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Chapter 1

Introduction

Signal: a quantitative phenomenon that vanes with time.
Syetern: a signal processor

Input Output
— 1 System [

y(t) = £uft]
Classhcation of Systems

1. Causal

s cauzal [physical, nonantidpative]

s noncausal {anticipative)

2. Determiniztic



s deterministic

s probabilistic (stochastic)
. Linear
s linear: satisfy the principle of superpesition

I:(Cft'}l + Cg’i:'}g] = oL |I’ii.'}1:| + o f (T&g]

s nonlinear
. Statlonary

s stationary (static, instantaneous, memoryless)

o dynamic
. Lumped Parameter

o lumped parameter (finite order] systems: described by a finite
number of variables [Eixz system described by ODE’s]

s distributed parameter [infinite order) systems: described by func-
tion variables [Eoc: system described by PDE:]

. Continuous

o continnous (B systern described by differential eque.
o dizcrete [Bac system described by difference equs.)

. 8I30 and MIMO



Chapter 2

Mathematical Preliminaries

2.1 Linear Space

Linear [or Wector) Space V over a scalar Field F: set with the following
axloms:
axioms for linear space

o Addition
+: ¥V V= Viixy) = o+1;

1. Associative
(T+y)+z=x+(y +2]

2. Comrnut ative

Ty =y+T
3. 3 identity 0 such that
r+l0=0+r=x
4. 3 inverse —tsuch that
(- =10
» Scalar Multiplication:

G Fx V=TV iez) = ar
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1. Assoclative

(ah)r = af bx)

o Distnbutive lawe:
(a+ bz =ar+bx

ofe+y) = az+ay

Linear Space Examples
Canonical Exanple I:
Ty
Frm-tuples | ¢ | In F
Tn
Addition and Scalar Multiplication

T+ )
':I:n + yn mﬂ
Ex: R™
Canonical Exanrple IT:

Function space F* all functions f{d) from a domaln Do V7
Addition and Scalar Multiplication

(f + glld) = f{d) + g(d]
(af)(d) = afld)
Ex: Ly Set of Lebesgue measurable (integrable) functions such that
1= (f1A0P) <o 1<p <

1 flles = esssup | f(E)] < oo

Subspace: A subset of linear space that forms a linear space by itself.
Eaxc: the set of all vectors in R™ wheee first component 1= sero.



Definttion: the family of wectors {o; 1%, C F are linearly independent 1ft

5]
Gty Foee gty =y - ty) | P | =10
e

irnplies
2

The famly of wectors {t1%, C V are linearly dependent it 3 {& 1™, not
all serc such that
iy o+ agt, =0,

Dief.: The maximal number of linearly independent wvectors in a linear
space 15 called the dimension of the linear space.

Ex: dirm{R™) = n, dim{R7*%) = n2,

Definition: the family of vectors {&1%; C V¥ is sald to be a basis if
elements of the famly are linearly independent each other and

V= Splhyn,) = {E” a € ;..--}.

The elements of the family are called basis vectors of 1.
Ncote: Suppoee {81%, is a basle of V. ¥ 2 £ ¥, 3 unique {£12, such

that .
T = Zf.-b.—.

If not unique, &’s are not linearly independent (0 = r— o= 0 (& — 3)b;).
&

£=| t |iscalled the component vector (or representation) of & w.r.t.
Cn
the basie [&T2,.
Theorem: In a #-dimensional vector space, any set of # linearly indepen-
dent vectors qualifies as a basis.



Froof: Let {u;}™, be the set of n linearly independent vectors. Then
fobu fu ™, 1 lnearly dependent. Hence

dot + Sty + e+ Eptt, =0

where not all a;'s are sero. This implies ap # 0 elnce {u;}™, 1= hnearly
dependent otherwize. Then

T =ty + -+ bniin

where b; = — &L,
Ao

2.2 Linear Operators

U0 V: linear spaces over F
A: operator from Uo7
Dief: A e linear if

Al ety + datea) = o Ay + opdug
Fact: 0 ¢ A A4).

Proof: A0 = A{0-«) = 0du = 0.
Boc U=E = {f{t): (7| flf)|df <o}, V=R

i = fumdz
Null Space (Kernel):
NA ={uvel: du=10]
Range Space (Image):
Rid ={veV:iv=duuc U} =AU

Fact: A[A) and B[ 4) are linear subspaces.
Proof: Let 2y, 2; € A [ A]. Then dr, = Ax, = 0. By linearity,

A.(EE&] -+ E?ﬂ?g] = &flﬂ& —+ IE'AIF; =10

&



= ary + bry £ A ).
Let 1,2 E R(fﬂ Then 351?1,51?2 E {7 zuch that i = .E].ila and i = .E].il?g.
Then a1y + bz, € U7, By linearity,

A.(I'ICIH —+ IE'SF;] = tIr.El.fIH -+ E?A:I?g = aih + b:il.l'g E 'R(A]

Theorern: 4 isinjective [one-to-one) HE A'[A) = {0].

Proof: =) Obvious.

() Suppose the contrary. Then 3 & # g such that dy = dr = Ay —
) =0 = y =& (contradiction].

Facts:

1. If {4u;} 15 a linearly independent fammly, then so 18 {u}.

2. The converse of the above holds it 4 12 injective.

Proof: 1)
Byt + -+ @i, = 0.
|
Ay + -+ gndu, = Alaug + -+ agtn) =0
I
g = =or = ity = 0.

1) (<)
0=y + -+ gnditn = Alath + -+ + Satin ).
By cne-to-one assumption,
Byt + -+ @i, = 0.
|

g = =or =ity = 0.

(=) Suppoee the contrary. Then 3 & # ¢ such that dy = dr. Notice
that x, 4 linearly independent (x = ay is not possible] = Az, Ay linearly

independent [contradiction).

Theorerm: Suppose dimll = diml” =n. Then TFAE

T



1. Ais injective (A[4) = {0}).

2. 4 is surjective [onto] (R 4] = ).
3. Ais bijective (injectivetsurjective).
4. 47! easts.

Proof: {1 = 2] From the previous fact 2, {u;} s a basis implies { du;} is
50

V="logdu; +- -4 aoditn: g € FL =L Alagts + -+ -+ totin) 1 & € F)

={du:uec U =R(4).

(1 &< 2) Let {w} be a basie of V.

A surjective = 3 4, such that v, = duw; = {u;} 15 a basie of V.

Consider {a;} not all a;'s are sero. Then @ty +--- + @otin # 0 1mplies
Alayty +- -+ tpttn) = g ity +- -+ @ndity = @0y + -+ + a0 # 0. Henee,
A [A) = {07,

(2 & 3] Obvious from the equivalence of 1) and 2.

(3 = 4] inverse mapping is well defined.

(3 < 4) Notice that, f 47! exdste, A1y = Ar; implies 43 = £3. Henee,
1njective.

2.3 Matrix Representation

Let {ti;}7, be the basis for U, Then

n
r= z;f;u}-.
.f:

Az = Agfﬁﬁf = }2:;6!"4'%}"

Let {vi}™, be the basis for . Then

By linearity of 4,

by
_n.":]ﬂ-f' = E;a'[lﬁ-'f.
1=

)
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STREDE SRS . (zmg)

By uniquensss of representation,

n=Af
where
411 din
4= :
L LI | S

Theorem: Let {u;}7, and {#;}72, be the bases for 7 and ¥V, respectively.
Then, w.r.t. these bases, 41z represented by the o 2 matnx.

Change of Basls

Let {uz i, and {817, be two bases for O and {13, and {817, two

bages for 7. Then i
i = ;Phﬁk
I

Som=s= =28 (gp) < (2]
|
¢ = PE.
Notice that the ¢th column of Pis the representation of # war.t {u,].
Sirral arly,
1=an.

Notice that the ¢th column of €} is the representation of v wrt {31
Let y=Adxr = n=A =

i = QAf = QAPE,
I




the representation of linear cperator w.rt. {&1 and {#] 1e
A=g4P

Special Case: V' = U7 and use same basis for both domain and range.
Then

E=P{=PQf = PQ=1 = Q=P' 5 A=P'4P

Such transfermation from 4 to 4 1s called similarity transformation.

Range and Null Spaces

Fact: Let 4 =[ay --- @] Then R{A) = Sp{{a]).

Let 5 be a subspace of R*. Then the orthogonal complement of & 1e
defined as

St={zeR":{z, =10, ¥y c S].

Fact [Crthogonal Decompeeltion): R* = 5@ S+
Proof: Suppoee £ € R™. Let 1, be the projection of & on 5. Then
T3 = & — &y 1s orthogonal to S and thus 23 £ 5.

Lemma: Ri4) is the orthogonal complement of A7 A*)
Froot:

vE[R(A) & yz=0vzcR(d)
o [dy)r=ydr=0¥zcR* o dAy=0 o yeci(d).
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From this lemma,

R™ =R () + 4 (4.

Similarly,
=R{4*)+ A (4]
Fact:
R{A)=R({AL’) and R{L')=R(44).
Proof:

RiAd ={dr:2c R" = {dr: zc R{4A") + 4[4

={dlrx+zl:xeR(A), ze N4 ={dr: zc R{A' )
={dd'y:yc R"} = R[44*).
Simlarly, the second equality also follows.
Definition: The rank (nullity) of the mxn matrix 4= dimR [ 4) (dma’( 4)).
Fact: rank{ d) + nulliy( 4) = n = domb( 4)
Proof: Let {u;}¥-, be the basis of A7(A). Complete that basis such that
[}, Is the basls of R™. Then = 5%, &1 and

Ar=4A (Zfﬁ,) _ ;5@. n fflﬁ.

