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Supply Chain Optimization

in Continuous Flexible Process Networks

Abstract — A multiperiod optimization model is proposed for addressing the supply
chain optimization in continuous flexible process networks. The main feature of this
study is that detailed operational decisions are considered over a short time horizon
ranging from one week to one month. For given flexible process networks where
dedicated and flexible processes coexist, we take into account the supply chain for
sales, intermittent deliveries, production shortfalls, delivery delays, inventory profiles,
and job changeovers. The proposed optimization model requires efficient solution
strategies to reduce the computational expense. We describe a bilevel decomposition
algorithm that involves a relaxed problem (RP) and a subproblem (SP) for the original
supply chain problem. Decisions for purchasing raw materials are made in the (RP)
problem in which the changeover constraints are relaxed, yielding an upper bound to
the profit. In the (SP) subproblem, fixing the delivery predicted in (RP), the supply
chain optimization is performed with job changeovers, yielding a lower bound. As
will be shown in the examples, the algorithm achieves significant reduction in CPU

time for the larger problems.

introduction

As discussed by Shah', a number of papers have been published on the long term
planning of process networks and batch plants over a long-range horizon”'°. These
papers consider the choice of capacity expansion, start-up/shut-down policy for
existing processes, and allocation of resources over a specified time horizon in order

to maximize the net present value of the projects. For midterm production planning
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problems, Wilkinson et al.'' and McDonald and Karimi'? presented deterministic
models for semicontinuous processes. The consideration of uncertainties in prices of

materials and demands for the final products has been addressed in several recent

6-9,13,14

papers

In this paper the time interval of concern in the short-term planning of continuous
flexible process networks is generally between one week and one month. Decisions to
be determined include: (1) process operating modes for each time period, (2) sales
and purchases for each time period, and (3) profiles for production and inventory.
Often we also need to take into consideration job changeovers that incur
corresponding costs. Furthermore, deliveries for sales or purchases can be intermittent
with limited transportation availability. In the case when the demand for the final
customers cannot be satisfied, we also need to account for the shortfalls or delay for

the demand.

In order to effectively solve multiperiod optimization problems for short-term
planning of continuous processes, a number of solution strategies have been proposed

6,9,13,15

that rely on decomposition and reformulation. Benders decomposition and

10.16.17 are two major approaches that have been applied to

bilevel decomposition
multiperiod optimization problems. Benders decomposition algorithm divides a
problem into a subproblem and a master problem. The master problem is derived
from a dual representation of the original problem. The subproblem involves the
solution for fixed variables that are determined from the master problem. The bilevel
decomposition is different from Benders decomposition in that the master problem is
given by a special purpose aggregation of the original problem which generally tends
to predict tighter upper bounds. Sahinidis and Grossmann’* proposed a reformulation
that is based on disaggregating variables for producing a tighter linear programming

relaxation, which in turn reduces the number of nodes that need to be examined in the

branch and bound tree.
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As for the classification of chemical process networks, they can be characterized as
consisting of dedicated processes or flexible processes. While dedicated processes
operate with only one production scheme at all times and are usually used for the
manufacturing of high-volume chemicals, flexible processes can manufacture
different products at different times and are frequently used for the manufacturing of
low-volume chemicals. Examples of flexible processes are paper mills that produce
several types of paper of different weight or color, and refineries that process different
types of crude oils. Sahinidis et al.” proposed a multiperiod model for networks with
dedicated processes. Later, Sahinidis and Grossmann® proposed a planning model for
process networks where flexible and dedicated processes can be interconnected. The
flexible processes they considered were for producing different products from
different raw materials. Norton and Grossmann® extended the model of Sahinidis and
Grossmann® so that process flexibility is expanded to processes producing the same

product with different raw materials, or different products with the same raw material.

This paper presents a multiperiod planning model for continuous process networks
with dedicated and flexible plants operating over a short-term horizon that is aimed at
addressing the supply chain optimization in these systems. A multiperiod MILP model
1s proposed that extends the model by Norton and Grossmann® by incorporating
inventory profile, changeover costs, intermittent supplies, and production shortfalls.
The model also considers transportation costs for deliveries when the network of
processes is located in multiple sites. Due to the limitations in computational time
with the LP-based branch and bound method, we describe a bilevel decomposition
model that enhances computational efficiency. Several numerical examples are

presented.

Problem Statement

A process network consists of a set of processes that are interconnected in a finite
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number of ways. The processes that can be either dedicated or flexible, involve a set
of chemicals (raw materials, intermediates, and products) over a given time horizon.
The raw materials and products are purchased or sold respectively in a set of markets,
or else are intermediates for other processes. The process flexibility is expressed in
terms of a set of production schemes that determine output materials from input
materials as illustrated in Fig. 1.

