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Chapter 1

Introduction

The chemical processes are designed to produce the product with desired
specifications. However, due to the effect of exogenecus disturbances, the
propertles of the product deviate from the desired specrfications during the
operation. This deviation can be partly reduced by adjusting some input to
the system. The goal of antomatic control 1e to design a eystem called con-
troller that detects the deviation and antomatically manipulates the control
input to reduce the deviation created by the exogenecus disturbances.
Ex: Process (Heat Exchanger)

steam
S
st
process
stream
q,Ti i : T
\ steam
trap

Objective: Maintain the outlet temperature of the process at 1ts desired
valne 1n spite of disturbances such as vanation of flow rate or temperature
of the procese stream.

Closed Loop System:
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Terminologies

disturbances
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e ¢, manipulated (input, control) variable

o T controlled [output) variable

Tt ¢ disturbances

T\p: st point
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Chapter 2

Modeling of Chemical Process
Dynamics

The dynamic equation for a process 18 obtained through balance equaticn:

rate of _ [rate o rate of " rate of
accumulation [ ] in out generation

2.1 Models of Typical Chemical Processes

Eaxl: Liquid Storage Tank

<,




p: density of fuid

T volume of fluid

;, §: 1nlet and outlet volumetnc flow rates
A: cross sectional area of tank

h: height of fluid

P pressure at the bottom of tank

P.: ambient pressure

oy valve costhent

Assnmptions:
1) p constant
1] Cutlet flow ie discharged at the ambient pressure

Waszs balance:
rate of mass rate of Inase rate of mass
accurmnl ation ot
? =&if —gp.
Since 1 = Ah,

dh
AE =g —

The pressure drop acrces the valve 1s propertional to g2, Hence,

g=C, /[P B =C, /'*;_—qhﬁ

I

dh _ o
AE =4 — Cu Eh



Exi: Heater

e

E

Q w,T

O—-—

p: density of fuid

£ heat capactty of lmd

T volume of fluid

T, T% temperatures of inlet fluid and fluid inside the reactor

T.s: reference temperature

i, twh 1nlet and ontlet mass flow rates

C* heat input by electnical heater

Assumptions: g, € constant, perfectly mixed, perfectly insulated
Similar to the liqguid storage tank case, the mase balance beils down to

v _
’ﬂtﬁ_

Tk —

Energy balance:

{rate of ene:rgj,r} . { rate of energy in } B { rate of energy out }

accurmulation by flow or convection by flow or convection

net rate of heat addition to
system from surroundings

dVp(T — Trey]]

4

= w|C|IT;r - Tre,f]' - qu_ T:'e,fjl + Q



Hormrever,

Cd[Vp(T— Tyl = (1T - j‘;efjd—v+VpC
Z ff
To this end,
d_V = l(*u_.l — )
di — P 1 1
dT _ ok

&
E_Fp(m_ﬂ_FW'

Ex3: Continuous Stirred Tank Reactor (CSTR]I

W, T; Gy /
V,T.C,

I\j\[\j\ SUAKSY

L

p: density of fuid
o heat capacity of lmid
¥ volume of fluid

AT — T

dt

T, T% temperatures of inlet fluld and fluid inside the reactor
Caiy €4 concentrations of 4 in 1nlet stream and 1nside the reactor

Trep: reference temperature

wwh, r 1nlet and outlet mass flow rates
{* heat input by electnical heater

(& H)pen: heat of reaction

Reactlon: 4 - B



Assumptions: standard assumptions for C5STR 4+ 4 and B have the same
2,C, p, € constant, perfect insulation, the reaction kinetics 1s

(@% e

olf
where
k= ke #r.
Similar to the heater case, the total mass beils down to
dl
P =W =

In the energy balance, we have the term of heat generated by reaction:

d_T: E(]’IT_T]_FQ‘FQPM

where e
Qrsn = (&Hjmn (f) = _(&Hjmnkﬂg_%cﬂ-

Component balance:
rate of compeonent 4] {rate of component 4 in
by flow or conwvection
rate of generation of A}

by reaction

accurulation

rate of component 4 out
by flow or convection

d[VCA] o . o dCA
g ().
Herrenrer,
dVCq)  dCy gV dCy [f — w)
i _Vdji -I-C_qg—vdﬁ + & .
To this end,
p%; = —
A ? I
d - F)
?}1 = %(Cﬂf — Cy) + ke m



2.2 Linearization of Nonlinear Systems

Conslder the process described by the nonlinear ordinary differential equa-

tion:
&= flzul
¥ = h{z]

where 4 1s the output, 2 the state and 4 input.
Suppose i,, represent the steady state input to the process. Then the
steady state &,, 1= attained when

0= flZys ths)-

The steady state output ¥,, 1= Ax,,).
Approvdmate f, 4 around steady state using Taylor series expansion:

flayw) = f(@a, tte) + [g] . (- 2] + %] o [t — tay)
et amr I
+%(a¢— Tas) T % o, (T — 2y iz —20)T % e, (% — )
+%I{u — )T [%] . (1 — thay) + -+
Y % - [+ —2,) + % .. (% — i)
) = M 1)+ | g be-m)T [% (emm) e
=tz u=vs

These linear approxamations are usually good valid near the steady state
only.
Define dewiation variables:

Y =Y—Yu F=T— Ty ¥ =4

)



Then the apprommate lineansation of the process 1=

o' ;
E-Aﬂ—k&ft&

:U'l — CT:IZ"

of - [dh
2., o[2

Fac: Ternperature control of CSTR wath wy = w
dT

= m -1+ g Sl f = (100,00

where

E=8r 5
MRy

o

E=Er T
M=y

d : =
FA = %(CAE — Cal + e mr Cy = (T, Gy, Q).
Define
=T ,=Cy, u=0, v=T=h~zx).
Then
:1:]1 :T:.u :1;..'2 :C..lluj ﬁ'll :Q.u:l :r;l :T:r
Mo
dz’ \
= Ar' + b
E«'"I — I:L’I':I:.'
where s 8
A=| 2T 3
7 %’; ] cg;gﬁ..

B __a __a
) [—ﬁ+%ﬁ%%e Ay, Ol Hr]
- 1

P __a . __a
_HI;;;k\DE = Cﬂu _p:H_V + k\DE =

_[ % _[we] mo[oh 2R _
b—[%%]c :g‘;‘ E ]: c _[ﬁﬁ-’]cf‘fg" —[10].



Part 1

Signals
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Chapter 3

Introduction to Signals

Loosely speaking, signal 1= a quantitative phenomenon that varies with time.
Hence, the signal is taken to be a time function defined on [—oo,00). Often
we are only 1nterested 1n the future from the present. In this case, assumng
the present 1§ = 0 without loss of generality, aslgnal is afunction defined on
[0,00] or is treated without lces of generality as a time function on {—oo, oo
which 1a 0 for all £ <7 0.

Ea: Temperature in the heater

Concentration in the reactor

Position and velocity of robot arm
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Chapter 4

Periodic Signals and Fourier
Series

A signal 418 called penodic wath period it
wi) =wli+ &), ¥h=0,41,42,---.

In this case, it suffices to consider any interval with length 7% eg. [0, T,

[_Z' T
I
Coﬂnple}: Exponentials
Conslder the complex exponential:

et — cos ot + j"sin ot

where
W= a9
=7
Then
w f4T _ Jfef 3w fief
= = Eil =,
Hence, g™z periodic with period T Clearly, wis the frequency associated
with e,
Now consider the complex exponentials:

et n =0, 41,42, -.

12



Then
FLAEUIEE N QU 1 TAE R L R B U
£ 4 E_l £
and thus gt 1g aleo periodic with period T Indeed the smallest period of
it ig % and the associated frequency 1 7w
Define the inner product between two periodic complex functions f, g
with period T as

(o= [ fod

f and g are sald to be orthogonal i (f, g% = 0. Now the inner product
betwesn two complex exponentials s

T T
{E;'mw:f! E;'mlf} — f’T E;'mwaf'nwfdi — f’T E;'{m—n:wfd‘i
) )
o
{2 =T for m=mn

eflm—nlet

e

Hence, the above complex exponentials are arthogonal each ot her.
Fourier Senes
Recall that any vector #in R™ can be expanded wath the orthogonal basle

vectors {gtiog
n
T = Z;D;wk

_ AT ey

()
Similarly, a periodic complex function fwith period T can be expanded with
the basiz functions {EJ‘"""‘”}

T . )
=TT — ) for

n—n T

From the orthogonality,

F=—ca
m ..
f: E FE'E}.::‘wf
k=—ca

where

__theMhy 1 g3 o
Fi;' —W—T _% f(f]h‘f’ & ot
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The above expansion 15 called the Fourler senes expansion and F's are called
the Fourier coefhclents. Notice that

1 %
B== _%fiﬁjdﬁ.

Remark 1: Given f, the Fourler coeflicients that form a sequence (func-
tion of integers] can be computed using the Fourier coeflicient formula. Con-
versely given Fourler coefficients, the original function [ can be recovered
from them. Hence the Fourler series defines an invertible relationship be-
tween a perlodic function and the associated Fourler coefhcient sequence.