Aui=0,0=1,--+, k becaunse u; £ [ A).

= {du}n, ., spans R{4).

Claim: {Aui} sy 18 a inearly independent famly. Assume the contrary.
Then 3 Ggy1,- -+, (not all sero) such that

n

0= i i, = A 3 it | -
1=k +1 (.‘:2;1 )

= Tliy @i € A (4] = contradiction and the claim fellowes.

{Aﬁ,-}f‘zﬂl is a basis for R 4] with dimR(4d) =n - k.

One may conjecture that A(A) and R{A) are disjoint. But this is not
the case.

Ex: 4= g
Fact:

1

D ],then H(4) =R (A) = Span(ey).

11



1. 0 < rank{4) < min{m,n}
2. rank(d) = equal to

(a) madmurn number of linearly independent colurnns of 4

[b] madmum number of linearly independent rows of 4

Proof: Notice that R{ 4) is the span of the columns of A
1) ¥ n > m, rank{ ) < m.

I n<m, rankd) < n

2] a) Obvious from above.

b) Since R™ = R{A*) + N[ 4), rankl 4*) = n — nulbiy(d) = rank 4).
Corollary: Suppose dis an 7 % » matrix. Then
rank{Ad ) =n & rankidl=n & rankd)=n & rank{d'4d)=n
Sylvester Inequality: A m x n matnx, B n x p matrix
rank{ A) +ronk{B) — n < ronk{ AB) < min{rank ), rank{B)}.
Proof: Since R{AB) C R(4),
rank({AB) < rank{ 4).
Moreover the domain of Ain ABis R(B) and from the above fact 1)
rank{ AB) < rank{ B).
Thus, the second inequality follows.
Similar to rank{ d)+nuiliiyl A) =n, we can show rank{ AB) = rank{ B)—
d where d is the dimension of R (B) n M(4). However, dima’(d) = n —

rank{ A) and thus the first equality follows.
Fact: 4 mx n matrix

rank{ AC) =rankld) and ronk DA) = rank(d)

for any n % % and ¥ M nonsingular matrices & and L2
Proot: Prodf follows from Sylvester 1nequalitv

12



2.4 Spectral Theory and Jordan Representa-
tion of Square Matrices

Def: Ac Ciscalled an eigenvalue of A1 3 right (left) eigenvector afy) # 0
such that dr = Ar [y* A= Ay).

Fact: A ls an elgenvalue of 4 iffit 1= a solution of the characterstic
polynomial

wal Al = det{ AT — A) = 0.

The elgenvector & is a nonsero vector in A AT — A).

Theorern: Let Ay, ---, A; be the distinct dgenvalues of 4 and o be an
elgenvector assocated with A Then {w]™, i linearly independent.

Proof: Suppose the contrary. 3a’s (not all zero) such that

iy o+ agt, =0,

WLOG, we assume & 7 0. Conslder

(A= D) (A= 3 ]) ( afﬂ,-) 0.

Motice that
(A— A Dw = (A — A )w iy #e
and
(d— Af)w =10,
Hence,

ﬂﬂ{)‘.l — ;‘.g] (}.1 — }'njlt'll =10.

Since A's are distinct, this implies @ = 0 {contradiction!).
Def.: A matrixie simple if it has # Linearly independent elgenvectore.
Corcllary: If eigenvalues of 4 are all distinct, 415 simple.
Remark: There exast eimple matrices whose elgenvalues of 4 are not all

distinct. (B Lé 2J]
Let A be simple. Behne
V=1[v; - ) A=diaglA, -, A0}

13



Then
AV = TFA.

Since ¥ is nonsingular, we have
V1AV = A,

Mote that A is the representation of 4 wr.b. its elgenvectors.

Fact: I 4d1e simple, 4 can be diagonalised by similanty transform.

Def: A vector v is sald to be a generalized elgenvector of grade & of 4
assoclated with A if

(A= AD* =0

and

(Ad— AIF-1y £ 0.
Let ¢ be a generalised eigenvector of grade & of A
U =V
they =[Ad— AlNv =4 Aly,
g = (A A% =14 - A,

= (A — ADfFtu = (4 - Alwv,.

MNotice that 4 is a generalised eigenvector of grade t.
Let A = A [[A— AI)']. Then & C Ajyy. Indeed,

(A— AN =(A-AD(Ad- AV v = (4 AD)fv =0
and
(A— AN~y = (A - AN A - Ao = (d— A% tu #0

I
o €A bubt g Ay

Let A have elgenvalue A with multiplicity .
Juestion: find mlinearlyindependent generalized eigenvectors assoclated

with A.

14



1. compute the ranks of (A — AT until rankl 4 — AD* =n —m.

For simplicity, assume n =10, m=48, k=4 and

v | rankld — AT} dimA
0 10 I
1 7 3
2 4 i
3 3 T
4 2 )

2. Because Ay C Ay and dimay— divnA’, = 1, 3 one and only one linearly

independent wector 4 such that
4E Ay but u @A,
1l
(d— AN* =0 but [Ad— AT)Pu #£0.
Let

ty = (A — ATPw wy =(A— Al wa=({d4d— Ay g =

3. Because A C A and dimA’s — i’y = 1, s 1s the one and only one

linearly independent vector such that

ﬁgE.-"l.l'_g but ﬁ-gE.."l.l'_g.

4. Becanse Ay C A and dimd’y — dima’; = 3, in addition to g, 3 two

more linearly independent vectors ¢ and w such that
e Ay but v wE A
1l
(A— Al =10 but [Ad— Allv#0
(A— AN*%w=10 but [d— Alw#0.

Let
w=(d-Aw w=v

wy =(Ad— Alw s = w.

15



. Ay C Ay and dimAfy — dimAfy = 3. Notice that wy, 1y, w, are three

vectors such that

thy, M, E .-"l.l"1 but hy, 1, Tl E .'\rn.

Theorem: The generalized eigenvectors generated above are linearly in-
dependent.
Froof: Suppose wi,v:,1y are linearly dependent. Then, 3 o, ¢z &, not
all mero,
Crify + Coty + Catiy = 0.

Hermrenrer,
0 = cptby + ety + Gy = |{.51— )}.IMQT&; + cav 4+ Cg“i'.,l'.-'] = [A— }'.I]E.l'

Hence 4 € Afy. However, g, v,w € A2 Y A7y such that AT + spandu,, v,w}
= ¥ £ AN nospanfug,v,wt = ¢ = 0 = g, v,w are linearly dependent.
By contrapositlon, g,t,tw; are linearly independent because i, v, w are
linearly independent.

SUppose Uy, a, ta, ta, V1, V2, U, Wy are linearly dependent. Then 3 {o}E,,
not all sero,

Crthy + Catin + Catls + Catta + Coty + Catha + crtth + Gty = 0.

Multiplying (A — AD®, cald— Al =0 = & =0,

Multiplying (4 — AT?, cafd— A% =0 = ¢y = 0.

Multiplying (4 — AT}, cofd— Afjug +ce{d — Alwy + g{d — Alw, =
Cothy +Ceth Tt =0 =2 ty =G =c =100

Nowr Critg + sty + oty =0 = ¢ = oo = ¢ = 0. [contradiction!)

Theorem: The generalised eigenvectors of 4 assocated wnth different
elgenvalues are linearly independent.

This theorem can be proven similar to the previous theorem by applying
(A— A 0% A— A1) repetitively.

Jordan form Aof 4: P-1AP =representation of Adw.rt. P =[u 4 ths U
Uy Uy Uy # #] where #'s dencte generalized dgenvectors assoclated with
other elgenvalues.

First four columns of A: Pt A,
(Ad—Auy =0 [A— Ay =4y [Ad— AT = [A— ATtg =1,

16



o e
T

Aﬁ1:}‘.ﬁ1:P Aﬁg:ﬁ1+;‘uﬁg:P 0

1 o=

Aits =ty + Ata = P A =ty + Atta = P

DI o R o - S o I

Froceeding similarly,

[ B e B’ B e’ B e e e T
[ T e B e R e R e s T
[ B B e B o B e O =]
[ e R R e T L
Lo B e T e T WA e Y o R o I o |
[ R R =R == R e |
[ RN e B e o = R e B
Rl e T o o I o R o B o |

¥ 4
+

Cayley Hamilton Theorem: Let walA) = def(Af — 4] = A" 4 g 471 4
evo+ @y A+ @ be the characteristic polynomial of A Then

yaldl= A"+ A+t o Ad+a, =0

Froof for simple 4: Let v be an elgenvector of 4 assocated with eigen-
value A;. Then
xal ¥ =10

where V= [ty --+ ). Since ¥ is nonsingular, ywal 4) = 0.

17



Remark: By Cayley-Hamilton theorem, 4%, & > #, can be expressed in
terms of {1, 4,+--, 4" '}, Hence any matrix polynomial p{ 4] can be written
ag

pl A = o) T+ (D) A+ pa(t) A2+ = GIOT+ G A+ + Gy A7

2.5 Positive Definite Hermutian Square Ma-
trix

Def.: A1z Hermitian ift 4 = 4.
Fact: Let 4 be Hermitian.
1. z* dr 1= real.