Raw materials Process i Products

Q————} Scheme 1 "Q
Scheme 2 ’PO
: —()

Scheme &

Fig. 1. Flexible processes with alternative production schemes

For all processes and schemes, we assume that material balances for raw materials
and byproducts are expressed in terms of a linear unit ratio to the production of the
main product for that scheme. It is also assumed that all the processes have fixed
capacities, and that they might be located in multiple sites as shown in Fig. 2.The
products and production schemes for each process in Fig. 2 are as follows. Raw
materials are purchased from two marketplaces L1 and L2, and final products or
intermediates that are specified as nodes are sold in two markets, L3 and L4. There
are two production sites C1 and C2. First, we describe the site C1.

Process 11 is a dedicated continuous process producing chemical J3 from chemicals
J1 and J6. Process 12 is a flexible continuous process with two production schemes.
Scheme K1 for process 12 produces chemical J3 from chemical J1, while scheme K2
produces chemical J4 from chemicals J1 and J6. Process 14 is a flexible continuous

process with two production schemes that demonstrates feedstock flexibility. Scheme
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K1 for process I4 produces chemical J5 and byproduct J6 from chemical J3 while
scheme K2 produces the same product and byproduct from chemical J4. Flexible
process 13 has four production schemes and shows flexibiltiy with respect to both of
product and feedstock. Scheme K1 for process 13 produces J3 from J1, while scheme
K2 produces J4 from J1. Alternatively, scheme K3 produces J3 from J2, and scheme
K4 produces J4 from J2. Chemical J1 is a raw material that is purchased from markets
L1 and L2 and used in processes 11, 12, and I3. Chemical J2 is also a raw material
used in process 13. Chemical J3 is a product of process I1, 12, or I3 and is either sold
or used in process I4. Chemical J4 is produced by process 12 or I3, or can be
purchased, and is used in process 4. Chemical J5 is a product of process [4 which is
sold, and chemical J6 which can be bought from markets is a byproduct of process 14
which is recycled and used in process I1 or 12. Site C2 is similar to C1 but process 11
does not exist and process I3 has three production schemes K1, K2, and K3. One
more difference is that site C2 has no recycle stream for chemical 16, which is not

produced from process 14 at site C2.
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Fig. 2. Network diagram for multiple process sites.

The objective function to be maximized is the operating profit of the network over a

short-term planning horizon consisting of a set of time periods during which prices

and demands of chemicals and costs of operating and inventory can vary. The

operating costs for each process and production scheme are assumed to be

proportional to the flow of the main product. We also assume that the length of each

time period is one day, and that each plant can only operate in one mode each day.

Finally, we also assume that the effect of changeovers is only reflected through the

cost since the actual changeover times are assumed to be negligible.

The short-term planning model (STPM) is expressed as a multiperiod mixed integer
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linear programming (MILP) problem. The indices, sets, parameters, and variables

defined in the model are as follows:

Indices

c = site

d = delivery mode

i = process

J = chemical

k = production scheme
!/ = market

t = time period

Sets

C = set of sites

D = set of delivery modes

I = set of processes

1; = set of processes that consume chemical j

J = set of chemicals

Jix = set of chemicals involved in production scheme k of process i
JM;, = set of main products for production scheme & of process i
K = set of production schemes

K; = set of production schemes for process i

L = set of markets

O; = set of processes that produce chemical j

T = set of time periods

Parameters
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a* a%, = lower and upper bound for the amount of chemical j purchased from

it 7
market / during time period ¢

f,, ,d Zt = lower and upper bound for the amount of chemical j sold from market /

during time period ¢

Q,, = capacity for process i at site ¢

VI'LC/' = upper bound for the inventory amount of chemical j at site ¢ during time ¢

W;;,{c = upper bound for the amount of chemical j produced from production scheme
of process i at site ¢

8,., = unit operating cost for production scheme k for process i at site ¢ during time

¢ it = COSt for transporation of chemical j to site ¢ during time ¢
7, = minimum time interval that an intermittent delivery can be made for site ¢

@ ;= price of purchase of chemical j in market / during time ¢
¥ u = price of sales of chemical j in market / during time ¢

Pike = relative maximum production rate of main product j, for production scheme k

in continuous flexible process 7 at site ¢

My = material balance coefficient for chemical j for production scheme & of process

i at site ¢

6 ;u = penalty cost for shortfall of chemical j in market / during time period ¢

@, = transportation cost of chemical j from market / to site ¢ during time period ¢

