢; and thus r; = 0.

4.5 Simplex Method

Assumption: At the initial stage we can find a cancnical form that gives a
basic solution with 2 > 0.
A way tofind such initial canonical form wll be given in the next section.

Sirnplex Method

o Step 0: Find cancnical form that gives a basic solutlon wath & > 0.
Compute relative coet coefholents.

o Step 1t I each vy > 0, stop; cumrent basic feasi ble solutlon 15 optimal.

o Step 1: Select g such that ¥, <0 to determine which nonbasic vanable
18 to become basic.

» Step 31 Calculate i"'—Jfor ¥ip = 0,2 =1, H oy, = 0, stop;

problem 1s unbounded. Otherwise select P as the indext corresponding
to the mimmum ratlo.
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o Step 4: Pivet the pgth element, updating all rows including the last.
Eeturn to Step 1.

Ex:
T§§_3$1_$2_3$3
subject to
i o i o s
$1+2$g+3$3<_:5
21:1 +2$3 + T E g.
Then
o
1 Gy G G o O B 0
21 1 1 0 0 2 0
1 2 3 0 1 0 5|, basceolution: 9
@ 2 1 0 0 1 6 .
(7T, —z) -3 =1 =3 0 0 0 0 ;

Suppoee the 2nd column is the candidate for new basis. Then 1 1s the pivet.

.

21 1 1 00 32 4

-3 0 1 21101 . . 0

00 -1 —20 12 basic solution: 0

-1 0 -2 1 0 0 2 1
)

= =4
Fickthe 3rd column as the candidate for new basis. Then 11in the second
row 18 the plwot.

0
5 10 3 -1 01 1
-3 01 -2 1 01 basic solubion: 1
B 00 -4 1 1 3 |» bascso ution: 0
-7 00 -3 2 04 0

3




=4

Pick the 1st column as the candidate for new basls. Then 518 the pivot.

_1_
E
1 L g & _t g L I
il 3 1 _E'L 35 0 3 ] ) -]
0 i ; _i 5 1 i , basic solution: a
0o & 2 o0& 0
4
# = —4. The last row elements are all nonnegative. Hence, the optimal

solutlon 18 found. The optimal solution 18 & = [% 0 % 00 ‘}]T.
Degeneracy

Even 1if there exast some degenerate basic solutions, the simplex method
works fine 1n moet cases. One possible, but rare, problematic situation 1=
the cycde among degenerate basic sclutions. Suppose the degenerate wvari-
able needs to leave basis. Then the objective dossn’™ decreasze and another
degenerate basic solution 1s attained. This may lead to an indefinite cycle
among degenerate basic solutions. The cycle problem can be awided if the
degenerate variable 1z slightly perturbed.

4.6 Imtial Tableau

Conslder

Av<b, b0
x> 0.
Then the corresponding standard form is

dr+Is=4%

and thus [5,2] =[f 0] > 0is afeasible basic solution.
In general, multiplying —1 to some equations, the standard form can be
written as

dr=82>10
x> 0.
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Consider an arfificlal problem

m
mn M i

subject to

Ar+y =4
rxl, y=0

If the original problem is feasible, the artificlal problem has a minimum
value of zero with ¥ = 0. Since all ¢;’s are nonbasic at the optimum with
poseible exchange with nonbasic ones in the degenerate case, the optimal
solution provides a feasible basic sclution of the original problem.

The artthdal problem 1= already 1n cancnical form with basic feasible
solution ¢ = & and thus the simplex method can be directly applicable to
yield the initial tableau for the original problem.
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Part 111

Unconstrained Nonlinear
Programming
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Chapter 5

Necessary Conditions and
Sufficient Conditions of
Optimality

Conslder the optimsation problem
min fix)

where { : R™ = R.
Fact [1st order necessary condition for local minimum): Let f: R® = R
be differentiable. I 2* 1= a local minimum then, we must have

v flat) =0
of, equivalently,
Diflet) =wflat)d =0, ¥dec R

Proof: Suppose there exdste df € R™ such that ¥ fla*)d* # 0. WLOG
assume W f{2*)d* <20 by possibly considering —d*. Then

e +ad) - f(&)
-

= Jo¢ >0 sothat flo* +ad) < flo*) for all g (0, o).