2. elgenvalues of 4 are all real.

3. n elgenvectors exast and are all orthogonal.
Froof: 1) (2t dz)* = r* Lr =z Az

2] Let A be an eigenvalue and @ be the corresponding elgenvector. Then

#* du = Av*v. Note that LHS is real and v*v iz real and = 0.
3] {Procf of orthogonality) For multiple eigenvalues, we can always chooss

mutualy orthogonal eigenvectors. Suppose Aw = Aw and dv = pw with
A F i Note that w*d = Au®. Hence

w'dv = Aute and wtdv = putv
= Auty = gty = wtv =0,

Def.: dis pesitive semidefinite (PSD) if #* Az > 0 for all .

Def.: Ais pesitive definite (PD) if ¢ Az = 0 for all o # 0.
Fact: TFARE

1. 41 PSD (PD).

2. all its eigenvalues are nonnegative {positive).

Proof: {1 = 2) Let A be an dgemalue and 4 be the corresponding unit
elgenvector. Then

Av = A

= 0 < (<ot dy = vty = AL

18



(2 = 1) {]} orthonormal elgenvectors
Ar=Almw 4+ omvn) = ardoy + -+ vy = ot -+t Aty

!
rrAr = (o - Fovi) o Aty + - Fag A, = afA 4 el > (0.

Fact: I 4is Hermitian, A°{ 4) is the crthogonal complement of R(4).
Proof: Notice that A7( 4] is the orthogonal complement of R A*) = R( 4.

2.6 Normed Linear Spaces

Norm: sise of a vector in a linear space.

Norm || - || 15 a mapping from V to RY satlsfying
L ||#| =0fte=10

2. ozl = d|jzl| YoeRNve ¥V

Lollz+yll < 1l +13l Yoy e V

Norme for R

J noTIms:

lallp = (J@l” +- - +|2af")F 1< p <00
||‘x“lxl :ml-a:{la:l.l'
|| - ||z 15 called the Euclhidean norm.

Norms for Bxn

All Alﬂ e Aln
A, 4, - A
A — :21 :22 . 2 E Rmx”
Aml A—mE e A-mn
P norme:
14l = (S14ijP)F 1< p<oo
L1

19



4o = e 4 .

What 1s the difference between R™*® and R™"7
A matrix in R™*7 defines a linear operator from R™ to R™; ¢ = 4.
induced [or operater) p norms:

= sp [l = eeialy 1<p <o
x r = =

I

[91le = || 4tls < [ Allellzll,  ¥x € R™.

m
1=

14 = mgacy S

p=1 ]
14ll: = Tras{A) := [Aras (A7 4]]2

Where Ty 18 the masdmum singular value of 4
P = ca:

i
||*4“m = ml_a.:-: E;la’f.ﬂ .
=

Remark 1 Por finite dimensional spaces such as B™ and R™7, two dif-
ferent norme are equivalent; there exdsts @, & > 0 such that

olafla < lllp < bl|lla-

Convergent sequence: {op}h, 5 € V
B see @ =4, £ € VI limao oo ||& — 22]| = 0.

Cleged Set &t {xl, 2 € 8

limap=x=>2c 8

k—oa

Canchy Sequence: {Tib, T € V, Imsae || — || = 0.

40



Convergent 2 Cauchy.

Complete Space Vi Bwvery Cauchy sequence converges to a vector in V.

Banach Space V: A complete normed linear space
Exl: R"
Ex2: (G Set of continuous functions with the norm ||¢]|e = max ||4(f)]].
Ex3: L, Set of Lebesque measurable (integrable] functions with the

111, = (f|f(ﬂ|?)‘l’ 1<p<on
1flleo = esssup] f(t)
that iz finite.

41



Chapter 3

Description of Linear Systems

3.1 State Space Description

Conslder a physical system that 12 mathematically modeled by a system of
coupled implicit fintte order nonlinear ordinary differential equations.

El[tayl:ljrla Tt !:ﬂpj :I:I yﬂij}ﬂ! ot _!ygp;j!_ e !yépq}!ﬁllﬁzl ' ",ﬁmj = I:I:I

El{ﬁiyl!j"h Tt 13"5'91 }1 ?-"'313}21 ot '13"%“}!' e !yépq}!uiluzl ' "1“??1:' = U!

F‘;(ﬁ!yh?l! e 1%H}1y213}21 e 13"5'“:'1 t ':l?-"lépq}jﬁijﬁm T ':|ﬁm:| = 0.
Define

— — 7 — P11l
T =y Tai=dy oy Ty E 1

— . . — olPa— 1]
Tyt =W Ip42i=¥n oy Ipdm =27 5

.— — — -1
Tpittpeatt = Fay Tptodpga4+2 = ¥y 200 Tptodpgor4py 1= 3‘5’% .
Then
Iy =%, E2=3uy o+ Tp1 =Ty,
T+t = Tptay Ttz = Tt 0 i Tpdm—1 = Tpdpas
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T et T R e T i T T e YL et T e

E(jl‘xl!a:ﬂ!“'!IxPJ!xP]!“'!IxE:i]p,'!ﬁl!ﬁﬂl'”!ﬁm:I =10,

Fzﬁ:ﬂ:ﬁ:"'Ja:PJJxP:J"':$S=]p.':ﬁ1:ﬁ2:"':ﬁm:| =10,

E[i:$1!$21' .. Ja:.P‘.IJ:I:P]J. . .$E?=,P|'Jﬁ1’ﬁ2’. - Jﬁmj = |:|.

Assumption
[F - F}]T =0 is solvable for [&p, Tp,4pm * Toydrattra) -

Then the nonlinear systems can be represented as:

ii = fiii:$11$2:| sy Ty gy gy s o :ﬁm}l

iﬂ :fﬂl{izﬁli*ﬁ?!"'!*xmﬁi:ﬁﬂ! ' ”!Iﬁ’mjl
C.Ii‘n:fnlif,ﬁ,ﬁg,---,ﬁn,m,ﬁg,---,’t&mjl
orf, 1n vector notation,
&= ft, %)
where
Iy oy f1(£]$]ﬁ]
T U i,ou
Ti= :2 , = :2 . fit 3, ) = A L )
I Ura fn(£:$1ﬁj
dtate

(Mven atime instant £, the state of the system 12 the minimal information
that are necessary to calculate the future response.

For ODE's, the concept of the state 1= the same as that of the initial
condition.

|
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State = a{f)

Input
The forcing function 4 1in ODE 1e called "input™ in control theory.

Dt put
Some desired quantities that are - dimensional vector function of (1, x, u):

v = glf,z,u) € R

Input-State Relation:
&= flt, 5 u)
State- Output Relation:
¥ = glty 4 u)
In this note, wefocus on the linear time invariant systems (that is possibly
obtained through linsarization) that are described by

T=A4r+ PBu GState DE
v =Cz+IDu  Readout Map

Notice that the systemis completely characterized by the matrix [4, B, € D]
Fact: Thereexiste a unique sclution of the linear time1nvariant state DE.
Let @it fn, 2, %) bethe solution of the state DE with IC #{fy] = 2. Then

z{t) = ff,f0, 40, %)  State Transition Map
yit) = Clt, to, To, ) + Dult] Response
Properties of Sclutions to State DE:
1. Linearityin (g, )
Pty fo, @ To + Gaoz, Gty + daita) = et o, Tog, 1) + @dlf, fo, Toz, tz)

2. Additive property

ﬁiniﬂnivﬂnﬁ:l = qﬁ(intﬂnﬂh: DII +¢5|[£Ji':':l Dnﬁ)

5. 1. 8cl. 5. 8. 20l
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3. Time invariance
@5(?, f.:,, Ty ﬁl{ﬂ = QESH - iIII:l U!$D!ﬁ(. + fn”

Proof: 1) RHS satisfies the state DE and the IC when 2y = a4, + %0,
# = tytiy + tiztia. Then 1) follows from the uniqueness of solution.

2) iz a special case of 1)

3] Obvious from the time invariance of DE and uniqueness of solution.

Remark: From 3], IC can be assumed as 2{0) =2, WLOG.
Unforced Solution: State Transition Watrix
Unforced system: w =10

By linearity, matrixrepresentation theorem and time invariance, unforced
[free, sero-input) solution is representable by

2{t) = gt to, To,0) = F{t,10)70 = (¢ — fo)2

where ®(f — 3] i& called the state transition matrix.

$(1) 15 called the fundamental matrix.

Note that #(f)~! = #[—f) from the uniqueness of solution.

For the rest of the note, we assume §p = 0 WLOG.

Suppose I = €. Then z(f] = &(f)e; that 1= the tth column of $(f).
Hence, we have the following.

Fact: #(i]is nonsingular and is uniquely determined by

F=4%, 30)=1
U
Bif) = I+ j: A3(7)dr.