Jlet

& o= inventory cost for chemical ; at site ¢
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¢ 4o = changeover cost for changing from production scheme 4 to k' in process i at

site ¢
Variables
F. = amount of chemical j shipped to site ¢ during time period ¢

Jet
NPV = net present value for the process

P

e = amount of chemical j purchased from market / for site ¢ during time period ¢

S,

Jter = amount of chemical j made from site ¢ and sold at market / during time period

SF, = amount of shortfall of chemical / in market / during time period ¢

Vm = amount of inventory of chemical ; at site ¢ during time period ¢

w.

jikee = amount of chemical ; produced from scheme & of process i at site ¢ during

time period ¢

Y

s = 0-1 variable that denotes whether process # at site ¢ operates with scheme &
during time period ¢
YP,,=0-1 variable that denotes whether delivery type d is available in delivering
from market / to site ¢ during time period ¢
Z 4oy = 0-1 variable that denotes whether process i at site ¢ operates with scheme &

during the time period ¢ and operates with scheme &’ during the following time

period t+1

In order to address detailed operations in the supply chain in the proposed model, we
extend it to cover the detailed level of scheduling. Each time period is one-day long

and the discrete or intermittent delivery of raw materials is taken into account.
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Penalties for product shortfalls, as well as costs for product changeovers are also

considered in the proposed model.
In the short-term planning model, the operating profit is given by

OP:

Maximize Profit =

§ 'E ,E 2 g j/(.‘l_§ 'E § 2 ¢j1r}j/a~z Z 2 ,E ,§ ,5,'/((”{,/@:'2 ,2 E ;jchct

jet lel ceC el jet leL ceC 1l iel jeJM, keK,ce(" el Jet e tel

- ZZ ZZZ% Liker~ ZZZQMSE‘” - ZZZZ“’MY o= ZZZ¢/chjcr
iel keK k'eKceC tel’ jed lel teT deDlel ceC teT JjeJ ceC teT

(1)

where each term accounts for income from sales, purchase cost, operating cost,
inventory cost, product changeover cost, shortfall cost, delivery cost, and
transportation cost between sites, respectively.

All chemical flows associated with scheme & in process i other than the main product
are given by the mass balance coefficients. The following equation relates the input to

the output of processes:

I/V:jkct = ﬂijkchzj'kct
iel, jeJ \j,j'e M, keK, ceC,teT (2)

Equation (3) specifies the limitation on production. Only when production scheme £ is
allowed for process i (Y, , =1), can the production amount be up to the daily

production rate, otherwise it is set to zero.
Wijkn < Piek O Yier

iel,jeJM, , keK,,ceC,teT 3)

U-10




where O, Q) represents the daily production rate.

In general, when the process changes production schemes, changeover costs are
involved. In order to take this into account, we introduce a 0-1 variable: Zy,.,
denoting the production changeovers. That is, Z;, ., should take the value of 1 if and

only if process / operates with scheme k during time horizon ¢ (Y, , =1), and it

operates with scheme 4’ during the following time horizon #+1 (Kk.am =1). This

logical condition can be represented by the following proposition:

Y,

ket

AY,

ik'e,t+1 <:>Zikk'ct
iel,keK, k'eK,ceC,teT 4)

We can derive the following inequalities to represent the above condition as Raman

and Grossmann'® presented:

Y;kct + Yik'c,m -1< Zikk'ct
iel,keK, k'eK,,ceC,teT (%)
)/ikct ZZikk'cl
iel,keK, k'eK,,ceC,teT (6)
Yiern 2 Zigeer
iel,keK, k'eK,,ceC,teT (N

Equations (6) and (7) can easily be shown to be redundant since the objective function
involves Zl.kk.“, which will tend it to be zero. Furthermore, we do not have to treat
Z 44 8s a 0-1 variable if we give it an upper bound, i.e. Z,,., <1.

The condition that each continuous process should be operated with exactly one
production scheme during a time period (one day) can be imposed as shown in the

equation:
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Z thet =

keK,
iel,ceC,iteT (8)

Equation (9) corresponds to the mass balance of chemical j in the network:

J(‘t1+zz ket Z})jl(‘f+F jct+lect+ZZ 1/krt Z je't

i€e0; kekK, lel lel el keK, c'eC’—te}

jed,ceC,teT %) ;
In contrast with the common assumption of continuous delivery of raw materials””,
we consider that the purchase delivery can be intermittent as a discrete event that is

specified by the inequality:

jl(‘l - ZYI)dlct Jlct

deD
jelJ,leL,ceC,teT (10)
The purchase of a chemical can take place only when YP,  is 1. The limitation of
delivery availability over the planning horizon is considered by assuming that only

one delivery of the various raw materials can be made with each delivery type from

each market during a specifed time interval 7, as given by the inequalities:

t+7,.