= 1 not alocal minimum.
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Consider f = —2% Clearly f(0) = 0. However, 2* 12 not alocal minimum
but a local maxamum. Hence, the abowe theorem 1= only necessary

Fact [2nd order necessary conditions of local minimality): Let f: R™ —
R have continunouns 2nd partials and let #* be a local minimum. Then, for
any & £ R™, we have

1. vflz*] =10, and
2. dTH{z*)d > 0 for all d € R" (H(2*) PSD).

Proof: 1) is just a restatement of lst order necessary condition. Let

Flo) = 2* + il for o > 0. By Taylor’s theorem, for some A; £ [0, 1],
flate)) = flz*) + av fl2*)d + %C{ngHII:I:* + tedq d)d.

Suppoee dH(a*)d < 0. Then, by the continuity of the second partials, there
exasts of == 0 such that

dTH(z* + cdod)d <0, Yae[0,d].

Then for all o e [0, ], fla{a)) < f{#*). Hence #* cannot be alocal mini-
IO,
Consider | = 2*. Clearly f{0) = 0 and f*[0) = 0 [PSD). However,
2* = 01 not alocal minimum. Hence, the above theorem s only necessary.
Fact [2nd order sufficient condition for a strict local minimum]): Let f:
R" — R have continuous 2nd partials . If

1. vf{a*] =10, and
2. H(z')is PD,

then £* 12 a strict local minimum.

Proot: Suppose 2* 15 not a stnct local minimum. Then for all € 2= 10, there
exdsts T € Bzt ¢) and 2 # o such that f{2*) > fla.). Let & = ¢ for an
integer k> 1. Then fiz,,] < f{2*) for all k& By Taylor’s thecrem, for each

’ 1

fla) = flat) + 5l7e, — &) Hhea, +(1 - 3"z, — 3)
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for some A € [0,1]. Therefore, for cach £,

%“‘?ﬁk — 2 TH{ Rty + (1 - X2t} (e, — 2*) = flm,) - fla*) <

Thie 18 a contradiction since HII]I 1& continuous and thus Aie PD in a nagh-
borhood of 2t

Consider f = 2% Clearly #* = 0 is the strict global minimum. However,
fi{0) =0and f*(0) =0 [P5D). Hence, the above theorem is only sufheient.
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Chapter 6

Numerical Methods

6.1 One Dimensional Search Techniques

Conelder

min  flx).
o flx)

6.1.1 Brute Force Search

Find N evenly spaced paoints {23] in [cr, ¢z]. Then pick 2y such that flzi) 1=
the smallest among {4 ).

6.1.2 TUnimodal Functions

Throughout the rest of this sectlon, we only consider ummodal functions.
Hence, we present the preliminaries on the unimodal functions.
Def: 4 function f on [ty, ) i& sald to be [strictly] uwnimodal if it 1=
[strictly] monotonic on either side of single optimal point 2* in the interval.
Fact: Suppose [ is strictly unimodal on [cy,cq] with a minimum at 2.
Let 3 and 23 be two points in the interval such that o <&y < 2y <o
Then

LI flay) = flx,y), then 2 € [y, o).
2. If floy) < flx,), then 2* € [0y, 23).
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Proof: 1) Suppoes 2* € {&y, 41). Since 2* 1= minimurm,
fl2) < fla) = flae) with 2 <o <20

f i not unimodal {contradiction).

6.1.3 Fibonacci and Golden Section Search

Throughout this subsection, f{4)is unimodal.
Ifain idea: eliminate the regeon where the minimum doesn™ east.