Remark 2: Visible ight compeees of varlous light with different wawve
lengths or frequendes. Using the prism, visible light can be decomposed
into light with different frequences. Similarly, a periodic function composes
periodic functions with different frequencies and can be decomposed into

periodic functions wath different frequencies via Fourler series expansion.
Eac: Let 7' =2 and

ﬂﬂ = i! ¢ £ [_111]'
Hence w = 7. Now the Fourler coefliclents are
1
R= lf fdt =0
2 J
and for k= 41,42,---,

D LY L, it
E—Ej;iﬁf 'ﬁ_[_:z;‘kwi&f w

1

1 1 —jkari
+—Ej'k?r£1g yemt i

f=—1

:—Fi—:cna..i'rr
__i_ .E-_;—;’.i-:rfl vk 4
= jk*}rli 1] Eka?rﬂg L =[-1] =
=0
To this end, .
)= 3 (1) et
ez
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Spectra of Signals

The Fourler coefhclent of afrequency represents how much the associated
frequency component, e¥¥ the original periodic function has. However, the
Fourier coefhcients are complex scalars. Hence 1n polar form,

F. = |R|e™

where

| B = \{[RE(EJ]”[IW{HJ]E

Im|{ R

Re(F )’

| F| 2= a function of k& ie called the amplitude spectrum whereas & as a
function of % the phase spectrum. Notice that the spectra can be viewed as

a function of frequency kw instead of £

The signals we will consider are real. Hence, let | be a real periodic

function. Then fz }' and thus

1 4% ot 1 4% .
R :Tj:% flt)e ety :Tﬁ%f(f)efkwfﬁ =T

tan f =

Hence, . .

|ﬂ_|gm =F=F; = | F |- = |F_k|E—_ﬂ'}_k_
To this end for rea periodic signale, the amplitude spectrum ie an even
function of & whereas the phase spectrum is an odd function of & Hence for

real periodic signals, it suffices to examine the spectrafor & = (0.
Pargeval’s Theorem

Parseval’s Theorem: Let f be a periodic signal. Then

%ﬁwnﬂ-ﬁ = Y |AL

k=—ca

T

1 T

7 [ =7 [ f070

1 L « . ] 1 T
==, F R/ttt = oy o f= A k=T g
rf3 2 20T 2 2 T [ }
— —

(T for k=1
_{U for k#1

k] W
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(e [

= Y REF= Y |R/

k==co k=—co

Notice that the LHS defines the sise of [ and the RHS the size of the
asgoclated Fourler coefhicients. Hence, the Parsevals thecrem dictates that
the 1nvertible relationship between a periodic function and the associated
Fourier coefficients is 1sometrically isomorphism (roughly speaking invertible
and the sises of a periodic function and the assocated Fourier coefhoients
are the same).

16



Chapter 5

Signals and Fourier Transform

As shown in the previous chapter, a periodic signal can be decomposed of
complex exponentials wheoee frequencies are integer multiple of that of the
periodic signal. Heowever, a signal is 1n general not periodic. Clearly a non-
periodic signal cannot be represented as a Fourler series. Instead, 1t can be
represented as a Fourier transform which 1 a generalisation of Fourier se-
ries. Roughly speakaing, a nonperiodic signal can be decomposed of complex
exponentials of all frequencies.
To see this let | be a periodic function with period T Then

f: i ﬂﬁr'kwf

k=—ma
where
1 5 -
R = Tl e flt)e-rhwidi,
Hence, .
o gk W T — Rt
f_sc:z_:m&f ar fr fleye i,
L=t -
g =e* [, fit)e ¥
Then | e
F==3% glhkuw.
E?T.i':—m

17



For an aperiodic function, T — oo and, thus, w — 0. Hence,

) =¥ [ e

and

1 .. - 1 e 1 m = — iy
= gplim 3 sthwlr= o [ dwhdo=gn 7 (7 fid)edide

To this end, an aperiodic function f can be expanded with the functions
femf: we R}:

)= f " Flu)e

where

Flu) = f” flthe 2t = ( f, e,

The above expansion is called the inverse Fourler transform and Fi-) is called
the Fourler transform.

Sirmilar to the Founer series, the Founer transform defines an invertible
relationship between afunction and the assoclated Fourler transtorm. More-
over, the Founer transform of a function represents the frequency content of

the function.
Ex1l: Let

fle) =e7Ul)
where U[t) is the unit step function defined by
_ (1 i
U“y_{n <0
Then

Flu) = f‘” e M le=tTt ) df = fg—':ww:'f.ﬁ =

1+ w
To this end, ) )
_ 1 fo
fii]_ﬂ?rj:m1+jw8 da

Notice that the Fourler transform is not defined for f{t) =&
Ex 2: Consider the Direc delta function

(e Hi=0D
ﬂﬂ_{n 10

18



such that

[ 108 - to)d = fir)

Then o .
Flu) = f et _ ty)d = e,

[}
Hence

5|If — ﬁl:ljl — i f'x' Efwfﬁ—fwfnd(u_

A oo
Ex 3: Suppose Flw) = d{w — wh). Then

1) = o ji” e B0 — )y = et

o0 i

Hence,

1 g
i —wh) = —f giwfgton iy
A Joca
Spectra of Signals
The Fourier transform at a frequency represerts how much the associ-
ated frequency component, &%, the cnginal function has. Hence, similar
to Fourler series case, the amplitude and phase spectra as afunction of fre-

quency are defined by
[Flw)] = | R Flw)))? + [Im{ Flw))]?
ban () = ZPAE)

Re(Flw))’
Notice that, for Fourier series, the spectra could be viewsd as a function of
frequency Auw.
Similar to Fourler serles, the amplitude and phase epectra of a real signal
are even and odd functions of w, respectively. Hencefor real signals, it sufhces

to examine the spectra for w > 0.
Pargeval’s Theorem

Farseval’s Theorem:

[ ot = [ Plo)Gulde
fm E?Tfm

19



Froof:

[ fosta= [ (% [ e ) (% [ aidle g i

-~ f‘: ﬁ:Hw)G(¢) (% f‘: e-f'%fmdg) b
= [ [ Fc )6 - w)dsd
== f:ﬂwj jj"; G()5(¢— w)dd = - jjiﬂwjetwm.

If { =g, the Parseval’s thecrem reduces to

i frE = = [ P
f:: Eﬁﬁo

Notice that the LHS defines the size of f and the RHS the size of the as-
soclated Founer transform. Hence, the Parsevals theorem dictates that the
invertible relationship between a function and the associated Fourler trans-
form 1& an isometrically lsomorphism.

Convergence of Fourler Transform

Contrary to the Fourler series, the Fourler transform

Flw) = f : F(E)em Tt

may not exdst even for a simple function like step function, f{f) = U(f). As
mentioned in Example 1, the Fourier transform of f{f] = e~ doesn™ exdsts
either. & sufficient condition for the Fourler transform to exst is that fif)
has afinite number of discontinuities over any finite interval and that

[ 1ot <eo.

40



Chapter 6

Signals and Laplace Transform

From the convergence consideration of Fourler transform at the end of the
previous chapter, the Fourier transform analysie of a signal 1 limited to a
certain class that 1s not big enough. Hence, the generalisation of Founer
transform to a wider class of functions are desirable. Indeed this can be
achieved adding exponentially decaying term in the integral cwer the real
line. To thiz end, consider

il1) = %f"“ Fi{o+ juw) oty
where

Filo+jw) = j“"’ flt)eTte iy,
The above expansion is called the inverse Laplace Transform and F(-) is
called the donble-sided Laplace transform. Notice that the Fourler transform
1= readily recovered if o =10.

Let 5= + ju. Then we get
. 1 4 jea ot
160 = g7 [, Bleleds

where "

fm=fmw%

If we are interested in asignal over [0, 0o), the single-sided Laplace transform
18 obtained as follows:

Fs) = f‘: FUE)emvidt = j;m flt)edt,

41



Throughout the note, Laplace transform means single-sided Laplace trans-
form nnless stated ctherwse. If 7 > 0, the Laplace transform is more likely
to converge compared to the Fourler transform. Indeed, the convergence s

guaranteed if g
L1 = [ e < co.

Clearly for @ = 0, this conditlon 15 much weaker than the convergence condi-
tion for the Fourler transform. MNotice that Laplace transform 1z impeoesible
for ef, e, etc.

Laplace transform for some important functions

1. Unit step [Heavyeide] funchion

(1] = f Ult)e*dt = f" st — [_ %E_,f] :D _ %

2. Ramp function
fg) =1Ul).

= [Tt = L‘_‘”W lm—lf — i—sfm_i
efte) = [Tted= || g [Tt =g L=

3. Unit impulse {Dirac delta) function

fﬁ —dei_ —.!|:|_1

ft) = e ™T(E).

Y Y S P _ 1 —|:.|+|:|]|fm — 1
;:[f(tj]_j: et .ﬁ_{ ——¢ Lfﬁa'

. Sine function

4. Bxponential function

flf] ==in uﬁUI[ﬁ]l.. |
R

]

290 55— qw &4 jw

=0

_ 1 L E—(s+;’w}f]

141 1y w
T ls—gw s4gw] T sS4

42



JIt) Fs) = [ Jit]]
517 i

Ult) 5
; =
f 2
E—af 1

.1-|-|:1
—af

e |
. E |:J+I]:|“+]
E1T !:ffw,
Cos ;n-;wn

—af .y o
E_ﬂfslnwﬁ ':’+f ,ﬂ+w=
g~ coz il T aE

Inversze Laplace Transform by Partial Fraction Expansion
Exl (Distinct Real Factor Case):

Fls) = (5+1]||[55+2]3 =§+ % +5—-Ii'
Then ;
A= li_{%sFI{s]l =
B= ,113-91(5 +11F s = -5,
€= lim (s +2)F(s) = %
Hence

flt) = AU(t) + Be™'Ult) + Ce™ ¥ U(1).
Ex2 [Distinct Complex Factor Case):

Fls) = 3 _ 4ds+ B 9_44{5+1}|+(B—A]+£
(S 42s+E)ls S +2s45 0 s [s+1)2 422 s
o Als+1) +(B—A] 2 +g
T s+ 1)2 422 T [s41)F427 0 s
Then 3
A=limsF(s) = 2
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A + Bs+ O+ 205 450=3 = A:_gj B:_E

2
Hence
fli) = de* cee 24U[E) + (B 4) e~ ein 2tU(E) + CU(L).
Ex3 (Repeated Factor Case):

2 ASE +B:+C D 4 B & D
A =™ o s sl T GrRE T T
Then

D=limsFs) =2,
1]
&= lim (5+ 1P Fs) = —
B=im 2fls+11Fs) =1,
1.
4 o !llml d\gg[(ﬁ+1]|3F|: 5)] = -2

Hence,

1) = AU + B Ulf) + Cem Ul + DU,

Properties of Laplace transform
1. Lineanty

£lo1 f{t) + ouglt)] = e [[2)] + o2k [o(2]]
Proof: For all a,0 € R,

[ eteft +bgt)it = a [ e fleyd +b [ et

2. Real differentiation
Lt

c[fi2)] = Fls).