Z Y})dl('t -

deD,lelLteT,ceC (1)
Equation (12) forces the sum of raw materials delivered to the processes not to be

greater than the available amount during the time period:

Z Jlet = ajlt

ceC

jelJ,lelteT (12)
In general, the demand is assumed to be flexible in the sense that it is given by a range
of values having a hard upper bound (see equation (13)) and a soft lower bound (see
equation (14)) as Birewar and Grossmann'’ presented. The lower bounds are given by
fixed orders booked by the sales department. Production shortfalls with respect to the

lower bounds stand for loss of potential sales which is penalized in the objective
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function, equation (1).

U
Z Sjlrr S dill

pore
jeJ,lelteT (13)
SFy 2 SFy, +dj, - ZCS/'”
jed,lelLteT (14)
SF, 20
jed,leLteT (15)

Note that the shortfalls of the previous time period ,5'1"},’,_I are considered in the

current time period, as indicated in equation (14).

Finally, equations (16) and (17) represent the upper or lower bounds for each variable.

Ve <V,
jed,ceCiteT (16)
F}ct’ f)jlct’ Sjlct’ I/jct’ VVi/kct’ Zikk'cr = O ?
Yikct’ YPdlct € {O’l} (17)

Example 1

In this section, the example problem in Fig. 2 is solved to illustrate the performance of
the model in three cases: (1) No intermittent deliveries without product changeovers,
(2) intermittent deliveries without changeovers, (3) intermittent deliveries with
changeovers. It is obvious that case 3 is the most rigorous and reflects the real nature
most properly. Cases 2 and 3 can be obtained by relaxing the discrete nature of case 3.

In the case of intermittent deliveries, we assume that the minimum time interval
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between successive deliveries, 7, is 2 days regardless of the chemicals or the sites.
The data for this example are shown in Appendix 1.

The problem is modeled using the GAMS” modeling language, and solved in the full
space using the CPLEX solver’' on a HP 9000/7000. The optimization resuits for
example 1 are as follows. In case 1, no 0-1 variable is needed since there are no
intermittent deliveries, nor any changeovers. The more rigorous the model (cases 2 or
3), the larger the number of 0-1 variables that is required. This in turn results in more

computation time for the optimization as shown in Table 1.

Table 1. Computational statistics for example 1

"Case 0-1 Constrain  Continuou CPU[sec  Nodes  Relaxed MILP
variable ts s variables ] Solution  solution
s
1 - 837 1072 1.0 - 2398.4 -
28 837 1044 24 12 2398.4 23929
3 252 1605 1642 245 347 2398.4 2362.2

*1. No intermittent deliveries and without changeovers

2. Intermittent deliveries and without changeovers

3. Intermittent deliveries and with changeovers

Figures 3 to 5 show the optimization results for case 3 that considers the intermittent
deliveries and changeovers. Fig. 3(a) illustrates the sales of chemical J3 from each site
(C1 and C2, respectively) to each market (L3 and L4, respectively). For given
demand data (See in Tables A.7 and A.8), sales results can be obtained over 7 time
periods. Fig. 3 (b) shows the delivery of chemical J1, which by constraint 11 should
take place every two days from a given market to a given site.

Fig. 4(a) shows production profiles for chemicals from a flexible process I3 in sites
C1 and C2, respectively. We can observe that process I3 in both sites C1 and C2
operate at the maximum capacity rate (See Table A.1). From process I3 at site C1,

chemicals J3 and J4 are produced by alternating the production schemes while only
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chemical J3 is produced from process 13 at site C2. Fig. 4(b) shows the production
profile of chemical J5 in process 14 at sites C1 and C2 over the horizon.

Fig. 5 shows the transportation of chemicals from site Cl1 to C2. Chemical J6
produced from process I4 in site C1 is transported to C2, and used in order to produce
chemical J4 from process 12 with scheme K2 in site C2. Chemical J4 which is surplus
in site C1 is also transported to site C2 at time periods, 5 to 7. In Fig. 6, the inventory
of chemicals J3 and J4 at each site and shortfall amount of chemicals J3 and JS are

illustrated. Fig. 6(b) shows that more profit can be made at an enhanced production

rate at the first time period.