Fibonaca Search
Fibonaccl Sequence {F}: generated by the Fibonacel difference equation

Fy=Fy+ v, B=F=1

iy
{F}={1,1,2,3,5813,---}.
Goal: Find /¥ pointe:

O =Tp< Ty <o LI L Ty =G

such that the interval [2_;, i41] where fl#;) is the minimum among f{2;)'s
has length 2-(ca — o).

Netice that this search iz much more efhcient than the brute force search
for large NV although it requires the function be unimeodal.

Let GE1 = -0 and I1 = [Cljﬂg]. _
The Fibonaca search consists of ¥ — 1 steps. At the tth step, we perform

the follownng:
o Let T =[of, ai]. Find f (af + T5rdh) and f (s} - Tid)

o If f(a{ FN‘ 1) < f(ag "'afl ,eeb Ly = [ag—‘ﬁ""’—‘ ,ag].

Ot herwse, set fin [C&i, o + Fg—;dl )

Example: f =2, =0,c2=1, N=5
11 :[Ujl]
Step 1: f(g) :*—%’f(%) == I, = [U, &5]
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Step 2t f{2) =2, f(3)=2= L =103
StepB:f%Z&g,f%Z%:}I&— D,&g.
Step 4: [ (1] =1

Golden Section Search
Fibonaccl search with W = oo
The sclution to Fibonaccl difference equation 1=

Fy=arl + Bl

where 7y, Ty are roote of the characteristic equation
=741

or equivalently,

1++5 1-+/%
7‘1 = 2 1 = .
Since |7y <1,

. FN_]_ ].
1 = — p 0.618.




Hence,

Gey1 _ 1 0.618.

dy Ty
Hence, the golden section search converges linearly.

6.1.4 Line Search by Curve Fitting

Throughout this subsection, f{x)is nnimodal.
Main idea: approxdmate f with polynomiale suceessively and find the
optimum of the approsamate polynomials.

uadratic Fit
1. Cloose AT T E [':1! Cg].

4. 3=t
Froin = min{ f{z1), f(z2), fl2]}
Xonin = i such that flai) = Fhis

3. Using fla), flaa), fla), it the quadratic function:
fla) = oo+ ol — o) +male — o)z — 73
4. Find the optimum #* of the quadratic funtion on [r, ).

B If Fain > fla*), pick #* and its two neighbor points as new &y, 2,2 €
[t1, €2), and go to Step 2.

Otherwse, pick X, and its two nelghbor points as new Ty, T, 4 €
[t1, ¢2), and go to Step 2.

This search converges faster than the Gelden section search.

6.1.5 Miscellanlous techniques

There are other one dimensional techniques. Howewer, most of them require
the derivative of f and thus are not recommended.
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6.2 Steepest Descent Method

Main idea: from the given point, search the minimum in the steepest descent
direction

Tipr = Tx — oV [ 23]

= arg ﬁrgg flaw — v fla])

f(x)=c

6.3 Newton Method
Iain 1dea:
1. Approoamate the object function by quadradic function

2. Solve the resulting quadratic problem
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3. Search for the solution direction tofind the minimum in the direction

Quadratic approxamation:
fla) o flow) + 9] - ) + o m) THm) (2 - ).
Exact solution of the quadratic program:
=% — [H{z )79 fl).

Newton Method:
Tegr = T — HE[H(%]']_lvﬂ[i:k]:

e = acg g f (54— el H(]]1 f().

Advantage: converges faster than the steepest descent metheod
Drawback: need to compute [H{a:)]
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Connections with the Newton Methods for Systems of Nonlinear Equations
Let {:R™ — R™ be differentiable. Then the Newton methodfor flo] =10
1= to solve 1ts linear approxamation successively.
Linear Approsamation:

0= fia) w flaw) +V Sl [z — ).

Newton Method:
Tagr = B — [V Hm)]7 ).

In the unconstrained optimization above, f : R® = R. The necessary
condition of local minimality is

0=vflz)
where ¥ { : R® — R™ Apply the Newton method to this equation. Then
Trgr = 2 — [H{5)]7' 9 fla)

that 15 the Newton method for the unconstrained optimsation.