Then

: [%] = sFls)— f{0)

24



and

[%] = ) — 5" f{0) = 872 f(0) — - — fo1)(0)

Proof of the first equality:

‘ [f@;ﬁﬁ] -[ P evas = flege—" +5 [ e
= floo)e™™ — f(0) + sF(s] = sF(s] - f(0).

Natice that taking derivative for f[f) 1= equal to multiplying s to Fls).

3. Real integration
f
£ [ f f(ﬁ]lcfi} =9

e[ [ [ it .::zl]:iifj.

4, Complex differentiation

and

ele i) = -2

k. Real translaticn

L[t —to)] = e7®* Fls).

Procf: Let T =1 — #5. = dr = df.
P=0= 7=—1{;
f—=om = T =0

fﬂi —fo)e” df = j: flr)etrttaldy = g~ j:: fire-rdr
= o [* flrlerdr = e P,

Notice that the second last equality follows from f{7) = 0fer 7 <0,

45



. Complex translation

£l fi1)] = Fls - a).
£)] = f flt)e gt = Fls — q).

7. Final value theorem for f{#) such that lims e f{£) < 0o
lim f(t) =limsFs).

8. Initial value theorem

Froot:

lim ft] = 11'n EF( .

f—=0
9. Conwolution Theorem

ﬁf [t —7)dr

Mf ot — 7)dr :i:{f“f Pt - m}
= [Te [ ftnsde—narie ) T [ [T e firigtplindy
:ﬁg "l drf e *vg(p)dp = jﬂ‘ flr dfrf # g p)dp

Fls)G{s).

Fls)Gis)

Proct:

Connection between Single-Sided and Double-Sided Laplace Transforms

Suppose [ be defined on [—oo, 00]. Then

flt) = f1(]l+fz(ﬂ
Ale) = fu)ute),  falt) = fle)U(—).

= [ = [7 h(oe faﬁf+f“ Ait)

:ffl fcfsf+J£f _t) e dt = Fi(s) + Fy(—3).

fal#)

where

Then

46



Part 11

Systems
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Chapter 7

Preliminaries on Linear

Algebra

7.1 Linear Operators

An operator [transformation or mapping)] 4 from R” to R™ is a rule that
asgoclates every element in R™ to an element of R™.
An operator A from R™ to R™ 1z zald to be linear if

Aler+ i) = cdr + f4%,  W2,d e R™
Terminologies:
1. Null Space (Kernel):
NA =lucR :4du =01

The dimension of null space i1s called the nullity

2. Range Space [Image):
R(A] ={veR™: v = du,u £ R"] = AR"
The dimension of range space is called the rank.

Matrix Representation of Linesar Operators

48



Let {u;17%, bethe basis for R™ Then

T= i;ffﬁ}-.
Az = Agfﬁﬁf = }2:;6!"4'%}"

Let {vi}™, be the basis for R™. Then

By linearity of 4,

m

Aﬁ;‘ — ZC&, fis
|l
: oy — o — g@}m}_ _ Ji;f} g;a,-}-’u,- = g; (gal-;ff) .
Hence,
n=A¢
where
yy %n
Ao :
By vrr o

Theorem: Let {#;17%, and {#i}7, be the bases for R™ and R™, respec-
tively. Then, w.r.t. these bases, 4 1s represented by the m x n matnx

Change of Basle

Let {ug}f, and {4}, be two bases for R™ and { 1§, and {8;}7, two

bases for B™. Then .
i = ;;Pkuﬁk

Siou=a=$ig6= 555 (Sun) = 5 (St o

49



{=P
Notice that the ¢th column of Pis the representation of # w.r.t {u,].
Sirral arly,
=@

Notice that the ¢th column of €} is the representation of v wrt {31
Let y=Ax = n=A =

fj= QAL = QAP

1
the representation of linear cperator w.rt. {1 and {#] 1s
A=04P

Special Case: V' = U7 and use same basis for both domain and range.

Then
E=P.=PQ¢f = PQ=1 = Q=P' = A=P'4P

Such transformation from A to Ais called similarity transformation.
Orthogonal Decomposition
Let 5 be a subspace of R*. Then the orthogonal complement of 5 1e
defined as

Sti=lreR":{x,yh =10, ¥y € ST.

Fact [Crthogonal Decompeeition): R* = 5@ S
Proof: Suppcee & € R™ Let 1, be the projection of 2 on 5. Then
T3 =& — & Is orthogonal to S and thus 4; € S,

30



ye[RIA]Y o wz=0vzeR(A)
& [(dyPr=ydr=0¥zcR” & ALy=0 o gyeA(d).
Hence, A 4] ie the orthogonal complement of R[A) and thus
R™=R{d) oA [4).
Simmilarly,
R" =R(4') g A(4)

Eigenvalues and Figenvectors

Def: A € Cis called an elgenvalue of 4 if 3 right (left) dgenvector
z{y) # 0 such that Az = Az (y*d = Ay*).

Fact: A ls an eigenvalue of 4 iffit 1= a solution of the characteristic
polynormial

salA) = det{ AT — ) = 0.

The elgenvector & is a nonsero vector in A7 AT — A).

Theorern: Let Ay, ---, As be the distinct dpenvalues of 4 and o be an
elgenvector assocated with A Then {w}%, is linearly independent.

Proof: Suppoee the contrary. 3a’s (not all sero] such that

gty - F gty = 0.

WLOG, we assume & 7 0. Conslder

(A=) (A= AI) ( m) 0.

Motice that
(A— A Dw =(A—A)w iy #
and
(d— ALw =10,
Hence,

'1'1'{}'1 - }-2] (}-1 — }I‘un]’th =1.

Since A's are distinct, this implies & = 0 {contradiction!).
Def.: & matrixie simple if it has 7 hinearly independent elgenvectores.
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Corcllary: If elgenvalues of 4 are all distinct, 415 simple.
Remark: There exast simple matrices whose egenvalues of 4 are not all

distinct. [Hoc Lé E’l]
Let A be simple. Then notice that
AV =TFA

where

V=1[v; - v A=diagli,---, A,
Since Vis nonsingular, we have
V1AV = A

Wote that A is the representation of 4 in terms of its dgenvectors.
Fact: I 4d1e simple, 4 can be diagonalised by similanity transform.
Positive Definite Hermitlan Square Matrix
Def.: 41s Hermitian it 4 = 4.

Fact: Let 4 be Hermitian.

1. 2* Ar 1= real.

2. elgenvalues of 4 are all real.
3. n elgenvectors exist and are all orthogonal.

Proof: 1) (2t dz)* = 2* A'x = 2* .

2) Let A be an eigenvalue and © be the corresponding elgenvector. Then
ot du = Avtv. Note that LHS is real, and v*v iz real and 0.

3) [Proof of orthogonality) For multiple eigenvalues, we can always choose
rmutnally orthogonal eigenvectors. Suppose dw = Au and dv = pw with
A p. Note that w*d = Au*. Hence

wtdy = Aute and wtdv = pute

= Autv =gty = wtv =0,
Def.: d1s positive semidefinite (PSD) if #* dr > 0 for all o
Def.: Adis peeitive definite (PD) if #* dr > 0 for all o £ 0.
Fact: TFAE
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1. 4is PSD (PD).

2. all its elgenvalues are nonnegative [positive).

Proof: [1 = 2] Let A; be an egenvalue and 4 be the corresponding unit
elgenvector. Then

A = }‘u"l-'f = < ({jﬂf* A = }ll't"i*ﬂf = }lf-

(2 = 1) {4} orthonormal eigenvectors
Ar=Alayw 4+ +igvn) = oy + - Fagdvg, = apdivn + -0+ B gty
iy
e = (mv) 4o Faavh) [ B Ar + - o Anta) = @54+ FalAn = (=)0

Functions of Matnices
Let A be asquare matrix and p(f) be a polynomial:

pliE) = ag + oyt +agt® 4+ + gt
Then the matrix poelynomial 1= defined as
pld) = s + oy A+ agd* +--- + 2,4,

Cayley Hamilton Theorem: Let ywa(A] = det(A] — A) = A+ g A" 4+
ve+ @y A+ @ be the characteristic polynomial of 4 Then

yaldj =4 +od 4+ A4 o, =10

Froot for simple 4: Let v be an elgenvector of 4 assocated with eigen-

value A;. Then

xal AV = Vg3l M), -, xalAa)} =0

where V'=[vy --+ ). Since Vis nonsingular, yal ) = 0.
Corcllary: 4%, k> n, is a linear combination of I, 4, .-, 47,
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Matrix Exponential
Conslder the Taylor series expansion of the exponential function %

f 'I'g 2 " n
-4 :1—|-ﬂ:i—|-?i +.”+Hi + .-
Mow the matrix exponential e4f 1z defined as

2 n
eﬂf:1+m+i,f2+---+‘4—,ﬁ"+---
2 7l

Fact: Properties of Matrix Exponential gf

1.