Sales amount of chemical J3

1
250 - et o j@aLacy i
200 - =341 |
150 4 R 133L3,c2)

‘m(s3Lac2) |

Millina LB

Yime horizon (day)

(a)

Purchase amount of chemical J1

350

300 PR
@ 250 %n(u,u,cn
8 200 | B1L20Y
= 150 ‘OELLLC)
E 100 ‘mL2.C)

50

Time horizon {day)

(b)

Fig. 3. Optimization results for sales and purchases in example 1.
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Production amount from process 13

Time horizon {day)

0(13,J3 K3,C1)
W(13.J4K4.C1)
(13,J3,K3,C2)

Million LB

100

Production amount from process |

2 3 4 5 6 7

Time horizon (day)

4

O(M,J5.K2,C1)
|m(4.5,K2,C2)

Fig. 4. Optimization results for production amount in example 1.
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Fig. 5. Optimization results for transportation of chemicals between sites in example
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Inventory of products
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Fig. 6 Inventory of chemicals J3 and J4 and the amount of production shortfalls.

Solution method

In order to solve larger process networks that involve longer time horizons (e.g. up to
30 days), it is clear that we require a special solution method, as otherwise the LP-

based branch and bound method becomes expensive, or simply unable to solve these

problems.

One important aspect in the solution is the potential source of degeneracy in the
model, that is mainly due to the fact that binary variables denoting the assignment of

production scheme to each process during a time horizon are not present in the



objective function. Adding the following term to the objective function can help

somewhat to expedite the search,

£2. 2, 2.2 Vi

iel keK, ce( 1eT

(18)

where £ is a parameter with a very small value (e.g. it is of the order of 0.001).

Another way of expediting the branch and bound enumeration is specifying a priority

for the binary variables according to their contribution to the objective function. In

addition, nonzero tolerance for the relative optimality criterion can be used to reduce

the computation time for large problems. While the above schemes can help to reduce

the computational time, they may not be enough to effectively tackle large problems.

Therefore, we consider a bilevel decomposition algorithm that is inspired by the work

of lyer and Gr

ossmann'® (see Fig. 7).

Solve relaxed problem

(RP) to get an upper

!

Feasible? |

Stop and

'

Add more valid

integer cuts to

Solve subproblem

(SP) for fixed YP.,

Jy

'

Add integer cuts to

remove current integer

o i

)
Feasible?
I
T
{UB-LB| < —p{ STO

Fig. 7. Flowchart for the bilevel decomposition algorithm.
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The bilevel decomposition algorithm solves first a relaxed problem (RP), which
provides an upper bound to the profit. The relaxed problem does not consider
production changeovers since it aggregates equations (3) and (8), and it only contains
0-1 variable YP,,, associated with the intermittent deliveries. In the subproblem (SP),
the supply chain is optimized for fixed flows of the delivery of raw materials as given
by the values of variables YP,., =1 that were determined by (RP). Hence, the
subproblem yields a lower bound to the profit. The main advantage of the bilevel
decomposition algorithm is that the relaxed problem and subproblem have fewer 0-1
variables than the original problem. The relaxed problem is updated at each iteration
by adding the integer cuts described in Iyer and Grossmann'® (see Appendix B).
Convergence is achieved when the lower and upper bound lie within a specified

tolerance.
The relaxed problem is given as follows:

RP:

Maximize Profit =

ZZ ﬂrSﬂcr ‘ZZZZ‘/’/'I:P;Icr _Z Z ZZZ%WW —ZZZ@C V;.C,

el Iel, ceC teT Je IeL ceC 1T iel jeMy keK,ceC 1T el ceC tel
_§ :2 :2 :gjltSF}It _Z§ :2 :2 :a)dlcrY Eﬂct—ZE 12 :¢jcr1;;a
jeJ IeL teT deDleL ceC teT jeJ ceC teT
(19)
subject to

w.

Z ket < 1

kek, Pk 0.

iel,jeJM,, keK,,ceC,teT (20)

Constraints (2) and (9)-(17).

Equation (20) is used as a relaxed constraint instead of equations (3) and (8), and is
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derived by dividing equation (3) by 0y, Q.. and then summing it over k.

The subproblem is defined as follows.

SP:

Maximize Profit =

2 § § (E Yl jlcl-§ 2 2 2 ,¢7jerj/c:_Z z Zzzé;‘kcﬂ/(/ku—zzzgjc[/jct

JjeJ lel. ceC tel jeJ Iel ceC teT iel jelM; keK ceC tel’ JeJ ceC teT
_22 Zzzgikkczikka —ZZZHJ.DSF;I, - Zzzzwdlcry IZIJCI— E 2 2 ,¢jch}ct
iel keK k'eKceC teT jel leL teT deDlelL ceC teT JjeJ ceC teT
(21)
subject to

Pu < Y YELPY

et * jlct
deD

jed,lel, ceC,teT (22)

Constraints (2), (3), (5), (8), (9), and (13)-(17)

Note that in (SP) YP, is treated as a fixed value that is given by (RP) in the pth

iteration. Hence, the purchase amount is constrained by equation (22).