6.3.1 DModified Newton Methods

In the Newton method, finding the exact inverse of Hesslan matnx e often
problematic {time consuming and sensitive]. Hence, thers are a couple of
modified Newton methods depending on how to construct the approsa mation
of Heeslan inverse.

Notice that

¥V f(@e41) = V@) m Hiz) (@0 — 2
and thus
Begr — 2 = H{o 7V flaag) - 9 fla]).
Indeed,
H 2]
~ [Thgs — Ty oy TRy — W[V flawgn) = 9 flady - ¥ Al - 9 fla)]™
provided that all the matrices are nonsingular.

Main 1dea: use the previcous step data to update the approsamation of
Hesslan 1nverse.
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Bank One Method

Hl =H'+ g 528
has rank 1
1l
pe = Hojge = Hi' g + vt 2l g
where
Pe = Tegt — Ty G = V[ Te1) — V [z

1
E’Eﬁ'k - grE'Hj;lqk = f&k(fﬁf‘f’fi’ﬂg
I
—1 _ -1 T _ -1 O 2| 0 | 0 2 )]
.Hj;.+1 = Hj;. +ﬂ-j;-.35;-3:;;. = Hj;. + ﬂ&(zgg}jj

T o oL o oL _ H1 :”ka_ H_ltj':i-jT
_ gty WAL GG A _ gy (B B o )T
* ol 2 ) * % e — B )
Fact: I Hiz)~!is a constant, then
Vi) - V5] = Heplaip - @) i<k

Hence if [V flm) — ¥ flan), -+, Vf{2n) — ¥f(2n-1)] 1= nonsingular, the
rank one correction converges to H=1 in n steps.
Davidon-Fletcher- Fowell Method (Rank Two Method, Variable Metric Method)

1. Let A be asymmetric positive definite matnx and x, any point.
2. St di :—Hkvﬂi}.].
3. Minimize flaz + o) ward. o> 0 to obtan Ty,

4. Set - e
H- = gt 4 Pl Howg e
w1 = TH-1
Pi e T 424 e
and go to etep 2.
Fact: f H ' is PD, then so is ;.
Fact: I H{x)~! is a constant, then

Hl Hpi=p i<k
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Part IV

Constrained Nonlinear
Programming
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Chapter 7

Necessary Conditions of
Optimality

Conslder .
min f(2)

subject to

alr)=a-z<0

flz) =x—b< 0.

f(x) /\/\—/
N}
a o
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I

Vfl1*) = 0 iz not the necessary condition of optimality anymore.
Consider the optimisation problem

rmin flx)

el

where { : R” = R, 0 C R™.
Definition (feasible directions): The vector d € R, is sald to be afeasible
direction at € 0 there exizste & == 0 zuch that

THede O Voe [0,

We let IX3;03) denote the set of all feasible directions at € 0

Fact [1st crder necessary condition for local minimum): Let £ C R® and
let f: R" — R be differentiable. I 2* € {115 a local minimum then, for all
d e INx*; 1) we must have

Dy flet) =vfiat)d > 0.
Proof: ¥ there exdsts df € IXx*;00) such that ¥ flas)d* <20,

e +ad) - f(z)
TR

= Jert =0 sothat flaf + o) < fla2) for &l eg [0, of]. But d* £ D{x#;02)
= Jo&f >0 s0 that 2* +ad € O for dl o e [0, &]. Let &= min{cd, o'} and
we then have flot +ad] < fla*) and 2* +ad e Oforall o e [0, 8] = 2% not
a local minimum.

Corcllary: If 2* € wné), Then ¥ flo*) = 0.