)
2.

At 5) = oA gl
3. e is nonsingular and

[e4] ! = g4,

4. For nonsingular F,

£PAP~ _ pehip-1,

M=l - A =L I 4+ AT+ A2t ).
. The matrix exponential can be written as a finite order polynomial

n—1

Al = ;m(ﬂfﬁ.

Proof: 1] and 4) are obvious from the series representation of eif.
2] Consider e, Then

(eYaq) = AdeV .

B w
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Hence e 1s the sclution to

d
boft) = Aalt),  o{0) =0
To this end, for all o,
E.A(f:-l-f:]l% — ﬂ?(f1 —I-ﬁ;]l — E_Af:x(m — h E-"“”a’:n.

312 = e =F= [ =¥ = e nonsingular.
5] Taking LT's of £(f] = Ax{f] with 2{0) = 245 and 2{f) = efry, we get

sXis) = AX(s)+1 = X{s)=(sI- 4]z

and
X(s) = £t m,

respectively. Hence,

ca jkﬂk) ==}

(s - At = gehi=g (Z;? = S

) follows from the Cayley-Hamilton Theorem.
Natice that the matnix exponential can be computed using Fact 5) & 6).
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Chapter 8

Introduction to Systems

A system iz asignal processor that processes the input signal and gves the
output signal.

Input Output
— 1 System ——

§ = St
A systern 12 mathematically described by an equation between input and

output,
A system is linear if for any scalars @y, a2 € F and signals 4y, s,

S(ﬂq’iﬁh + ﬂg’iﬁ.‘.’-g] = &Sty F EaS g,

Notice that $0=0% §1 =10.
A gyetemn s time invanant if for any 7

yl(o) = sul), ) =suf-—7),
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1l
A4) =l — 7).

A system is causal {physical, nonantidpative) if the output y(t) depends
only on the past and the current input u{7), 7 < {. Notice that any physically
meaningful system must be causal.

A causal system i instantanecus (static, stationary, memoryless] if the
output 4[] depends only on the current input w(t). Otherwise a causal sye-
tem s called dynamic. Usunally a static system 15 mathematically descnbed
by an algebralc equation betwesn input and output whereas a dymamic sye-
tem by a differential equation.
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Chapter 9

Representation of Linear
Dynamic Systems

9.1 Differential Equation Models

Differential Equation Model

A linear dynamic physical syetemis modeled by a linear differential equa-
tion [which may be an approxdmation of a nonlinear dynamic system through
linearization of a nonlinear differential equation ):

P et 4 g 4 gy = o™ bt e b+ b,

Notice that the largest order of differentiation of LHS is greater (i = 0]
than or equal (g # 0) to that of RHS and, thus, the system is causal. The
solutlon consists of the homogeneous part ¢ and the nonhomogenous part
Y- Clearly the first depends on the initial conditions:

4{ta) = vo, 9(ta) = fo, +--, FPI00) = 457,

whereas the second on the forangfunction [RI—IS of the equation) that is the
input . Hence 4 (4] represents the effects of initial condition [input) on
the cutput.

State Space Model

Consider

E o o g Lt anf =0 (4)
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Then by linearity
g = b AP b S B

Moreover using (+],

y=RA U4 B E RE b

where
ﬂfj = bl' - bﬂai'

Nowr from the initial condition (fa] = ¥a,

w0 = ylta) = FrENto) + - - + Fos Eltn) + Faéltn) + houlto).

Similarly, for ¢ = 0,-+- 0 — 1,

) = 0{to) = FEMHDfo) -+ F_ &N ko) + FBE ko) + bouV{tn).

and, using (+) successively, (+) for 1,

4~ Biuftg) — - -— Biulty) = FieDto) +-- -+ i Elta) + A EE0) (++)

Notice that we have m equations and n unknowns of £0(4;). Hence, the
differential equation in the previous sectlon 1= equivalent to the equation:

6(”} + C&if':"_i} +ee 4 II'n—ié-'l' a’nf = ﬂ‘:

y=@E 4 G o+ bou

with the initial condition computed from the equations [++).

Femark 1: ¥ RHS of the differential equation in the previcus chapter is
i, then £ = .

Remark 2: ¥ &, =0, then AP =4, ---, 2 =b,.

Let
I = f:l T2 = é: oty Taet = 6(”_2}: Tn :f(n_l}'
Then ]
& =& =1
Sl.?g = g: T
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in—l = 6(?1—1} = Ty
ft:n :,f(”:' = _.5;16(”_1:' — e — aﬂ_lé_ an6+ﬁ
= — by — e — gy — Aty T

Hence the differential equation can be rewritten as the so-called controller
canonical form:

0 1 0 0 0

0 0 1 0 0
T= T+ i

0 0 0 1 0

—fln —fn_1 —Op_z - —id 1

y=10 - Bz +bou.

In general, a linear time invariant system 1e described by
£=Adr+b State DE

y=cTr+du Readout Map

Notice that the system is completely characterized by the matrix [4, &, ¢, d].
Fact: the closed form sclution of the state space equation 1=

oft) = ez, + ‘[ A=y ) dr

Th

Proof: At =10,
0] =

Meorecwer,

1) = Ay + bult) + faﬁf-ﬂmmdr = Aaft) + bult).

Hence, f
_ T A T Ali—7)
y(t) = eﬂ%+£ceﬂ bu(7)dr + dult) .

iy L
L
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State
(flven atime instant £, the state of the system 1z the minimal information
that are necessary to calculate the future response.

For ODE's, the concept of the state 1= the same as that of the initial
condition.

I
State = a{f)

Consider the change of coordinate of the state epace such that T = Pr.
Then
T=Ar+by, y=c’z+du
1
p=Adr+bu, y="r+du
where

A=PAP ' 5=Ph T=cTP! d=4d.

Hence, two systems represented by [4, 6, ¢, d) and [4, 8,7, d] are equivalent
becaunse the only difference 1z the coordinate system of the state space.
Finally for an input such that 2{—oo) =10,

0 = 2{—0) = lim [E—ﬂfa:.j 4 ﬁ_fﬁ‘ﬂfﬁ‘ﬂ"'fm(“r]d'r

f—a

e (:r:.;. - ji E_ATEIVILII’I']I&ET)] :

T = fD e~ bl ) dT.

Hence the initial condition can be viewed as a condenszed core memory of the
past. Notice that

H -Af —
Hhm,,,, e =00,

olt) = iy + fﬂf—%(fm
= f” A= )dr + j: A Thu(r)dr = f A=y 7).
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9.2 Input-Output Models

An 1nput-cutput model descnbes the effects of input on the ontput only.
Hence, the initial condition is assumed to be the sero steady state. Thus this
assumption will be adopted anywhere an input-output model 12 considered.
Laplace Doman Model: Transfer Function
Under sero initial condition assumption, the Laplace transform of the
onginal nth crder differential equation iz

Y s a5 Ys) 4 4 @, Y(8) = bps™Uls) + 05" WU (s +- - - +8,.U1 5).
Hence

_Yis) b bt e 4,
G(EII_UIIEII N

Yis) = Gl=)U 5).

G| 5] 1s called transfer function of the systern. The denominator polynormdal
1= called the characteristic polynomial and its solutions are called the poles.
On the other hand, the sclutions of the numerater polynomial 12 called he
BEros.

bg: finite = system is proper.

o =0 = system 1= strictly proper.

On the other hand, the Laplace transform of the state space equation 12

sX(s) = AX(s) + U =)
Yis) = TX(s) + dU( 5)
iy
Y(s) = [eF(sf — A)7'h 4+ d]U(s)
Hence the transfer function assccated wath the state equation 1=

Gls) = Flsl — A)~'h + d.

d: finite = system is proper.
d =0 = system is strictly proper.
Supposs [, b ¢, d] and [4, 5, 7, d] are equivalent. Then

T(sI— A5+ d = TP 1[s[— PAP')"'Ph+d
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= TP [P(s] - AP Ph+d = cT(sI - A1 +d.

Hence two equivalent state equations result in the same transfer function and
thus are the two different representation of a system.

Fact: state space representation of an I/O description is not unique.

Realisation problem: Given (7, what is the state space realization [4, b, ¢, d]
whose transfer function 18 &7

Clearly the controller form of realisation can be obtained transforming
the transfer function into differential equation model. Different realisation
can be obtalned by changing the coordinate of the state space.

Finally notice that if

Tn = fﬂ e~ bul 7)d7,

the double s1d=d Laplace transform needs to be nsed. In that case, notice
that &7 and ¥ are different but & remaine the same.
Time Domain Model: Convelution

Impulse Response [ gif)): 4] when 45 =0 and u =4

olt) = J{e“q‘:“ﬂbéiﬂ&r+d5(i] = Ty dln) WS 0

U
¥lt) = jj Tyl ) dr + dul)

£
= ﬁ it — 7lu(r)dr = g+ w(f) Convolution
Talang Laplace transform,
Yis) = Gl2)Ul ).

Hence, transfer function iz the Laplace transform of the impulse responze.
Notice that the Laplace transform of the delta function 1= 1.