Bilevel Decomposition Algorithm

For the relaxed problem and subproblem as defined above, the steps of the bilevel

decomposition algorithm are presented below.

1. Set iteration count p = 0, upper bound UB = 0, and lower bound LB = —~ 0.

2. Set p= ptl. Solve (RP) to determine ﬁ’ﬁzc,, and an upper bound UB for the
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proft. Define

Z{(d,l,c,t)|ﬁ{p”“ :1} (23)
Np = {(d,l,C,t) i ﬁ)cl;lct = 0} (24)

3. For fixed YP}, ——ﬁ’gm, solve (SP) to obtain a lower bound LBP. Set
LB =max{LB?}.
P

(a) If (SP) is infeasible, add the following integer cut to (RP).

ZYPa’lCth ZYPdl(‘I SIMpi_l (25)
(d,l,c,l)eMp (d,[,c.[)eNp
Go to step 2.

(b) If (SP) is feasible, then add the following integer cuts to (RP) (see Appendix

B).

jl(‘t = P/[C’ Z YPdIct - Z YPdlct - (’Mp’ - 1)]

(d.tc HeM, (d.let)eN,
Vil c,t (26)
p—
Wik 2 Wil D YPuo = D VPyy (M, |- D)]
(dl.cneM, (d.J.c)eN,
Vi,j,k,c,t 27
Vie2Vial 3 YPyy = D YPy, —(M,|-1)]
(d.l.c t)eM (d,l,c,t)eNp
Vi, et (28)
SFjlt ZSF’”[ ZYPdlct - ZYPdlct ﬁqu’_l)]
(d.l‘c,t)eMp (d.l,r,t)éN,,
), 1.t (29)
_](‘t —F/“ ZY[)dlct - ZYf)dlct -(IMp’_l)]
(d.l.c eM, (d.le)eN,
Vj,c,t (30)

Also add the integer cuts (31) and (32) to (RP) in order to preclude supersets and

subsets of Mp, respectively'o.
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S VP + ¥, <M,

(dIet)eM,
vd,l,c,te N, (31)

Z Y[)d'l'c't' + YPdIrr 2 1

(d.'e'theN,

vd,l,c,te N, (32)

4. If (UB-LB) is less than a given tolerance, stop. The solution corresponding to LB

is the optimal solution. Else, go to step 2.

Example 2

In order to show the efficiency of the bilevel decomposition algorithm, we expand the
time horizon for the same process network given in Fig. 2 to 14, 21, and 30 days,
respectively. Both intermittent deliveries and chageovers are considered. Table 2
shows the computational statistics for each problem. Note that the CPU times for the
bilevel decomposition correspond to the sum of the times required by the (RP) and
(SP) subproblems. The optimality criteria for each problem solved with the standard

full space method is also shown with the MILP solutions.

Table 2. Comparison of computation results using bilevel decomposition algorithm

"Problem  0-1 Constr Conti  CPU Major Nodes Relaxed  MILP

Var aints Var [sec] Itera Solution  solution
1 108 613 646 6.1 265 973.03 9339
(0.00)
1.2 RP 12 321 364 31 ) i ) 953 86
SP 96 605 646
2.1 252 1605 1642 245 347 2398.4 2362.2
(0.01)
22 RP 28 753 848 154 3 i i 2362.1
Sp 224 1581 1642
3.1 504 3327 3385 7755 7120 45193 ‘z?)lO?l';

32 RP 56 1501 1605
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SP 448 3289 3385

2294
4.1 756 5073 5128 2763. 23562 6698.1 6376.6
: (0.05)
42 RP 84 2257 2542 1841, 6 } - 6383.7
SP 672 4997 5128 4
5.1 1080 7305 7369 8925. 65432 9378.1 9047.6
(0.04)
3
52 RP 120 3229 3631 3798, 6 } _ 9056.7
SP 960 7553 8329 6