Proof: ¢ £ il = L{2*;0) = R™\ {0}. Therefore, ¥ f{2*)d > 0 for all
440, > vfiz) =0

Lagrange Multiplier
Consider
mip, f12)
subject to
Alx) =10



At the minimum, the 8 constraint equations must be satished
Alzt) =10.
Morecver, a feasible direction, dr!, from the minimum &% must satisfy
dhiz*) = whlz)det =[wh () - Vh(2t)]det = 0.

This 1mplies
y =Y aVhis) o yTdet =0, vdrl.  (+)

From the above theorem, at the minimum, it must held that
dfiz*) = v f{a*)Tdat > 0, widal.
Since both dat and —det are feasible directions, this is equivalent to
df{z?) =¥ f(22)Tdzt = 0, W

From (+], 3 {417, such that

v ) + S A h(z) = v /(2] + TA(z) A = 0

where A =[A; -+ An]%.
|

Necessary Condition of Local Minimality:
Alx*) =0 mequations

V2 )+ VA2 )A =0 nequations

where A/'s are called Lagrange Multipliers.
(7 4+ m equations and » + m unknowns |
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fg=c NX=0

X - Nf (X)
~ Rh(x)

X* is a local minimum

Eaxample: Consider .
L op T
T g Mot '

subject to

Ar—b=10

The necessary condition of local minimality for this problem is
Vi) +vhir)A=He + g+ ATA =10
Aat)=dxt —b=10

I
He + ATh =g
Ar =
I
H AT | |z ]| | -¢
4 0 AlT R




15 1nvertible,

H A7
[ 4

:F*

A

Kuhn Tucker Condition
Let #* be alocal minimum of

min fix)

Mzl =10
glx) <0

and suppeee 2* is a regular point for the constraints. Then 3 A and g such
that

7}

H AT
4 0

subject to

Vi) + ATeh) + uTv g2t = 0
gl =0
Azt =10
pz 0.

gil#) <0 = =0

BT



9,(x)=0

f(x)=c

%(x)=0

X* is a local
minimum

9,(x)=0

X* is not a local
minimum
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Chapter 8

Numerical Methods

8.1 Generalized Reduced Gradient Method
for Constrained Nonlinear Programs

Main 1dea:

1. Linearise the equality constraints that are possibly obtained adding
slack variables.

2. Solve the resulting linear equations for m variablee.
3. Apply the stespest descent method wath respect to n — m vanables.
Linearization of Constraints:
dh=Vhly, 2)dy + V:h{y, z)dz =0
iy
dy = ~[V Aly, 2] 7 v Ay, z)dz.
Generalised Reduced Gradient of Objective Function:
dfly, 2) = Vofly, 2ldy + V. fly, 2)dz
=[Vafly 2] = ¥y fly, 2)[V hly, 2)] 7 Vaaly, 2)]dz
iy
df -1
=== vzﬂ[:‘r‘rnzjl - vyﬂynzi[vyh{y:zﬂ vzh’[ynzj'
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8.2 Penalty Method for Constrained Nonlin-
ear Programs

Consider
min flx)
subject to

) <.

Ifain 1dea: Instead of forcing the constraints, penalise the violation of
the constraints in the objeciive:

min f{2) +cPz)  (R)

where ¢ == 0 and |
P{z) = 33 Tmax(0, gi{7)])"

Theorern: Let &3 be the optimal solution of (P). Then as o — oo,
Ty = I
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8.3 Successive QP Method for Constrained
Nonlinear Programs

Main idea:

1. Approoamatethe object function by quadradic function and constraints
linear function.

2. Solve the resulting quadratic problem.

Approsamate Quadratic Program:
min ¥ fdr + %d:I:THaEI:

subject to

glz) + Vglx)de < 0.
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Consider the optimisation problem

mig f(2)
where { : R = R, FC R~
Definition (feasible directions): The vector d € R”, is sald to be afeasible
direction at T £ Fif there 1= a number & =0 2o that the vector

rtade F

for al e [0, &)

We let IX3; F) denote the set of feasible directions at £ ¢ F.