Suppose
Ty = fﬂ e~ bul 7) d7.

Then
4lt) = f A r)dr + da).
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Now the impulse Response gf) is 4] when w(f] = 8(1):

Y A I TP _ [Tt di(s) t»0
_q(i]l—ﬁmce-’q“ bﬁ(fjdﬁ—ﬂié(ﬁj_{ﬂ 20

Hence, the convolution 1=

£
ylt) = f ot —rhalr)dr.
Talang double-sided Laplace transform,
Yals) = Gal s)Usls) = G{s) Uy 5).

Motice that transfer function remains the same.
Fact: For all —oo <7f < 0o,

Gl ]

_output subject to the input £*f
- E!f -

Froof:

Corcllary: For all —oo <0 <7 oo,

Jivf

., output subject to theinput €
GUU"III - g
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Chapter 10

Dynamic Responses to Typical
Inputs

10.1 Step Response

Step Input: ulf) = U(f) = Uls) =L
First Order Systems: Gyls) = j-fu

Ta

¥(s) = Gi(s)Uls) =

K K Kr
Ars41) s '

Talang the inverse Laplace transform:

y(t) = K[1 - eb).
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Remark 1: ¢{f) = K as { — oo. Hence the long term belavior is
determined by A that is called steady state gain.

Remark 2: %[U] = % For given K, theshort termresponee e determined
by 7 that 15 called time constant. The smaller 7 resulte in faster convergence
to the value of A,

Second Order Systems: Gi(s) = m

K

Yis) = Gyls)lUls) = s\rs? 4+ 2rs 4 1)

From
st 4+ 3rs+1 =10,

the poles of the plant are

fﬂ: / _I.

T T

Pi2=—

Case 1: Overdamped response (£ 2> 1 = two distinct real poles)
Taking the inverse Laplace transform:

ylt] = K [1 — e (l:,osh —ET_Iﬁ + ¢ sinh E“r_ li)] :

V1

Cage 2: Critically damped response (£ =1 = double real poles)
Taking the inverse Laplace transform:

y(ﬁ]l:ﬁ'[l— (l—l-;)e‘

Case 3: Underdamped response (£ <1 = two distinct complex conjugate
poles ]
Taking the inverse Laplace transform:

= ! e~ St (Yo TSy et VS
y(i]_ﬁ’[—m (VITEiH; *’If EE)].

|~

46



K - — — e, — e e e L

Y(t)

e>1

Remark 1: 4{f] - K as { — oo in any case and K is called the steady

state gain.

Remark : For given K, the short term response now depends on both

the damping ratio £ and the time constant 7.
Characteristice of underdamped response:

T
Settling time limits

Y(2)

- ———— ___.'_1

o
7}

s Orhershoot: %: £ 42

. __am
¢ Decay ratio: %z g «1-¢7

| R ]

s Risetime [fg): the time at which the respones firet reaches to the final

value A
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o Settling time (f5): the emallest time after which the responee lies within
some prescribed limits of the final valune A

o Period of cecillation: 7= 22

v
o Natural period of cecillation [T at £ =0): T, =277

10.2 Periodic Input Response

Fact: the response of a linear time-invariant system subject to a periodic
input 12 also periodic with the same period as that of the input.
Proof: Let 4 be periodic wath pericd T Then

(e
u{t) = § e,
2
Nowr from the corcllary in the previous chapter,

$1) = 3 TG )™

Netice that ¥, = G{rkw)l; and thus
Y2l = | Glrkw)|| Ui

L) = L[ G phw)) + L{TR).
Ea: Consider w(f) = wgsinwf. Notice that

cin it = M
2y
Hence _%? R 1
U = {%}1 fthk=1 .
i ot herwize
Therefcore

— GI[_?(JJ) i f %G(_jwj —jinf
y’(f:l = TE — TE .
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Let
# = 241 gw).

Then since & jw) = G—jw),

) E;'E E;'wf _ E—;'l? E—;'wf
y(t) = o] Gl yu)| 7
i
where 4 = | jw)|. Hence the output is also sine wave with the same
period although the amplitude has changed and phase angle has shifted.

= tig| G yo)| sinfwd + &) = gosinfwd + &)

10.3 Frequency Response

Glven an input signal u,

) = o f: Ula) e di.

Now from the corcllary in the previous chapter,

ylt) = %fi Ulw) Gl ) ™ d.

Hence Yiw] = Gljw)Ulw) where Gfjw) 1= called the frequency response
function. Tothis end, theinput signal 18 decomposed into different frequency
components throngh Founer transform, a frequency component of the input
with frequency wis adjusted by the system to give the frequency component
of the output with the samefrequency; and the sutput signal 1s obtained from
the frequency components of the cutput through 1nverse Fourler transform.

Notice that
Y{w)| =G| U(w)]
LAY w)) = LG w)) + LU w)).
Armplitude ratio [AR):

Iagnitude ratio (MR):




where K 1 the steady state gain of the plant.

Phase angle: Hw) = £(¥(w)) — £(Uw)) = G0 w))

Natice that U{w) and ¥{w) represent the content of wfrequency compo-
nent in input and cutput, respectively.

[UGw)| J
w

1G(wW)I

1Y(GwI

Hence if mwjtijl’ w frequency component of input signal 1 amplfied
[attenuated).
Eaxample: Consider

_Ysg_ K
Ghsl = Uls) s+ 1
Then X X
A—R:U-'J = ‘jwr 1 ‘ = W=
f) = (6(j6) = (=2 = LK~ 4(1 + o) = —arctnor).

Guestion: How do AR{w) and #w) behave as w changes?
Graphical Representation of AR and &

s Bode plot: log AR ve logw and & ve logw
o Nyquist plot: Re[G] jw]] ve Irn[ G 5]
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10.3.1 Bode Plot

First order system: Gyls] = Tfﬂ_l
_ A MRE= ; H:-arctanl{wrjl

Curri 41’ C uprigr’

atep 1: Asymptotes
brw—=0, MR- 1= logMAR -0
Asw— oo, MR~ L = logMA < logl —logw [= 0 at . = L and

slope =-1] v
Step 2: MHA{uL) = ?},-5

10
1.0 _
MR : N
"
N
{
0.1 N
0.01
%L 1'—Tow,rad/time¥ 1—9
atep 3:
Aew— 0,810
As o — oo, = -a
—_ i
ba) = -
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o1 10, rad/time &2 u
00
~45° i
6 -90°
-135°
-180°
Second order system: Gyls) = m
K 1
AR = , Mi= )
\/(1 — AT 4 4TI \/{1 — w4 4
2w
g = —arctan (m)

atep 1: Asympiotes
dsw—0, MR~ 1= log MR- 0

1

Asw — oo, MR - -5 = log MR — log 5 — 2logw (=0 ab wh

and slope =-2)

10 = ;
—+¢=0.1 }
T 117
\ _F¢=0.2
Ll
R T bl
/A Ll
1 L+ £=0.8
=e=1.0
MR AS
0.1 A
N
N
0.01
~o 9',—1 % w,rad/time 1—,9 Q
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Step 2: MA, .7

Jit] 2, /(]
IME _ dlt - WP agired]
dw 7 o -
_ 1 138
Mﬂnn;——gfm at s = r 1 fi
atep 3:
Asw— 0,010
Arow AL 87—

o L rad/time X2 B
5 £01
_9(5)0 ‘f=0‘8 t ‘E “6:02
f o-"-é":l'o"’-#- ‘
135 R
-180°
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10

1.0

|

MR

0.1

0.01

o ngw.rad/time o
0 i
-45°

g -90° =\
-135°
-180°

S

Complex Systems: Gils) = Gyls)--- Gl 5]
AR = |Gi(jw)]|- - | Gal 0]
§ = £ w) +- - + LG Jw)

10.3.2 Nyquist Plot

First order system: Gys) = &
AR= %H § = — arctan(uwr)
w=0: AR=Kand d =
o i;AfR::%E jnndd ff — f
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6=90°
Imaginary
o1
/ AR=K ; \
0 —A — =0 Real
w=toe 6=0°
6=-45°
oL
6=-90°
. — F
Second order system: Gyfs] = EETIET
K 2
= , == arctanl[%]l
\/El _ wz,rzjz + 462'7-2(-{:'2 1— 7w
w=0: AR=K and ¢ =
— 1. — A —
W= AR—EB anduﬁi'——2
w=ca: AR=10and 8d=—x

Imaginary

AR=K

/——*—-——\ Reat
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Dead Time: Gyls) =g~

Imaginary

6=0,360°

A
N

6=270°
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Chapter 11

Stability of Dynamic Systems

Bounded Input Bounded Output Stability
Consider the I/O description of a linear time-invariant system:

= f_q(ﬁ — Tl )T

Def.: thesystemis bounded input bounded output (BIBO) stable if every
bounded input results in a bounded ocutput.
Theorem: A linear time invarnant system 18 BIBO stable it

f|g{’r]l|d’r{m.

Proof: (&) I % is bounded such that |u(t]| < M for all £ > 0, then

Wit = | [ ol —7) (r)ér| < jﬂ“w— 7ilufr) dr

< Mﬁ |g{r)|dr < oo,

(=] Suppose the contrary. Let

1 gt—r
“m:{—l 1f§ﬁ— %:E:

Then
1my ’£|_qr |f£’r oo,

f—= o



This 15 a contradiction.