* 1.1. Standard full space solution for a small problem with 3 time period
1.2. Bilevel decomposition for a small problem with 3 time period
2.1. Standard full space solution for the example 1 revisited (7 periods)
2.2. Bilevel decomposition for the example 1 revisited (7 periods)
3.1. Standard full space solution for a problem with 14 periods
3.2. Bilevel decomposition for a problem with 14 periods
4.1. Standard full space solution for a problem with 21 periods
4.2. Bilevel decomposition for a problem with 21 periods
5.1. Standard full space solution for a large problem with a month time horizon
consisting of 30 periods
5.2. Bilevel decomposition for a large problem with a month time horizon

consisting of 30 periods

Problem 1 with only three time periods is also included to study the computational
performance of the bilevel decomposition applying to from a small problem to a large
problem. For Problem 1, it takes 8.1 seconds of CPU time, which is longer than for
the standard full space method, 6.1 seconds. However, the bilevel decomposition
algorithm shows much better performance as the problem size becomes larger. In
Problem 3 the bilevel decomposition algorithm finds the solution in 229.4 seconds
CPU time compared to 775.5 seconds with the standard full space method. The

optimality criterion of Problem 3 with the standard full space method is 0.01. Finally,
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in Problem 5, a 30 period problem, the bilevel decomposition requires 3798.6 seconds
versus the 8925.3 seconds of the full space, which ended with a suboptimal solution
due to the 4% tolerance. As these problems show, we can conclude that the bilevel
decomposition is an effective algorithm for large-size problems. Fig. 8 shows the
comparison of computational performance between the bilevel decomposition and the

standard full space method with respect to problem size.

{—e— Standard full éBéce
(- Bilevel decomposition

Solution time (sec)

Fig. 8. Comparison of CPU times between two methods

Figures 9 and 10 illustrate the optimization results for Problem 5 with 30 time periods.
Fig. 9 shows profiles for sales amount of chemical J3 and production of chemical J5,
respectively. From sites C1 and C2, we illustrate the amount of sales in markets L3
and L4 at each time period (Fig. 9(a)). In Fig. 9 (b), production of chemical J5 with
schemes K1 and K2 in each site is shown. Fig. 10 shows the optimal inventories for
chemicals J1 and J2 in each site, and shortfalls for chemical J3 and J5, respectively.
Over a month or 30 time periods, we observe that production shortfall takes place

only at the first time period (Fig. 10(b)).
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Sales amount of chemical J3

| __ 250 ‘

- 2200 '—e—(J3,L3,C1)
8 56 —m—(J3,L4,C1)
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|2 100 S (I3L4,02)
=

(2)

Production amount of chemical J5

100
S~
80
70 -

‘_;:(’|4,J5,k1,b1) ‘
| | —m—(14,J5,K1,C2)

\—A—(14,J5K2,C1) |
- (14,05,K2,C2)
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40
30
20
10 |

Million LB

Time horizon (day)
L . v — L

(b)

Fig. 9. Sales amount of chemical J3 and production amount of chemical J5.
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Inventory of chemicals

: ——(J1.C1)
—m—(J1,C2)
| —a—(J2.C1) |
- (J2,62)
|
ceer 258 858
% Time horizon (day)
(a)
Shortfall amount of products
@ ’ ’ o Bl
-l _ _ o I .
£ WJ3L4)
= _ e OBLI)
= . L L)
1 2 3 4 5 6 7 8
Time horizon (day)

(b)

Fig. 10. Inventory trends and production shortfalls.

Example 3

We consider an extension of the chemical process network consisting of 38 processes,
28 chemicals, and 2 markets presented by lyer and Grossmann'®. While the original

problem'® was a long term planning problem arising from a real industry, in this
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example a short term planning with decisions at a detailed level are considered based
on their data. We take into account inventory profiles, production shortfalls, and
intermittent deliveries for the network diagram shown in Fig. 11. The time horizons
that were considered are for 7, 14, 21, and 30 days. Table 3 shows the computational
statistics for the bilevel decomposition in each instance, and Fig. 12 shows the
comparison of CPU times with the full space branch and bound. As the problem size

becomes larger, the bilevel decomposition algorithm clearly shows better performance.

Table 3. Computation results using bilevel decomposition algorithm

Problem 0-1 Const Continu CPU Major LP relaxed MILP

var  raints var [sec] Iterations solution solution

7 RP ’ 1329 8821 88.9 2 8290.2 8278.4
SP 14 1615 8821

4 RP14 2717 17641 p,s 3 167711 164022
Sp 28 3290 17641

21 RP 21 4075 26461 861.7 4 253113 25284.6
SP 42 4935 26461

30 RP30 5821 37801 g0 5 360114 353254

SP 60 7050 37801

Fig. 11. Diagram for process network in Example 3.
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Fig. 12. Solution times for example 3.