By the Picard iteration (repeated substitution of RHS into the integral for
%)

]
F(1) :I+m+z—,Aﬂ+---:: gt

15 the solution.
To this end, the unforced sclution 1=

1) =elm

45



y(t) = Celir,.
Properties of Matrix Exponential g%f
1.

d
A = et = 44

Al _ A6 Ay

3. e iz nonsingular and

[e4] ! = e
4. For nonsingular P,
PAB 7  poAtp-
e sl A =g s AP+ A2 )

Proof: 1) and 4) are obvious from the series representation of 24f

2) For all xq,
glhthlg = ot +1,) = la(fy) = el ety

312 = e =F= [ =¥ = e nonsingular.
5) Taking LT of £(f) = Aa(f) with 2(0) = 1 and 2{t) = ey, we get

sX(s) = AX(s) + 1 = X(s)=(sI- 4) 'z,

and

-XE*S:I =£eft Ty
respectivel v,

el

-1 _ f_ - jkﬂk _ b —k-1
(sT— )™t = get —,C(Z;T)—;;AE :

Computation of Matrix Bxponential ef

1. Usge f 427 = PediP-1 wlere PAP! 1z the Jordan form of A
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2. Use e = 752, &8
3. Use et = £-YsI — A)!

4. Use Cayley-Hamilton theorem to find the minimal polynomial gl Al
such that e = gl A).

Forced Selution
Fact: theforced solution s

oft) = fit,0,mw) = A + [ AOBur)dr

5. 1. gol.

5.5 &0l.

Proot: At § =10,
ﬁf’“': |:|, *T"Djﬁjl = Iy

Bt 0, 2, 4) = detizo+ Bulf)+ j: A7) Bulr)dr = At 0, 2, u) + Bel1).
Hence,
W) = Celig, + j: CeX=IBul7)dr + Dult).

Impulse Response and Convelution
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Unit impulse [Dirac delta function):
a(1) Z%i_r% frt] with HT' =1

such that for continnous function f,

flt) = jj‘“ flr)d(t — 7).

Impulse Response Matrix ({1]]: the tth column of Gii) i 4(f) when
Ty = 0 and 4 = de;

_i,?f(f] — G{ﬂﬁ'f _ {CEAfBE.' +DE,-5[L‘] =10

0 t <0
!
ylt) = Cetay —|—J[CE-"’“""3'B iu,-(*r]l&.- dr + D Zm;ﬁ,-(ﬁ]le,-]
= Cellry + (G + ) (1)

Equvalence
Conslder the change of coordinate of the state space such that T = Pr.

Then
t=dr+ B, y=Cr+Iu

1
T=Ar+ By, y=Cz+In
where
A=PAP-' B=PR O=CP1' D=D
Hence, two systems represented by [4, B, C, 0 and [4, B, €, I} are equiva-

lent becanse the only difference 1= the coordinate system of the state space.

Idodes

If the matrix 4 has m distinct elgenvalues A; with multiplicity p;, then
every element of e iz a linear combination of t%eM* &k = 0,-.- p;, 1 =
1,--+,min view of Jordan form of 4.

t*etifis called a mode.

Diynamic characteristics of a system 1s mainly determined by itz modes.
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3.2 Input-Output Description

Input-output description: relationship betwesn input and cutput when 4 =
a.

T = 0 18 assumed throughout this section.
Input-cutput description in time doman 1s gven by convelutlon betwesn
input and impulse response matnx

i) =[G+ u)li ﬁG{ﬁ—f ci*r—ﬁ Gt — 7l

In Laplace domain,
— ng (ng Gt — rlul ) fif) g™t

ﬁ (£ Gt — rjett T:'ffi) ‘”d*r—f Glu)e ‘”d’uﬁ ulr)e=rrdr
__LA Glvje _”dﬂﬁ ulT)e™*7dr = G5\ 5)
1

The transfer function matrix G{s) is the Laplace transform of impulse re-

sponse mabnx
Taking Laplace transform of state DE and read out map,

sX[s) = AX(s) 4+ BU(s)
Yis) = CX(s) + DU 5]
1
Y(s) = [ClsI - 4)7'B + DIU(s)
iy
qu — C(EI— A}l_l.B—I-D: Cﬂcgjﬂsf —XA]:[JE—I-}{:AI{B]ID
where (5] — A)7! is called resolvent matrix and yals) = def{sI — AJ.

-1 o0 &
(sI— A = % (I— ﬂ) 1;;% Y18 > o4 = Arms [ 4)

53
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1
!li_}rglﬂ Gls) =D High Frequency Gain

L* finite = system 1= proper
I}=10 = system is strictly proper
Suppoes [4, B, C, 1) and [4, B, €, IJ] are equivalent. Then

ClsI— Q)" B+ D=CP\(sI—- PAP"Y)"'PB+ D
= CP-![P(s] - A)P-|"'PB+ D =C[sI- A"'B+D.

Fact: state space representation of an /O description is not unique.

Realization problem [ Given (7, what is the state space realization [4, B, C, I]

whose transfer function matrix is G7) will be addreseed later in a separate
chapter.

Stith-BeMillan Form of Gfs)

Def.: A polynomial matrix U(s) is unimodular if it has inverse that is
alzo polynomal matrix.

Def.: The normal rank of a polynomial matrix U(s) s the madmally
poesible rank of Ufs) for at least one s £ C.

Theorer: U(s) 1= unimodular iff detl/{s) = const. (independent of 3).

Proof: (=) Uls)UYs) =1

detU(5) detU-(s) = 1.

Both defli(s) and defl/-1(s) are polynomial. = They must be constants.
() detlUls) = c = _
_ adlfs)
o

u-i(s)

adjl7(5) is polynomial = sois U-1(s).

Theorem [ Smith form): Let P{s) be a polynomial matnx of normal rank
r {l.e. of rank r for almeet all ). Then through a sequence of elementary
row and column operations, P{s) may be transformed into Smith form:

S(EII = diag{ﬁi[*g:ln '53(5]': t 'JE"(‘S:IJDJ' t ,D}

where cach invariant factor &[5 is a monic polynomial satisfying divisibility
property that & divides €4y without remainder.
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Moreover, if we define the determinantal divisors

Dhs) =1

Dis) = GCD of all ¢ % ¢ minors of P{s) that is normalized to be monic,

then

D,-liﬁ]l
als) = Di_y(s)

Proot: Steps for the reduction to Smith form:

1.
2.

bring to the [1,1) position the element of least degree in P{s).

Py(s) = H(s)Py(s) + R(s) where H{s) 1= either zero or such that
degH s) < degPyy(s). By elementary operation, make Py = H(s).
(a] If Pyls) =0, proceed to the next step

(b] If Pyls) # 0, interchange 1st and 2nd rows and repeat step 2)
untll Pyls) = 0. Since degF, () drops in each cycle, this process
terminate in finite time.

. Similar to Step 2], make all the first column elements zero except P, [ 5]

Sirrilar to Steps 2) and 3), make all the first row elements zero except

Pyls)

. If Step 4) introduce nonzerc first column elements below Pyls) = 0,

go back to Step 2). Since degPy,(s) drops in each cycle, this process
terminate in finite time and gve

alz) 0 0 «-v 0
0 =+ =

0 =+

0+ % -v. 2

. If any element of columns 2,3, --- 1= not divisible by @fs), we add this

column to the first column and then go backto 2). Again this process
terminate in finite time and give the above form in which afs) divides

every other nonserc element. Put &(s] = als] where afs) = monic
WLOG.
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7. Remove first row and first column and repeat the abowe entire proce-
dure. Then we get

[ efs) 0 0 0]
0 els) 0 0
0 0 =
0 0 £ e %

where ¢, 1s divisible by ¢ and every + is divisible by &,/ 2],
B. Repeating the procedure similar to 7], we get Smith form.

1 ¥ nonsero g since the rank 12 preserved nnder elementary operation.

The second part of the theorem follows from the Binst-Caunchy theorem
(see Kailath, pp. 649). I 5] are invariant under elementary operations and
thus they are the same for P and 5. Hence, we have

Theorerm [ Smith-Mchillan form): Let &12) be arational matrix of normal
rank r. Then through a sequence of elementary row and column operations,
G z) may be transformed into Srith-MeMillan form:

e1l(s) als) 2

M s) :dmg{m]m]...Jm,U]...jﬂ}

where monic polynomials &(s),4(s) are coprime and divisibility property
that & (411(s)) divides g4 (th(2)) without remainder.
Proof: Let dfs) be the least common multiple of all the denominators of
the elements of & Then
_ A

G’lﬁj—m
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where P 1z a polynomial matrix Let
S=ding{z(s), -, &3], 0--- 0]

be the emith form of P and let
o

s =59

where = 1z obtained by all poesible cancellation.
Divisibility properties are obvious from that of &{s)'s.
Poles and Ferce of &
Let

pls) =di(s)- -1l s)
z(5) = e1ls) - £ 5.

Def.: The degree of ps) is the MeMillan degree of &fs).

Def.: Let & 5] be arational transfer function matrixwith Smith-Bchillan
forr. Then the poles and transmission serce of G{s) are defined to be the
rocts of p and z, respectively.

Def.: # such that G{z) =0 1= called the blocking sero of &

Neote: Although els),4i(s) are coprime, there may be cancellation of
cornmon factor of 2() and p(s) and thus there may exst a transmission sero
that 1= also a pole.

Fact: Suppoes 25 1= not a pole of & Then 2 1= a transmssion sero ot
rankGl ) < normalrankGls).

Corollary: Suppose & is square and defG{s) Z 0. Suppose # is not a
pole of G. Then # is a transmission sero HE det Gl ) = 0.

Poles and Zerce of [4, B, €, I}

Def.: the dgenvalues of 4 is called poles of [4, B, €, 0.