Let N

ﬂﬂﬁ”+"'+ﬂ-n_13+ﬂrn.
Consider the step input U(s) = 1 that iz bounded. Then

_ Nl{ﬁ]l 1_ l:-'\':'1 ':fn ﬁ
¥is) T B et G5t 0, 55— 5 +m+5—sn+§

where 57’s are the poles of the system [Here we assumed 3 # 0 and all poles
are distinct for simplidty).

1
ylf) = e 4 4 e 4 f.

Hence, the step response ylf] 1= bounded if all 5's are on the cloged left
half plane. However, for BIBO stahility, 5= are not allowed to be on the
imaginary axes. To see this, consider 5, = 0. Then

y{t) = + - e+ AL

Since the poles determinss the stability characteristice of the system,
#gs™ 4 -+ Gy 15+ @0, = 018 called characteristic polynomial (equation).
Notice that by Cramer's rule,

cTady(sI — A)b + det(s — A)d
det(sI — A) '

Gls) =cT(sT— A) 4 d=

where adp(sI— A) is the adjoint of sJ— A. Hence the characteristic polynomial
1& nothing more than the dgenvalue equation of 4.

General Stability Criterion: The aystem 12 BIBO stable ift all the poles
have negative real parts.
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Routh-Hurwts Stability Criterion
Fouth-Hurwats stability criterion determines whether any rocts of a poly-
nomial equation:

dps" - F oS iy =10

have positive real parts. In the following, we assume g =0 WLOG.

Routh array:
Eowl an @y s

2o My s
3 b b By
4 En 4 =
5 o, .-
where

IE'U — OjAg—0pay &'1 — 004 —0pAg
=] R

g = gugb—ulbl o = fl\;ﬂ&ﬁ;ﬂ]b&

— coby—bor;
d:j—f = C

Relationship between Routh array and the location of roota:

o If any element of the first column is negative, we have at least one roct
to the nght of the imagnary aas.

o The number of sign changes in the elements of the first column 15 equal
to the number of roots to the right of the imagnary aas.

Routh-Hurwats Stability Criterion: The system 18 BIBO stable iff all
the elementz in the first column of the Routh array assocated wnth the
characteristic polynomal are positive.

Eaxample: Consider the 2nd order characteristic polynomial equation:

G5t + a5+ ag =10

where g == 0.
Routh array:
Eaowl i g
P fty
3 IE'U = &3
|l

For BIBO stability of the system, 1t must hold that @, a; = 0.
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Chapter 12

Controllability and
Observability

Contrallability
Def.: z1s sald to be reachable from the origin if there is an 1nput 4 that
drives the state at the origin to zin [0,1] for some f, Le.

o= A=) .

Def.: A state space, or equivalently [ 4,8), is sald to be controllable if
each state 1z reachable.

For ficed £ 2> 0, let £2(¢) be the set of all reachable state in [0,£]:
alt) = {a: 5= j: e-ﬂlif—f:'mmdf}.

Notice that £3(f) 1= a subspace. Let M be the set of all reachable state:
M = Uf:}uﬂ(fj.

Notice that AL 1= a subspace and 1= called contrellable subepace. Define the
uncontrollable subspace as:

M = M = (Ueofl(f)) " = neofd(t)
Notice that w £ Qf) 4 iff

D:<w, j: EA':f_T:'EmIIT:IdT> - j: {u, A )
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= f {bTe-"lT':f“'j'w,ﬁ(*r]l}d*r.

et
alr) = 8Ty o< T,
Then . ,
,;£ “bTeAT““':'w” dr =10
and thus

FTet =y =10, 0<r<t,
Clearly this iz also sufficient for w £ {3(f)*. Hence

M, =N {w BTy =0, 0 < T < ﬁ}

n

_ {w: 0 =¥ =17 [ $ a4 w= Zn;a,-[i]le[ATj"‘lw, . n}.
= = .
. BTAT
:{w:bT(ATj"iw:D,lgign}: O : w=1
bT(AT:ln_l
BT
T AT
_of|
bT(A’.I'Jn—i
Therefore since R* =R{T*) g &[T,
M =R(c)

where

¢=[bdb... 41

that 1z called controllability matrix. To this end, we have the following
thecrem.

Theorem: TFAR
o (A 8] controllable
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o M, =0}
ML =R"
s FankC =n

B Let
|1 -2 |1
=i 7] i)

11
c=al=|; ;|

Then

Therefore def[b 48] = 0 and thus (4 ) is not controllable. Clearly

M =RI(¢) = span é

and thus
M, =MF zspan[g ]

Observability
Detf.: x4 and &y are equivalent if, for every Input i, the cutputs associated
with &y and Iy are 1dentical; 1.e.

Tettp, 4 f Ty )dr +dult) = Felia, + j; " TA ) du )

or
ety = ey, ¥ 0.

Hotice that two equivalent states are not distinguishable from their cutputs.

Def.: & state space R™, or equivalently (¢, 4], is sald to be observable if
any two equivalent states are 1dentical.

Notice that, if [, A) is observable, any two states are distinguishable from
their ontputs.

Diefine the nnobservable subspace as

Mo ={rc R : cTe¥e =10, ¥t > 0]
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which 1z the st of all states that are equivalent to 0. Notice that M, 1= a
subspace, and Iy and &y are equivalent ff 1y — 25 € M.
Diefine the observable subspace as

M, = M.

Suppose Ty, 4y € M are equivalent. Then 2y — 1€ M, as well as 1y — 25 €
M. Hence 1, = 14,
Notice that

M, ={rcR": Ttz =10, vt > 0}

n

= {;t: 0 = cFetly =7 [ eri(f) A1

n

r=Ney(t)cTA ) vE > U}

T
. _ o |
:{:t::r:T '_1$=U,1£i£ﬂ}= T : z=0\=A[0)
CTfi_”_l
where
T
3 |
CT}in—l

that is called the observability matrix. Therefore since R® =R([T*) g &[T,
M =R ([c A% ... [AT]”‘lc]) :

To thie end, we have the following theorem.

Theorer: TFAE
o (¢, 4) observable

o M, =101
o ML =R"
s Fank @ =n

Netice that (r, 4] is observable iff [ A7, ) is contrallable.
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Part III

Feedback Control Systems
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Chapter 13

Feedback Control Loop

+
R I C v

Elements 1n the fesdback loop:

e Process:

Yils) = Ga(s) M) + Gals]W(s)

o Measuring device:

Y(s) = Gi[s]¥a(s]

s Controller:



whers

els) = Hs) - ¥is)

o Final Contral Element:

The above block diagram can be reduced to

G G,G ,G,G, —Y

Tyrpical closed loop transter functions:

. %: the effect of reference input to the ontput

. %: the effect of disturbance to the ontput

Astar as the performance concerned, the goal of the control 1s to achieve

mml and mmﬂ.

H(s) Ds)

However, such achievement results in robustness problem.
From the block diagram:

Yis) = Gyls)Gels)[Bls) - Y]] + IX3)
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Sensitivity:

_Yis 1
U= 5 T Tr e AR

MHotice that
S(s) + T} = 1.
Bode Stability Criterion:
Consider the feedback system:

Open Loop Transfer Function (OLTF): Gi&7,

Critical {Crossover | Frequency, w,: frequency at which & for OLTF, GG,
18 —1.

The closed loop system 1s stable f AR{uwe) = |Ge{pwe) Gl ue)| < 1.
Otherwise, it 12 unstable.

Suppose AR = 1.
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o Disconnect feedback line and apply Eif) = H{) = Rysinw.f. Then
Y{t) =Yosin(wd — 7) = Rosinfapf — ).

o 5=t Af] = 0 and connect feedback line. Then Ff) = —¥i) =
—Aysinfwt — 7)) = Bysinfat) and, thus, ¥Yf) = Rysinfat — 7).

Clearly, after setting M) = 0 and connecting fesdback line, the magni-
tude of oscillation will decay [grow) if ARIUJE]I(;:II.

Nyquist Stability Criterion:

I Nis the number of times that Nyquist plot encircles [—1,0) in the
clockwnse direction and P i1s the number of unstable OLTF poles, then & =
N+ Pis the number of unstable CLTF poles [ N may be negative if Nyquist
plot encireles [—1,0]) in the counter-clockwize direction).
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Chapter 14

PID Control

14.1 PID controllers

Consider the plant N9
_ %l
Gyl s) = D,(3)
where N{5) and I} 5] are numerator and denominator pelynomials.
P controller
Froportional (FP) controller: «w = K.e = K [r— 4] = G.(s) = K.
Supposs A{s) =0 and the clesed loop system is stable. Conslder thestep
disturbance S s) = L. Then

_ 1 _ Iyl s 1 o 4 f
" TTRG T O ENE: st Tios s
where &'s are the poles of the closed loop system [Here all the cosed loop
poles are distinct for simplicity).

¥z

1)
ylt) = e+t e 4 B

Since the closed loop system 1= stable,

im 4(t) = §.

f—=oa

f1s called the steady state offset. Hence for step disturbance, the propor-
tional controller alone cannct remove the eftects of the disturbance to the
output.
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PI contreller
Propertional-Integral {PI) controller: « = EE—I—KE‘ fr=a €{7)dT = Gis) =
K, Q + L.
uppose H{s) =0 and the clesed loop system is stable. Consider thestep
disturbance S s) = L. Then

1 sl ) 1
Yiz) = = F -
Ty A R AP R T AR AT ELACE
p— ﬁ.l L) ﬁ.n
T s— g5 S— 5,

where 5's are the poles of the closed loop systern (Here all the dosed loop
poles are distinct for simplicity).

iy
gl = e 4 4 o e™
Since the closed loop system 12 stable,
lim y(£] = 0.

f—ca

The steady state ofeet can be eliminated using the integral action.