Fact [1lst order necessary condition for local minimum): Let ¢ R® and
let f:R" =+ R be differentiable. If #* £ Fie a local minimum then, for all
d € I{a*; F) we must have

Dy fl7) = vf{a)dz 0.
Proof: ¥ thereis a d* € DN 2% F) so that ¥ fl2*)d* < 0, we must then

have
ol ad) -~ f(w)
LRV o] | ||

= Jo* = 0sothat flot +ad) < flot) for al o e [0,a*]. But d* € Dzt F)
= 3¢/ >0s0 that 2* + el € Flor all o [0,¢]. Let & = min{ed, ¢} and
we then have flo* +od) < fle*) and 2* + od € Florall e e [0,8] = =
not alocal minimum.

Corcllary: If 2# € iniF, Then ¥ f{2*) = 0.

Proof: #* € iniF = Dia*; F) = R"\ {0}. Therefore, ¥ f{a*)d > 0 for
al d# 0, = ¥fiz) =10,

Remark: For unconstrained problems, F = R™ and thus ¢ € niF 1s
always satlshed.

Consider [ = —2% and F = R. Clearly {'(0] = 0. However, 2* is not
a local minimum but a local maxamum. Hence, the above theorem 1z only
neCessary.

Fact [2nd order necessary conditions of local minimality): Let f: R™ —
R have continuous 2nd partials and let 2* € F be a local manimum. Then
for any d € INx*, F) we have

<0
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1 vi{at)d > 0, and
2. 9 fle*)d =10, then dTH(2*)d > 0.

Proof: 1)is just arestaternent of 1st order necessary condition. Therefore,
aggume d° € I 1*; F) 1s such that ¥ fla*)d* = 0. Let #{a) = 2* + ad? far
cr » 0. By Taylor's thecrem,

flata)) = fla*) + av flas)d + %aﬂd*’fﬂ(f + gt

Nowr, If d* H{2*)d* < 0 we see, by the continuity of the second partials, there
exists an o 2= 0 so that ' TH(2* + cded®)d* < 0for all o € [0, /], and then,
for such o’s, fla{a)) <2 fl2*). But, again d* € I2*, F) = thereiz an & == 0
so that 2% + ad* € Ffor all o € [0,a]. By letting o = min{ed, @) we ses
that +* cannct be a local minimum.

Corcllary: Let alocal minimum, #*, be an intenior point of & Then,

1. vfla*] =10, and
2. dTH{z*)d = 0 for all dec R7

(le., H{2*) 1= a positive semi-definite matrix)

Proof: I{z*, F) =R"" {0].

Remark: For unconstrained problems, F = R™ and thus ¢ € tniF 1=
always satished.

Consider f = 2* and F = R. Clearly f/(0) = 0 and f#0) = 0 (PSD).
However, #* 1= not a local minimum. Hence, the abowe thecrem 1= only
necessary.

Fact [2nd order sufficient condition for a strict local minimum]): Let f:

R" — R have continuous 2nd partials and let #* € F. I
1. vf{a*] =10, and
2. H{z')is PD

then 2% 18 a stnct local minimum.
Proot: Suppose 2* 15 not a stnct local minimum. Then for all € 2= 10, there
Is an T, £ F'n Nz, ¢) and 2 # 2* sothat fl2*) > f{z.). Let & = foran
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integer k> 1. Then fiz,, ] < f{a*) for all k& By Taylor’s thecrem, for each

flae,) = fla*) + %iﬂfﬂ, - ) TH{ g, +(1 - A2 )z, - 27)

for some Ay € [0,1]. Therefore, for each £,
(T = &V H(A T + (1 = )2 ) — 2] = fla) = fl27) <0

Thie 18 a contradiction since HII]I 1& continuous and thus Aie PD in a nagh-
borhood of 22,

Consider [ = 2* and F =R. Clearly 2* = 0 is the strict local minimum.
However, fi{0) =0 and f*(0) =0 (P5D)]. Hence, the above theorem iz only

sufhcient.

64