Dief.: z; such that

A- =i B
& D

i& called invariant sero of [4, B, C, D).
Fact: Consider constant state feedback w = Fo 4+ v. The invariant zero
18 not changed by constant state feedback

rank [

Ad-sf B
{nmmfmnk[ o D]
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Froof:

A+BF_zI B _ Ad—zI B[ 0

rank | " oL pp D]—?‘m[ CF DHF 1]
3 A— I B
_*.r".mk‘[ - D]

Fact: The invaniant sero is not changed under sirlarity transformation.
Froat:

PAP'_ »I PB] _ Piol[ld—zI B[P 0
mk[ CPp-t D]‘mﬂk[n 1” C D”U 1]

~ A-zI B
—rmk[ o D‘]

Further exploration of invariant sero and its connection with trans mission
sero will be given in the realisation chapter.
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Chapter 4

Stability

4.1 Input-Output Stability

Consider the I/ O description of alinear time-lnvariant systerm:

Wlt) = J{ Glt — T)ul(7)dr.

Def.: a system is bounded input bounded output [BIBO] stable if for
||| co << 02,
[l 0 =< 00

Def.: asystem is L, finite gain stable if 3% such that for ||4]|., < 0o,
[19lleo < Al loo-

Thecrem: TFAE

1. a linear system 12 BIBO stable.

2. a linear eyetem 18 Lo, finite gain stable.

3. N
J£ |Ce B)|dk < oa

1. the impulse response 15 absolutely integrable.

4. all poles of the system 1= in LHP.
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Proof: (1 = 2) Suppose the contrary. Then 3 4 such that

folleo _
lleo

[ The proof of this existence i mathematically quiteinvolved and is omitted).
(2 = 1) Obvious.
(2 = 3) Suppose the contrary. Then 3 ¢, 7 such that

f| t)|dt = co.

For all £ N, 3 £; such that

f |Gt — T)|dr =1,

Define

ﬁr(ﬂ = |[|:|, -,U,TL{,-l{f]I,U, 1|:|:|
wth .

ﬁ{-'[ﬁjl — SE_Q?'-!»[G,J.H;—f]I] Wi e [U,ﬁ;] .
0 elzewhere
Then,
[6]leo = Iiflle =1 W1
and thus
it = [ Gutti—7)el(rldr = [11Gitea - rlids
I

[191les > Ilyilleo > giltr) =1 1.

[ Contradiction)

(3 = 2) Let ||[@]|co << 00. Then

E&ES&S ﬁ i — *r]lul[*r]ld*r

< E5580p
£0

¥l =

,EGH — Tt af*r
< asssupﬁ 16Kt — 7}l mmmmupﬁ 1G(E — 7)ol [ 7) oo
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f f
< {esssupﬁ It —ﬂnmdf}nunm - {esssupﬁ ||GifJ||mdf}||u||m
fED fEl:l

= {f||6m||mdf}||u||w

(3 = 4] Set Hif) = Ce*B. Then Gls) = H{s) + I Notice that for all

]j’ o

U£ Hj{t)edt
gf|H.-;-|{i]|c£t <o

(4 = 3) Set Hit) = CeMB.

Hence, for all ¢, j,

sup |Hijls)| < sup
e+ 10+

gsupf Hilt)] (e
0+
—|e-<?*<1

i

Hi{f) = ’;m(ﬁjeh“

where Ag ig a pole in C~ and m[f) is a polynomial in £.
Observe that, for any € >0, 3 mg(e) such that

[mil2)] < roale) e
Picking i = — maxe{ Redel =10, e € (0, ) and mie) = Tho, mle),

Hiflt) < i{w”m}f < i;mk(e]e‘fe(m*ﬂf

i
St e

with i — € > 0. Hence, by integrating

ng £)|dk < m{e)[i— €] 7! < oo,
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4.2 Lyapunov Stability

Let @{f,4n,0) be the sero input response of a LTI system.
Def.: The equilibrium point 018 globally Lyapunov stable if given € =10,
34 == 0 such that

lzall <6 = |19, 3, 0l << Wiz 0
o I 25,0) i bounded for all 2, £ R™.
Def.: The equilibrium point 01 globally attractive if for all ; € R7,

lim ||(2, 25, 0} = 0.

Def.: The equilibrium point 0 15 globally asymptoticaly stable if 1t 1e
globally stable and globally attractive.
Def.: The equilibnium peoint 0 is globally exponentially stable if 3¢ =

0,% > 1such that
{8 < Mo e 3 o
for all 4, € R™.
Theorem: 0 15 globally Lyapunov stable it

s all eigenvalues of 4 hawve nonpositive real parts

o elgenvalues with sero real parts are distinct root of characteristic poly-
nomial.

Proof: xif] = ey, =
0 is globally Lyapunov stable it 3K > 0 ||e¥|| < K for all {. Let P
be the nonsingular matrix such that 4 = PAP-! is In Jordan form. Since
et = PP then ﬁ
%11 < PP
eI < 1P 112
|
lle4| bounded & ||ed| bounded & every entry of et bounded.

Since 4 is in Jordan form, every entry of e 1 of the form Fel®itiil,
If orp < 0, Feleitiond s bounded.

If o =10, R et 1 bonnded 1 A = 0.

Theorem: TFAR
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1. 01& globally attractive.
2. 01e globally asymptotically stable.
3. 01 globally exponentially stable.
4. all eigenvalues of 4 have negative real parts.
8. For all PD eymmetric matnx ¢}, the Lyapunov equation
LP+PA=-0Q
has a unique PD symmetric sclution.

Proof: {1 & 4] Clearly 0 1z globally attractive ift

Jim ||| =0
or .
Jirn || = 0.

Since every entry of et is of the form tFeleit it lim,, ., ||-E“*1f|| =01 o 0.
(1 ¢ 3) Bach entry of e4is bounded by an e:-cponentlallj.r decaylng enve-
lope.
(1 & 2) Obvioue since (1 & 3)
(5 = 4] Consider Viz) = #* Pr. Then

Vi) =2 A'Pr+2*Pdr = —2'Qx

1l
_I}__ :I:‘Qx }.mm(@ ::_Cr{ﬂ

V™ oPr S MowlP)




lim z{f) = 0.

f— oo
(‘} = 5]| (Frooffor exdegtence of PD solutic:-n] Let
pP= f et Qe s,
Then

AP+PA= f At Qe+ j; " e Qe Ady = f’ %(EA' Qe = -,

Hence, P is the symmetric solution of the Lyapunov equation. Since e is
nonsingular,

_ " t  A'E f -
a%Pa?.;.—j; Thed Todt =0 ifa#0
=00

= P PD.

Remark: Suppose [4, B,C, D] iz a realisation of G{5). The notice that,
if the poles of [4, B, €, D) and Gfs) are the same, the global attractivity is
equivalent to the BIBO stability of G{s). Later in the realisation section, it
will be shown that, If [4, B, €, D] 1= a minimal realization of (3], the poles
of [4, B, C, I} and &3] are the same.
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Chapter 5

Controllability and
Observerbility

5.1 Controllability

Def.: A state space 18 controllable if we can reach any state in some time,
starting from any other, by applying a swtable input .

Def.: A state space 1s reachable if we can reach any state in some time,
starting from the crigin, by applying a suitable input .

Def: Q] = the class of state reachable in the time interval [0,1].

Lemma: 3 = Uspypfd(f) 1e a subspace of R™ and thus is called controllable

subspace.
Froof: Suppoee oy, Ty € 1. Then there exsist £y, s, 4y, iy such that

T = f] e By (7 )dr

2= jf A=) By () dbr.
WLOG, assume f; < f; and define

t _{ﬁﬂii—ig‘l‘h) lfjg—flgii:ig )

Then \ 3
I +$g:’£ &-”‘if""’ijl(*r]ld*r—i—j; e 8-7) Byl )dr
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ig

— eMa="I By, (v — f, +1 d«r*+f g Ma=7) By () dbr
= L ('~ t 1) (7]

- jﬂ"f‘ A5=1)Bli, +uy)(7)dr € Q.

Hence, the addition 1z well defined. Clearly, the scalar multiphcation 1= also
well defined. Moreover, 1t 15 clear that all the necessary algebraic lawe are

satisfied. Hence, the lemma followe.
Fact: TFAE

1. the system is reachable.

2.
R" = Uf}nﬂ(f] .

(r,2y=0%¥ze Qli), ¥ >0 = =0

Proof: {1 & 2] Obvicus

(2 = 3) Obvious

(3 = 2) Suppose the contrary. Then from the lemma, 0 is a subspace of
R" whose dimension s less than #. Then for any nonsero o £ 034,

{4, 2y =0 ¥z e Qf), ¥ > 0.

[ Contradiction!)

If z € fUt), Ju such that
z= ﬁe“’“"":'Bu(*r]ldf.
Let s =% — 7 and (2] = 4(f — 3). Then

(T2 = <:1:, j:e*‘“‘ﬂBﬁ(*r)d*r> = <:1:, f EA’B"EE(s]dS> = f {B*e’q":v, ﬁ(s]} ds.