PID contreller

Proportional-Integral- Derivative [PID) controller: @ = K,}E—i—%—' _J",::D el T)dr+
K% = Gls)=K, [1+ - —|-'rD£g.

The denvative mode 1= nsed to anticipate the future behavior of the error

e(t) from its derivative mode. However, due to noise, it 1= impossible to
compute the meaningful denvative walue. Hence the following approsa mation

18 often used.
_ L Tns+1
Gils) = K. (1 + T;E) (mgﬁ + 1)

where ¢ £ [0.05, 0.1] typically.

14.2 Closed Loop Systems Stability with PID
Controllers

Eouth-Hurwits Criterion

T



Example 1:
o lst crder plant: Gpls) = £

141
s FIcontroller: GL(s) = K| (1 4 %) — K.ﬂ'ﬂ[ e

Characteristic equation:
7715 + (1 + K K)ms + KK =1

From Routh-Hurwats crnitenon, the coefhdents must be all positive. Henee,

1t muet hold that K., 77 == 0.

BEaxample 2:
o 3rd order plant: Gyls) = |:.'|-|-11:F'
s F controller: Gils) = K;

__Gl5]Gls) 1

Yol =1rameaa ) tramam ™
K,
bz 1
Y(s)= R+ Dis)
L+ iy L+ oy

Characteristic equation:
£ +3s8 435+ 1+ K. =0.

Fouth array:
Kol 1
2 a
) i
4 14+ A
1l
For BIBO stability of the closed loop aystem, 1t must hold that
B_SK’ >0, 1+K =0
1l
—-1 <K, <8
Remark: Similar bounds can also be obtained from the Bode and Nyquist
stability criterions.

3
1+ KA.
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14.3 Tuning Based on Ultimate Gains: Ziegler-
Nichols (Quarter Decay Ratio) Method

From Exmmple 2 1n the previous section: When P-only contral 12 applied, the
stabllising A, values are "usually” upper bounded by a positive constant.
[ There exist cases where such upper bound doesn™ exdst)

The upper bound 1 called the wltimate gain dencted A.,.

When K, = K_,, the clesed loop has some of its peoles on the imaginary
axie. In that case, the cdosed loop system is called margnally stable.

A
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Example [Example 2 in the previous section is continued): ¥ K, = 8,
characteristic equation becomes

P43 35+ =5%s+3) +3(s+3) =" +3)is+3) =0
= Poles: -3, 4+7+/3.

Computation of Ulbimate Gain Using Mathematical Model
Let LI K, 3] be the characteristic polynomial.

LK., jw) =1
|
R=L{K. jw) =0 ImL{K. jw) =10
Il

KI-:':K;'H:I W=y,

‘This computation gives the ultimate gain Aoy as well as the poles p =
£ ), on the imaginary aas at A, = K.
wy 15 called nltimate frequency.

T = i—’r 1s called ultimate period.

Exampje 1 [Example 2 in the previous section is continued):
LK, jw =—u -+ 8w+ 14+ K = (1 4+ K — %) +{8w—w) =10
iy
1+ K, —3uf =0, wi-w)=10
1l
wy = +43,0, K, =18 -1
Eaxample 2:
o lst order plant with dead time: Gipls) = 2~
s F controller: Gils) = K;
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!
LK., s)=s5+1+2K.¢"

!
s+ 2K e™ " = s+ 1+2K (cosw—Fenw) = (142K, cosw) +5{w—2 Ko sinw) = 0
1l
1+ 2K coew=10, w-2Ksnw=1
!

w, = 12.0288, K., =1.1300.
Evalnation of Ultimate Gain by Experiment

1. Switch off the integral and derivative actions so as to have a P con-
troller.

2. Increage F gain until the loop cecillates wath constant amplitude. Apply
a small set point change when 1t 18 hard to observe the process response.

3. When the sustained oscllation 1s achleved, the corresponding gain is
K., and the pencd of the ceallation 12 T,

Based on A, and T, Ziegler-Nichols proposed to tune the PID parame-

ters so that the ratio of the amplitudes of two successive csdllations is 3.

e(t) c(t)

eset Acstt

Disturbance input : Set point change
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Controller Type | K. 71 7o
= Aoy
PI L L
A
FID 1f 2 &

14.4 Tuning Based on First-Order Plus Dead-
Time (FOPDT) Model

Many chemical processes can be approsamated by FOPDT model.

(=20

where K, d, T are parameters.

14.4.1 FOPDT Model from Step Response of Plant
Response of FOPDT model to the step with magnitude A
ylf) = AmK(1 — et — d)

where #(f] is the unit step function.
Tdentification of FOPDT model parameters through step testing

» Step 1: Record the step response of plant:

m(t) ’ T

c(t)
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s Step 2: Bvaluate the steady state gain A = S,

m

s Step 3

— Method 1: Draw tangent line at the point of maximum rate of
change. Then determine d,7 as in the figure.

Actual
"""""" P
/ Pt
// d
o(t) / *"\
7 Model Acy
/ |
/4

— Method 2: Draw tangent line at the point of maxmum rate of
change. Then determine o, 7 as in the figure.

C(t) / -

0.632A¢;




— Method 3: Find £,f, as in the igure. Then

T = 15|Ifg —f1}|:I d:fg—ﬁ'

AC;
0.632Ac,

—
0.283A¢,
L

14.4.2 Ziegler-Nichols (Quarter Decay Ratio) Method
Based on FOPDT Model

Ziegler and Michole also proposed quarter-decay ratic tumng rule based on
FOFPDT model:

Controller Type A, T Tn
= P AR
K |- )
FI 224 3.33d
PID w2\ 904 05d

14.4.3 Cohen-Coon Method Based on FOPDT Model

Cohen and Coon considered the quarter decay ratio, small offset as well as
small integral error, and proposed the following empincal tuning rules:
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Controller Type A, T T
P Lz (1 + 34 d
. i dl 30432
P1 £5(09+%) iml
1

FID 16 r42d '9“(324'5%] 4d
1a4ad 11424

14.5 Tuning Based on Frequency Response

Connection between ultimate gain and critical frequency:
1+ KGlw) =0 = KGHuw=-1 = K,u,.
On the other hand,
FRGl k) = LG jan) = —m, YRG0,

Pick K} = oy = 1K Glw)l =1 = KGju) = -1 = K} = K

and b = wy.
I

Ziegler-Michols method can be used for PID controller tuning.
Netice that

K <K, = |KGu) <l = stable
K =K., = |KG{r)>1 = unstable.

Controller gain tuning based on frequency response

s Gain margin [ GM): the ratio between K. and K.,

Koy
K.

Uenally K. is chosen such that &G4 == 1.5,

Gl =

o Phase margin (FM]: the difference between — and phase angle at the
frequency where AR 12 1.

P =x+ Slﬂﬁ’:i
Usually K is chosen such that PA = £
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14.6 Root Locus Techniques

Conslder the feedback system:

6KG, 6

Open Loop Transfer Function (OLTF): KG.G, = K¥

Closed Loop Transfer Function [CLTF: 1ff?::f&,, = D‘EEJN

s Zerce of CLTF = seros of OLTE

poles of OLTF if A =10

» Poles of CLTF = {EEIOS aof OLTF if K — wo

7 ot herwise

Question: How do the poles of CLTF change as K increase from 07

Anegwer: Eoot Locus.

Bacample:

o 2nd order plant: Gyfs] = m

o P ontroller: K =K, and Giz) =1
1

Characteristic Polynormial:

(3s+1)(s+1)+ K, =0



_ _ 1
K;-—D 3,2 ——11—5
0 <K <1 s5:= real number
_1 _ 1
K = § S =5
K;'}E $1lg:—§:|:j{,‘f
Imaginary
K L
Kl

L

K

K==

14.6.1 Rules for plotting root locus
SUppoes

B (5_31]...[5—3,“)
KG:GP—HT[E_pIJ...(g—j}n:I

where z, pi's are serce and poles of OLFT, respectively.

1

Characteristic equation:

0=(s—p1)-ls—pa) + K[s— 21)--[5— 2m).

o As K — 0, characteristic equation:

O={s—p)--ls—pa) T K{s— 2] [5-z) m{5—p) -

CLTF poles = OLTF poles

o As K’ — oo, characteristic equation:

0= s i) (s pu) s =)o (5= 2] e (5= ) oo

CLTF poles = OLTF sercs

80
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I

CLTF poles start at the OLTF poles and terminate at the OLTF serce.
Two governing conditions

Characteristic equation can be written as

ls— ) (5= )
Bl Fs oo o

Before we proceed, notice that
Wyl = |ﬂ.'1|€’.¢’|wg|ﬁ’;% — |w1||w2|5f'('#:+¢=]'_

1. Magntude condition:

_ s Al s =
S s =l |5 — pal
1
PO EE ARy

5= 21| 15— 2l

2. Angle condition: ( o ]

S—i) 5 —

£ K(s—j}ﬂ"'l{g_p“]
=fe—zlttis—zn) - Le—p) = — L3 —p,)

:,{—1:—1‘T+Ekﬁ.

» Rule #1: The number of loci 15 equal to the number of OLTF poles.

o Rule #2: The roct loci begin at the OLTF poles and terminate at
the OLTF serce. Since n — m OLTF serce are at infinity, n — mlocl
diverges.

o Rule #3 [Locionreal ads): A point on the real axs is a part of a root

locue when sum of the number of poles and sercs to the right of the
point on the real aas 1s odd.
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o Rule #4 [ Asymptotes (zeros at infinity): n—m divergng locl approach
tolnhnity along the straght lines, called asymptotes, that pass through
the center of gravity

Y R T
= n—m

with angles:

m2k+1)

1

k=0,1---,n—m-1
n— 1

A\

Froof: For large 3,

_[s=p) (5= pa) _ o (1 P13
S o v Py (1=t (1= 2ad)
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(L= (p 4+ )Y
(1 — (& +—|—zm]|§)
RS (1—(P1+---+pn]é) (1‘|‘(31+---+2:m]§)

ny 5T |{j3'1 R +pn —Z = - _zmjﬁn—m—l o (5_ ,}rjln—m.
Angle condition:

R E

_K:(E_,}r]n—m - il{ﬁ_ﬂ:?ﬂi%—:nljl.

e Rule #5 (Breakaway point): The peoints on the real ads where locl
meet and leave, or enter from the complex region are called brealaway
points. The breakaway points are determined by

or

moo1 o1
Z;s—z,- - ;5—;7;-

breakaway breakaway
point point

[ O AV4 ; AV4
w

N
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o Rule #6 (Angles of departure and arrival: When a locus leaves from

a complex conjugate pole gy, the angle of departure is

T+ i,i;-—z’. sz—p;

1=
:#k

When alocus arrives at a complex conjugate sero #, the angle of arrival

n i;iizk ) - za ~ )

£k

X
b

Eacarnple 1:

o 3rd order plant: Gyls) = (3!_'_1:':30?_"?1:(10”_1}

o Plcontroller: K = K, and GL{s) = (1 + ﬁ)
I

TR
QLTF poles: 0,—3,— 4, —%
OLTF sero: — 5=

OLTF = (%]KC(H:_DJJ
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74 e
Kem= 22 L Lz&"/\/;m
o ) a2z zto’:\\io x’_l
N
Breakavay point
1 1 1 1 1
steyttoro ey =12
Y 30 5] 40
= —0.058.
Asyrnptotes:
p_Ll_1_ 141
¥ = 3'3'3 10 9 — _ {3587,

Angles: I, 3L
Eaxample 2:

s Ird order plant: Gyls) = m

o PD controller: K = K, and Gl{s) = (1 + %3)

1l
OLTF = Sl _ g _tas

1(.19-|-‘L1-|-5]| AT a4 a4 42—
OLTF poles: —24+ 7

OLTE mero: —3
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Y
LY Angle of departure

\r'm\ =135
e s i 1
L4
T

=5 -4 —3 -z -1
i 1=1
Brealavway point
d [ s24+4s45] "
ds | (s+3) |~

= —441(0), —1.59(X).
Angle of departure

p=—-4+5n
. . . . . T a
THL(=04g 48] - L=l i4g) =+ s{l4g) - L(2) =+ -5 = o
p=-1-7
. . . : : o7 5
T+ —2—143) = —2—14+2— 1) =m+L{1- 1) - £[-21) Z?‘T—ng =
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Chapter 15

State Feedback Control
Systems

15.1 Pole-Zero Cancellation

Consider the unstable plant:

Yis 1
GPIIEIIZ% L

If we connect the plant senially wath the controller

Uls)  s-1 2
g = == = —=1__—-
© Vi) =41 341’
the resulting system

1 os-1 1
T s—1s4+1  s+41

Gis]

18 stable. However this design doesn’t work., To see this, consider the con-
troller and plant state equations:

i‘i = -n — a1
% =2+

Ta=Tytu=o+m +¥

BT



y = T
Notice that
2i(t) = et — 27 4 0.
Talang LT of the equatione,
Tx Tin Vis]
+ :
s—1 [(s-1J[s4+1)  s+1

Yis) = Xofs) =

and thus {
Y =2y = ey + ﬁ[fzf — e + e s .

Notice that in the input output model where the initial condition is assumed
to be sero, the output 15 bounded. However 1t 12 difhcult to keep the imtial
condition at sero every time and the above control will not work. Indeed in
thiz case, there is a direct pole-sero cancellation and the behavier of unstable
state 1z hidden in the input-cutput [external) behavier. Hence to design
satisfactory control system, one need to keep track of internal (all the states’)
behavior. H all states are stable, such a system 12 called internally stable.

15.2 Controller Canonical Form

Theorerm: Suppose (4, 8] is controllable. Let

21
P4
P= )

H fin—l

where

Po=[0- 1] db .- 18-

Then the transtermation 2 = Pt leads to the controller canonical form

0 1 0 0 0

0 0 1 0 0
Z= : . . : 4|

0 0 0 1 0

—fn —fn-1 —Op-z - —d 1

Ha



where
wals) =def{sf - d) =" +as™ 4o g+, =0
Froct: Maotice that

21 :P1:1?
and thus
1
0
Z1ZP1$:HA$+P1&@:HA$+[UUI] . ’i&:P1A.iI?:,Zg.
0
Therefore
o
1

Zg:P1A$:HA2$+P1A&'ﬂ:P1A2$+[UUl] i ﬁzﬂﬂjﬁzzg.

Continuing this process, we obtain

bny = PAT S = P AT 4 PA = BA [0 - 01]| g | u

1
0
=P A" lr=1z.
Mereowver by Cayley-Hamilton theorem,
E=BA" =P A"+ P A" Yk
|
=Pl-a, -t d— — gy A" x40 --- 0] III 1
1
= g Br—t, Pdr— - —a P A bt = — i — 13— - — 3,
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15.3 Pole Placement

If [ 4,0) is contrallable, the n poles of the feedback system can be located in

any places of the complex plane through static state feedback. Such place-

ment of poles in any desired locations 12 called pols placement. In this section

we conslder internal stabilisation of the system through the pole placement.
Conslder the static state feed back contral lawe:

4= —kT.
Then the dosed system becomes
= Ar—bkTr=(A- 8Tz
where k = [k kn_1 -+ k)7,

In this section we present two different methods of pole placement. For

thie let {pi}™, be the set of desired poles. Dehne
0=(s—pulls—pa) (s -pa) =" + o™ 4o+ o, = 3l 8).

Bass- Gura Formula:

A way to achieve the pole placement i to first transform the system
reprezsentation 1nto controller form as shown in the previons section. Then
the feedback system 12

0 1 0 0
0 0 1 0
Z= : . - . : &
0 0 0 1
Can— K —Gni— Koy —Gna— K, o -t -

and the characteristic equation 1=
Sy RS (RS (RS e e+ R =0,
Hence 1t 1s clear that the contreller galn must be

HF=ua—ua

a0



where o = [ot, Gy »+- )% and @ = &y, Gp_y -+ &7 Notice that
uw=—(k)"z = —(¥)TPxz.
Hence thefesdback galn must be
K= (a—a)TP.

Thie termula 1= called the Bass- Gura formula.
Aclermann’s Formula
Natice that by Cayley-Hamilton theorem,

Py dlx=PA" s+ o BLA v+, P A x4+ + o, Px

= PA" lr—a, BA r— g Paton B A a4 P A" 2t - tan P
= [L’:fl — ELIIIRA”_i,ﬂT-F |[Cf2 —_ C&g]lPl_e‘-].”_jﬂi‘-F e + (an —_ anjlﬂﬂ’;
= K+ K2y -+ R = ()T = KT

Hence,

kT = Py [ A).

Thie termoula 12 called the Ackermann’s formula.
Eax: Consider the BIBO unstable system described by

. 01 0
:1:_[0 0 T+ 1 .
Notice that
wals) = &%

Suppoes we want to locate the closed loop system poles at —2. Then
lsl =5 +4s + 4

WMoreover

01

[Mﬁ]:[l 0

] — b A

and thus
01

P1:[01][1 D]:[lﬂ].

a1



Using Bass-Gura formula,

B

F:Hﬂ[HA

Using Ackermann’s formaula,

K= P (4) = [10] ([

—[10]

-+

01
00

a3
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Chapter 16

Observer and Output Feedback

Asymaptotic Observer [State Estimator)

Goal: Based on the input-output data, find the state estimate that con-
verges to the actual state.

Asymptotic Observer (State Estimator):

Ht) =A%) + bult) + {7(8) - o))
where the predicted output §(f) = TH{).
iy

E) = (A4 1ET)EE) + bult) — Hylt).
Notice that the observer gives the state estimate & from the I/ O pair [u, ).
Define state estimation error

elt) = #i) — afz]
iy
&(t) = (A +ET)elt).
Motice that the characteristic equation of A+ /T is the same as that of
AT + ¢, Hence similar to the pole placement case, the poles assoclated
with obgerver can be arbitrarily assigned on any locatlon in the complex

plane provided that (c, 4) 1= observable. Indeed Jthat results in the desired
poles can be computed from Bass- Gura or Ackermann’s formula where [ AT, )

ie nsed instead of (4,8).

a3



Output Feed back

O A,B,C,D]

|

Observer

X1

State
Feedback

The state representation of the cdosed loop:
d | xlt) | _ | A+8kT BT {1) b
& [ el] ] = [ o) | T o U

0 A+
=170 | 33 |

Motice that

A+ET BT

det 0 A+ 1T

= det( A+ bET)det{ A+ BET).

Hence we have the following separation principle.

Separation Principle: the family of poles of the closed loop systemn is the
union of those of state feedback system and state estimator.

Thanks to the separation pnncple, the static state fe=dback controller
and asymptotic observer can be designed separately.

MNaotice that

Gls) =Tl — A — bkT)th,

Hence the dynamics of observer dossn'’t show up in the external behavior
due to the assumption that e[0) = 0.
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