Mo

{x, 2y =0 ¥z e 0lf)
0
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¢ o B )
j; {B‘e’q :L‘,TLIIS]I} ds=10 V&
Pick #{s) = Brezl) 1 Betr=10
f
f {B‘Bﬂ' ’a:,B*EA":v} ds=1
o
{1
Bet'r=0 0<s<t
Obvious || 11 o*eV B e 1r =10
eUBR ety =0 0<s<t
{1
ﬁe—""BB‘e—A"is) 5=0.
Define the contrellability gramman as
Wi(t) = jj A BB A s,
Then from the above fact, we have the following theorem.
Theorem: TFAR
1. The state space 15 reachable.

. Wiitle=10for al { > 0 implies 2= 10.

Lo =N

. WL(1) e nonsingular for all £ 2= 0.
. VL[] ie positive definite for all £ 2= 0.

=

B, Bredr =10 for all s >0 impliee 2 = 0.

The procf of this theorem 1= obvions.
Lemma:

at) =R(Wt)) =R(LL) = R( L] = Urollt)
where K. 12 the controllability matnac

L.=[BAB ... 4K
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Proof: The third equality 12 obvicus from the fact established 1n Section
2.3,

M o ]
= ﬁ M Biif 5)ds
where
i(s) = Bretr
I

R(W(1)) C Q).
By Cayley-Hamilton thecrem,

eﬂf=E¢kmA‘f
s ([ ) - o

ot ﬁﬂ(ﬂ
can om0 | o]
Un_1(t) tn-1(f)
where
= [ tlspuls)ds
Clearly,

0ff) € R(L) =R(LE).
Nowr we have

n—1
L4 = Z;AEBHA*:".
On the cther hand,

n—1n-1

ﬁeA’BB“e“l s =35 (1) 4/ BB 4"
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d.i;'

_ ‘a — th
0= dSE(B*E"l z)| =B 4% vk

=0
iy
LLix =10

Conversely suppose

LEr=10
|

n-1 n—1
0 ={L Lz = ;;{A*BHA%, T = PZ;HB*A*W

iy
BAFfr=0, k=10,---,n-1
iy
n—1 -1
0= S4B e =B (}:;msw) p= Bl
iy
Witz =10.

and the claim follows.

For a Hermitian matrix A, R({H) = A [ H]+L. Hence, R{W.({)) = R L. L.
To this end, the first thres equalities follow.

The last equality follows from the fact that L, doesn’t depend on £,
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Theorern: TFAE

1. The state space is controllable.

7. The state space is reachable.

3. Wolf)lr=0for all { > 0 implies o = 0.

4. W.(1) is nonsingular for all § = 0.

5. Wi(t) is positive definite for all £ = 0.

6. Bret'r=10forall 5= 0 implies = 0.

7. L. has rank n.

8. The matrix [4— AL, B] has full row rankfer all A € C.

9. Let A and w be any elgenvalue and any corresponding left eigenvector
of A, le, wrd=wtA then x*B# 0.

Proof: (2= 3= 4 = 5 = 6] is proven in the previous theorem.
(1= 2] Obvious
(2 = 1) For controllability, find @ such that

T = et + ﬁ&-“‘if‘ﬂﬂu(f]&r.

Let
At) = 2y — e

Seek w10 the form:

w(7) = Bt tmiat)

where 2{f) is to be determined. By reachability, W(f) 1= nonsingular and
thus pick

Then
el + ﬁ e Byl r)dr = e + j: eATOBE e iral)
= ey + W] W) A1) = 2.
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(2 & 7] Obvious from the lemma
(7 = 8) Suppose the contrary. Then 3 nonsero w e C™ such that

wd— Al Bl =10
1
wd=Aw and wB=10
1l
w[BAB --- A" 'Bl=[w'B sw'B --- A" lw B =1
1

L. does not have full row rank. [contradiction!)
(8 = 9) Obvious from the proof of (7 = &)

(9 = T) Suppoee rankl, =k < n. Later in section 5.4, we will show that
3 nonsingular T euch that

N N P B.
o[t ] [t

with 4, € RIP-FIn-F) Let A and 1w be any eigenvalue and left dgenvector
of 4, le, widy = H10d. Define w* =[0wf]. Then

W (TB) =0 and w TAT' = [0 Ayuf] = A

|
[wTB=0 and [wTd=A{uT).
[ Contradiction!)

In the abowve theorem, the conditions & and 9 are called Fopov-Belewitch-
Hautus ([PBH] tests.

Corcllary: Suppose Ais stable. Then [ 4, B)is controllable iffthe sclution
to the Lyapunov equation:

AV + WA+ B =1
iz PD.

Proof: Similar tostability theorem, the solution to the Lyapunovequation
18 the afcrementioned controllability grammian and the corollary follows.
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Fact: Controllability i1z preserved under similanty transformation.

Proof: Let A= TAT-! and B =TRB. Then
[B:l T ﬁn—iB] = T[BJ B Aﬂ_i‘B]

and the fact foll owe.

5.2 Observability

Cuestion: given (wlf), ¢#(f]], can we deduce what the state was at £ =07

olt) = CeA*f0) + f CeH=9)Bu{ s)ds+ Du(t)
U
Celiz() = ylf) — jj CeXt-9) Bu( s)ds — Duft) = o).
Ouestion: given v(t), can we find the unique solution & of
Cetr = ult).

Notice that given o, 3 at least one o such that Cer = (f). Hence, the
problem 1= nniqueness.

Def.: 4 state space 18 observable if the initial state (0] can be uniquely
determined from (ulf), ¥(f)), £ € [0,£1].

Theorem: the state space 1= observable f for any £ =0,

Cetr =1

implies that & =10.
Proof: (=] Suppose 3 2 # 0 such that

Celiz=10, 0<s<1.

Then
Wt) =Cetfe=CeVz+2), 1<s<t

Hence, the initial state that matches (u,y) pair is not unique and thus un-
observable.
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(<] Suppose 4y # Ty, Cetiry = v(t] and Cetity = v(f). Then
oo —3) =0

where Tn — o # 0 (contradiction).
Theorem: TFAE

1. the state space 12 obeervable.

2. the observability grammian
Wi(t) = jj et Cetids
is nonsingular for some £ 0.
3. Wi(t) is positive definite for some £ = 0.
Proof: (1 = 2) Suppoee the contrary. Suppose for some f5 2= 0.
Wolto)lz) =0, x#10.
Then
0 = (Wolto)z, 7) = f{eﬂ"eceﬂ’x, Thds = ﬁ I|Ce |2 ds.

Hence,

Ce'r =10, 01<s<1o

that confradicts observability.
(2 < 1) Suppose the contrary. Then for some T 2> 0,

Celiz=0, 0<s<T, o#10

I
i[a{_’:efh;r:j =Cdr=10
dg‘i‘ =0

Il

Ce'z=10, s3>0
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Multipying ¢4'*C* and integrating,
ﬁeﬂ"c*ceﬂ’xds: 0, Wi

[ Contradiction!)

(2 & 3] Obvious

Corollary: Suppose 4 is stable. Then (<) 4] is observable iff the sclution
to the Lyapuncv equation:

LW+ W A+ 0 =10

1= PD.
Theoremn: TEAR

1. state space 18 observable.

2. the observability grammian
f
Wi(t) = ﬁ e e
1e nonsingular for some § 2= 0.

3. VL[] ie positive definite for some £ 2> 0.

4. obserwability matnx

has ftull rank.

A— A

5. The matrix [ B

] has full column rank for all A € C.

6. Let A and w be any eigenvalue and any corresponding right elgenvecter

of 4,1e., dr = Az, then Cr £ 0.
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Proof: {1 = 2 = 3] is proven in the previous thecrem.
(4 = 1) Suppose the contrary. Then for some § == 0,

Celip =10, 0<s<t, 2#0

1l
ﬂ(ﬂ’e—”“aﬂl =0 =4
,ig‘-‘ =0
1
l=Cr=Cdr=-..=CA" 1z, o#10
1

L, does not have full rank. [contradiction!)
(1 = 4] Suppose the contrary. Then

I =Cr=Cdr=-..=CA" 1z, x#0.
By Cayley-Hamilton Theorem,
CA™x =

1l
Ce'z=10, 0<s< T
(contradiction!)
(4 = 5 = 6) Obvious from the duality in the nexdt section.
In the above fact, the conditions 5 and 6 are called Popov-Belewitch-
Hautus [PBH) tests.
Fact: observability 1z preserved under similarity transformation.

Proof: Let A= TAT-! and €= T, Then

< c
oF | ca |,
Eamr || Car

and the fact foll cwe.
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5.3 Duality

Fact: [, A) observable iff { 4*, €*) controllable.
Froot: o

oy |
C’A:n—l

has full rank
|

[CF A4 C ... A*”_lff]
has full rank.

5.4 Kalman Decomposition

Thecrem: Suppose L has rank #y. Then 3 & = Pr where P nonsingular

such that ) i1 P
Te | _ 12 I
I, —[n A ||z +[D]“‘
$I:'
y=[ac [$ ] +Dy
[N
and
I, = A.2.+ B
7=C% +Du
1= controllable and the transfer matrices of two systems are the same.
Froof: Let ¢,---, ¢, be any ny linearly independent columne of L. De-
fine

Pr=Q=n - Gy - 0]
where g, ¢ =%, +1,-+-, 7 are chosen such that s nonsingular.
Let # = Pr. Then for ¢ = 1,---, 7, the tth column of 4 = PAP- =
PlAy; --- Ay,]is the representation of dg; wr.t. g;. However, any columns

of L. linearly depend on {§}72; and, by Cayley-Hamlton theorem, any
colurnns of A% for all & lincarly depend on {g;}™,. To this end, {dg1 ™,
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can be written as a linear combination of {g;}™, and thus doesn’t depend
on {gl.}l"i:m-fl'

= A has the desired form.

The columns of B = PR are the representation of those of B wrt.
{gl.}lnzi'

Since B1s part of L., columne of B can be written as a linear combination
of {172, and thus doesn™ depend on {gi} ..

= B has the desired form.

Let L. be the controllability matrix of IIAJB:I. Clearly, L. and L. have
the rank n4.

Mote that

p_[B AR - 4R _[L B - AR

where L. s the controllability matrixof (ﬂc, BEII Since the Cayley-Hamilton
theorem dictates that the columns of A%B, with & > n, are linearly depen-
dent on the columns of Ly, rankl. = ny implies rankl.. = ny. Hence, the
reduced system 15 controllable.

MNaotice that

sI_ 4. _Aa, ”(31_&)—1 (gf_ﬁcj-iﬁmisf_afj-ilzf
0 Y gy B 0 ET R Py

1

0 sf— 4. +D

sF— A1 [sf- A4, [sF- A.)-1
:[m][t A el Rl & H%

= C(sI- 1)'B, +D.

Clsl- ' B+ D=[C. ] { STk oy [%

+ D

The state space T 1s partitioned 1nto two orthogonal subspaces

[ TJE ] controllable
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and
[ ;‘Eg ] nncontrollable [not affected by input].

Since
$:P—1$:[gl s gn:+1 gn]liz ,

the contrcllable subspace is the span of {317, (R
lable subspace is 1ts orthogonal complement.
Theorem: Suppoee Ly has rankn;. Then 3 2 = Pr where P nonsingular

J1 and the nncontrol-

such that .
ol 0]|l%]| B,
T, | | An 4, s B,
y=[Co0]| 7 | +Du
=)
and

z, = 4.7 + Bu
7=05+ D

15 observable and the transfer matrices of two systems are the same.

Proof: the theorem follows from the duality.

Observable and nnobservable subspaces are defined simularly

Kalman Decompeoeition Theorem: A linear system can be equivalently
transformed into

i:c'o -laeo D 4‘:'1-13 U [ Crco E‘D
Teo | _ 4 A, A Ay Tos n B, u
a?ﬁ'l:' |:| |:| -lac'o |:| ir:fo |:|
Lo 0 0 Ao A | Tes a
Tio |
4= [Co 0 Coo 0] | 50 | + D
Too

where T, 12 controllable and obsermble, 2. is contrellable but unobservable,
T 18 observable but nncontrallable, and Zps 15 uncontrellable and unonserw
able. Furthermore, the transfer function matrix 1s

Cool sl — Ap) ' By + D
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which depends only on the controllable and observable part.
Proof: Combine previous two theorems successively.

u y

C&0
L 1
C&UO UC&0

Remark: Even if the transfer function matrices of full system and con-
trollable and observable part arethesame, the responees with nonsero imtial
condition are completely different.

5.5 Hidden Modes

Let A be an dgenvalue of A

Def.: Therels an uncontrollable hidden mode at A if there is a generalized
elgenvector assodated A contained in the uncontrollable subspace.

Def.: Thereis an unobservable hidden mode at Aif there iz a generalized
elgenvector assocated A contained in the unobservable subspace.

Def.: There iz a hidden mode at A if there iz an uncontrollable or an
nnobservable hidden mode at A

Theorem:

1. Thereis an uncontrollable hidden mode at Aiffrank{d— AI B] <In.
; ) ) A— AT

2. There 1z an uncbservable hidden mode at At rank I < 1.

Proofs are similar to those in Controllability and Observability section.
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5.6 Stabilizability and Detectability

Def.: A system is stabilizable if 3 4 = Frsuch that A+ BFis stable.
Dief.: A systemn 1g detectable if A + L7 1s stable for some L
Theorem: TFAR

1. (4, B) is stabilisable.

2. there are no unstable nncontrollable hidden mode.

3. A in the controllability decomposition must be stable.

4. [A— M, B has full row rankfor all Rel > 0.

5. For all )and zsnch that 2*4 = 2*} and Red > 0, 2B #0.

Proof 12 similar to that in Controllability section.
Theorerm: TFAR

1. [C; A]I e detectable.
2. there are no unstable nnobzermble hidden mode.

3. d.1n the observability decomposition must be stable.

A— AI
L[4z

5. For all Aand @ such that dv = Av and Red = 0, Cr # 0.

] has full column rankfor all ReA > 0.

Proof 12 similar to that in Observability section.
Def (modal controllability): The mode Al controllable if #* 8 # 0 for all
left elgenvectors & associated with A.

Def [modal observability): The mode A 1= obeervable if Cx # 0 for all

right elgenvectors T assoclated with A
Fact:

# asystem is controllable (observable) iff every mode is contrellable [ob-
servable).

e a systermn is stabilizable [detectable] HE every unstable mode is control-

lable [obeervable).
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Chapter 6

Realization Theory

We have shown how one can get Gfrom [4, B, €, .

Question: Gilven 3, what is the state space realisation [4, B, €, I} whose
transfer function matrixis &7

Clearly, the realisation 1s not unique since one can add some uncontrol-
lable and unobservable state equations.

6.1 Mimimal Realization

Def.: The realization of Gie B =[4, B, C, D] such that ite transfer function
matrix is

Def.: The realisation B =[4, B,C, D] of iz minimal (ireducible] if its
dimension 18 minimal among all realisations of &

Fact: TFAE
o R=[4,B,C D and R=[4, B, D] are realizations of &

o Rand Rlave the same impulse response.

CAB=CARB 1=0,1,--- and D=0
Let B =[4, B, C I} be a realization of &

Consider the impulse response

&) - D) = ce =3 0
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Talang Laplace tranform, we obtain an expansion at co:

Gs) = Gloo) + 5 G |4 > max(| M : A € PGS}

where the Markov parameters & = CA'B,
Hankel matrices H; of order {

}If = [G|.+f-]1|",;':tl = [CAI.-l-}.‘B:H,;':D = LDTLEI

where
&
4
L= . Li=[BAB-.- A'H|.
CA
Fact: For any realisation B =[4, B, C, 0] of G,
L.
rankH = rankH,_, ¥i>n-1.
2.

rankH,_; 1z independent of the given realization.
Proof: 1) Let /> n — 1. Let

Eo,n—l = [ LD'E_l ] . E‘E,n—l = [ Lo 0 ] ' H, .= [Ha_l E ] .

By Cayley-Hamilton thecrem, 3 nonsingular matrices L and Hsuch that
LLD,I = E‘D,n—i and LEIIR - Ec‘,n—i

iy
LHIR = Eo,n—li‘c,n—l = -an-1
iy
rankH = rankf, | = rankH__,.
2] Let R= [ﬁ, ,é’, ij] with dimension i be another realisation of &
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Let /> max{n — 1,4 — 1} and notice that

H =[CAVEY i, = [CAV B, = H.

By 1]|, B ;
rankH,_, = rankH; = rank B = rankH,_,.
Theorem:
1.
ronkfh > rankH_,  Wie N
a.

max{ronkH; € N} = rankH,_, = ronk{[CAH B 1.1

Froofe are obvicus.

Theorem: Let dgr = rank{L L] = rankH,_,.

1.

2. n=ilpr & (4 B)is controllable and (] 4] 1= observable.

Proof: By Sylvester inequality,
rankLy +rankD, — n < dpr < min{rankL, rankL} < n.

Notice that
[, A) is observable & rankl, =n
(4, B) ie controllable &  rankl, =n.

Hence, 1) and 2) followr,
Corcllary:

 Opris the minimal dimension of any realisation.

s arealization is rrinimal Hf (4, B) is controllable and [ 4) 1= observ-
able.
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Fact: fpr is equal to the McMillan degres of G.

Theorern: Let R be a minimal realisation of ¢ and & be another real-
isation. Then R is minimal #f R and R are equivalent. Furthermore, the
equivalence transform 15 & = Tz where

T= (L5 L,

T = LL(LL)
Proof: <) Obvicns :
= ) dimension of Hand His n. Hence,

D=Glo) =1
LL=H,,=H_=LL (4
L AL =L AL

where

rankL, = ronkL, = rankL, = rankL. = n.
Hence L3, and L L} are positive definite and, thus, nonsingular. Therefore
= (L L)L, and Ty=LE(L.In
are well defined. From (+), T1T, = I. Let T =T}, Now
=(LL) L LL = (L L) L L. L. = L.

and

LT = LLE(LE) " = LLE(EL) " =L,
Then ) )
B=TR and C=0CT!

A=T4AT*.
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6.2 Controllable Canonical Form

Azzsumptions:

1. [ 4, B) iz controllable.
2. WLOG (by removing null space], B has full colurmn rank.

Selection of basis

Let & denote the ¢th column of B. Since L, = [B --- A"7'B] has rank
7, 30 linearly independent columns of the form 476, Chocse first n linearly
independent columne including all #'s.

Lemma: I A% is linearly dependent on previcusly selected columns,
then so are all columns 4™8;, m > 7.

Froof: Let _
-‘LF bl' = E'HI &l
where @ are selected columne before 476, Then

A" = EmA”“ Ty

where all 4" 7a;"s precede A™h and thus are linearly dependent on selected
columns before A™b,.

Hence, for all ¢ € [1,m], we find a least integer & € [1,n], called th
controllability indices, such that A%, iz linearly dependent on previously
selected columns. Now select the mmfamilies

{ Af&'l}l?:_ﬂl .
Clearly,

N k =mn.

Then for all /e [1,7m], 3 ¥ such that

.i:'l ™

Ak 'E'I - _ ’]"‘.;Af&'f
;I: ’

where

’}{i:’}é}l'l'f:...: ,:;-JI:D; |I'|']|
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and for all ¢ £ [1, ] such that & < K

-

=== =0 (3

The mfamilies form a basis of R™. Forali=1,---,mand g=10,---, k—
1, define

g ™
i, = &+ ’}i.‘;_ A ThL (4]
g+1 ;.: H

MNote that for all { = 1---,m,
bk m
'I';‘ = A-i‘lbj + ,-},4;_ _A.E'J—;'&,I. =1,
141 ;.: 17

Since, from (1) and (1), only previously selected vectors are present in the
second term of RHS of (**), nvectors 7, are linearly independent and form
a basis. Define a nonsingular matna:

1 1 1 1 -2 ™ m
I~ —[’Tk, Toaot "0 T Ty o0 Ty, 7.

The similarity transform defined by thie matrix gives contrellable cancnical
form: ) :
A=TAT-! B=TB,
Fact: Forall /=1,---,mand g =10,--- , & — 1, 'I'qr+1 1= the state at time
¢+ 1 produced by the recursion equation 2y +1) = Axfy) + Bulf) due to

TJ’H—;'
2(0) =0 and w'(y) = ;| with 9 replaced by 1.
. Tﬂf’
From this fact, for &l f=1,---,m,

-1
'rlr = Bb;jlil:ljl = E?j + E;T'i'ib'

and for al /=1,---,;mand g=10,---, k-1,

Meoreower,

Lt o= [ul(0) w¥(0) --- w™(0)]
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18 an upper triangular nonsingular matnx with diagonal elements equal to 1
(W must be replaced by 1 and 4 =0for 1 =7+1,---,m). Hence,

B=[r 7 - L
and for al /=1,---,mand g=10,---, k-1,
A’du = Tj-u - [ﬂl Tf T T1m]Lur|I'§’ +1) mmﬁuﬂ =10
and L 1s an upper triangular matrix with diagenal elements equal to 1. Since

Lis nonsingular, R(B) = span{7}, -, 7). Let L= [, Then f7=1
and fl =0fort > and for all /=1,--.,m,

-1
b= Zﬂ'fﬂf 4.

Now the general form of B follows.
1

iy —g
LEtLu‘IlI'?‘I']-:': .Thenforallf:]_!---!m,,g:l:lj...!}_}_]_,
Ct.nﬂ
ky—g
A”T;-r+1: a4z~ ﬁ}i-q’ﬂ-

From the matnix representation theorem, d follows.

6.3 Observable Canonical Form

By duality, (<] 4] is in observable canonical form iff{ 4*, €*) isin controllable
cancnical form.
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6.4 Poles and Zeros

Lemma: Supposel A4-sI B

has full column normal rank. Then 2 1=

oD
an lnvariant sero it 3 © # 0 and @ such that
A-#=I B T _y
0 D fuw| T

Mereowver, if 4 = 0, % 15 also a unobservable mode.

Proof: =) Obvious
[5‘: ] =1
U

[<]3 i ] # 0 such that
. B
Suppoee & = 0. Then from full column normal rank assnmption, [ D
and thusl ilz 0 {contradiction].
Finally note that if 4 = 0, then

4o

A- %I B
oD

w=10

&

and #p 1s a unobservable mode by FBH test.

Lemma: Suppose LAE;,EI gl has full row normal rank. Then z 1=

# 0 and v such that

an lnvariant sero 1t 3

[g,r*ﬂ*][ﬂ;jzﬂf g]:n.

Mereover, if ¥ = 0, 2 12 alzo a uncontrollable mode.

Lemma: 7 has full column (row) normal rank it

A-sf B
oD

] has full

coluran (row) normal rank
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Froof: Notice that

[A—EI B]_[ I 0 [A—,SI B]
O DT | ClA-sD7 T 0 G 5]
where

Gls) = CleI- A)'B+ D.
Hence

normalrank [ 4 Eﬂ g ] = n + normalrank Gl ).

Theorern: Let K be a minimal realisation of ¢ Then A ls an elgenvalue
of A with multiplicity mniff Ais a pole of H of order m.

Proof: We will only prowe the case that the transmission sero iz not a
pole of &Gls). Then 2 s not an eigenvalue of 4 due to minimality. Note
From the procf of the previous lemma and the fact that 2 18 not a pole,

normalrank [ 4 _Cz':'I g ] = n + normadrank Gl z)).

Hence,
A-x»l B
rank o D

it rankGl z,) < normalrankGls).

Corcllary: Bwery transmission sere of €712 an 1nvanant sero of all its
realizations and every pole of & is a pole of all its realisations.

Lemma: Let [4, B, C I be a minimal realisation of G I w(f) = upe™
where A le not a pole of Gand any tg, then the cutput due to w and 2{0) =
(AT — )1 Bigg 1=

3ly) = Gl o™

Proot: In Laplace domaln,
Yis) = Clsf — A)7'a(0) + €I — A)71BU(s) + DU(5)

= ClsF — A7 2(0) + C(sT — A7 Bug(s— A)7' + Dhugls— A)7
= CsT— A)4(a{0) ~ (M= A) Bug) + G A rafs~ =" = G gl 5— )~

AdA-sI B
{nmmfmnk[ o D]

65



Corcllary: Let [4,B,C, D] be a minimal realisation of &. Suppose
1& a transmisslon zero but not a pole. Then for 4y # 0, the cutput due to
2{0) = (@] — A)7 Bug and © = upe™" is zero.

This is called the transmission blocking property.

If 7 is blocking sero, the transmisslon blocking occurs for «(s) = P
where g 18 any D vector.

Lemma: Suppose & = [4, B, 0] iz a square transfer function matrix
with I nonsingular and suppose # is an eigenvalue of 4 (1ot necessarily
minimal]. Then 3 & such that

(A— BD 'Olxg = z0m0, T # 10

it 3 4y # 0 such that
Gla o =10.
Proof: &) &G{#)ug = 0 implies that

A-BD-1O _RBIH!
G_liﬁjl = e !

haz a pole at 2 which is not observable, Then 3 xp such that
(A- BD*C)a = %,

and

Cr+0#£0
(=) Set g = —D-1Crg # 0. Then

(2 — A)xpg = —BD ' Cy = Bug.
Using this equality, one gete

Gl = Cland — A)7 1 Bug + Dy = Oy — Cy = 0.

This lemma implies # ls a sero of an invertible &{s) T it 1= a pole of

G4 z).
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Chapter 7

Linear Static State Feedback
and Linear Estimation

7.1 Linear Static State Feedback

Consider the plant:
i) = Ax(t) + Bult)

y(t) = Clt)
and linear static stabe feedback control:
ult) = Faft) + o).
Then the dosed loop system is
Ht) = dpaft) + Bult)
y(t) = Cxft)

where

Question (pole placement problem): given a monic polynomial
) ="+ 4w

does there exdet Feauch that
X..ﬂllr = TT?
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Theorem: (4, B) controllable it 3F such that x4, = .
Froof: {=] [ 4, B) contrallable

= 3 F| such that {4+ BF, ) controllable.

= 3 fzeuch that

HALBF by fn = T

Let i = [f: 0 --- 0] such that BF, = b, f;. Setting F = F + F and
Af A+ BF=A+BF + Ehfg, e get Xa, =T

(<] Suppeee (4, 8) is not controllable. (4, B) has an uncontrollable
hidden mode; e, 3 A€ Aand 1 £ C" such that

n'Ad=x'A and ' B=10.
Hence, 39 € C" such that for all F°
n(d+ BF) =xn*A
= 4y = A+ BF has the fixed eigenvalue A

7.2 Linear Estimation

WLOG, conader
i) = Axli) + Bult)

yl(t) = Cxit).

Linear State Estimator [Linear Observer)
B{t) = A5(t) + Bult) + L(F(t) - (1)
where the predicted output §(f) = C#{).
1l
#t) = (A + LCYE(1) + Bult) — Ly(t).

Notice that the observer gives the state estimate & from the I/ O pair {4, ).
Define state estimation error

e(f) = {t) — at)
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1l
gt =14+ LOelt).
Questlon: given a monic polynomial
s ="l 4 4w
does there enast Lsuch that
WALo =T

By duality, we have the followang theorem:
Theoremn: [, A) observerble i 3L such that vayr0 =7

7.3 State Feedback of Estimated State

O A,B,C,D]

|

Observer

X1

State
Feedback

The state representation of the cdosed loop:

d [ z(t) :[A+BF BF [m{ﬂ B

: ]ﬂm

& | elt) 0 A+LC || ) | T

st =tenl| |

Hence

GFs) = (s - A— BF)™'B.

Separation Principle: the family of poles of the cosed loop system is the
union of those of state feedback system and state estimator.
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Chapter 8

Advanced Topics

8.1 Matrix Fraction Description
8.2 Polynomual Matrix Description
8.3 Factorization

8.4 Linear Time-Varying Systems

T