Conclusions

We have presented an MILP model for maximizing profit in supply chains arising in
multisite continuous flexible process networks. Short term operation was considered
for these problems (1 week or 1 month), as well as one-day periods of operation, such
as product changeovers, inventory profiles, intermittent deliveries, transportation
between sites, and production shortfalls. A large number of 0-1 variables is necessary
for representing the changeovers and the intermittent deliveries, making the model
computationally very expensive. To circumvent this problem, a bilevel decomposition
algorithm has been proposed that reduces a large original problem into a smaller
relaxed problem (RP) and a smaller subproblem (SP). (RP) yields an upper bound to
the profit, while (SP) yields a lower bound solution for the original problem. For
several large problems, it was found that the solution time of the bilevel
decomposition algorithm is significantly smaller than that of the full space model with

LP branch and bound methods.
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Appendix A.

The following tables are given data for example 1.

Table A.1. Production capacity of each process (million Ib)

Capacity of each process

Site I 12 I3 14
Cl1 50 90 100 86
C2 90 100 86

Table A.2. Prices of raw materials ($/Ib) at time period ¢

Market  Chemical Time period (day)
1 2 3 4 5 6 7
L1 I 0.75 0.75 0.75 0.75 0.75 0.90 0.90
L1 J2 0.50 0.50 0.50 0.75 0.75 0.90 0.90
L1 J4 200 200 2.00 2.00 200  2.00 2.00
L1 J6 0.25 0.25 0.25 0.25 0.25 0.25 0.25
L2 J1 0.75 0.75 0.75 0.75 0.75 0.90 0.90
L2 J2 0.50  0.50 0.50  0.75 0.75 0.90 0.90
L2 J4 200 200 2.00 200 200 200 2.00
L2 J6 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Table A.3. Prices of products ($/Ib) at time period ¢
Market  Chemical Time period (day)
1 2 3 4 5 6 7
L3 I3 1.50 1.50 1.50 1.55 1.55 1.55 1.70
L3 IS 200 200 200 200 200 200 2.00
L4 J3 1.50 1.50 1.50 1.55 1.55 1.55 1.70
L4 I5 200 200 2.00 2.00 2.00 200 2.00
Table A.4. Operating cost coefficients ($/Ib) in site C1 at time period ¢
Process  Scheme Time period (day)
1 2 3 4 5 6 7
I1 K1 0.10  0.10 0.10 010 0.10 0.10 0.10
12 K1 0.10  0.10 0.10 0.10  0.10 0.10 0.10
12 K2 0.10 0.10 0.10 0.10 0.10 0.10 0.10
13 K1 0.10 0.10 0.10 0.10 0.10 0.10 0.10
I3 K2 0.10 0.10 0.10 0.10 0.10 0.10 0.10
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13 K3 0.10 0.10 0.10 0.10 0.10 0.10 0.10

13 K4 0.10  0.10 0.10 0.10 0.10 0.10 0.10
14 K1 0.10 0.10 0.10 0.10 0.10 0.10 0.10
14 K2 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Operating cost data of site C2 is same as those of site C1.

Table A.5. Mass balance coefficients in site C1

Chemical
Process Scheme n J2 I3 J4 Js J6

11 K1 1.05 -1.00 1.03
12 K1 1.02 -1.00
12 K2 1.10 -1.00 0.09
I3 K1 1.10 -1.00
I3 K2 1.20 -1.00
13 K3 1.08 -1.00
13 K4 1.05 -1.00
14 K1 1.20 -1.00 -1.00
14 K2 1.10 -1.00 -0.05

In Table A.S, mass balance coefficients are represented as + values and - values with
respect to input and output, respectively. The chemicals with —1 value of mass balance
coefficient corroespond to main products for each scheme in processes. The data of

site C2 is same as those of site C1.

Table A.6. Upper bound for raw material availability (million Ib) at time period ¢

Market  Chemical Time period (day)

1 2 3 4 5 6 7
L1 I 200 200 200 250 250 250 250
L1 2 200 200 200 220 220 220 220
L1 J4 200 200 200 230 230 230 230
L1 J6 10 5 10 10 10 10 10
L2 J1 300 300 300 250 250 250 250
L2 12 300 300 300 220 220 220 220
L2 J4 250 250 250 230 230 230 230
L2 J6 10 5 10 10 10 10 10
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Table A.7. Upper bound for product demand (million 1b) at time period ¢

Market  Chemical Time period (day)
1 2 3 4 5 6 7
L3 I3 100 100 200 200 200 300 300
L3 J5 75 75 75 80 80 85 90
L4 I3 150 150 210 210 250 250 250
L4 J5 75 75 75 80 80 85 90
Table A.8. Lower bound for product demand (million 1b) at time period ¢
Market  Chemical Time period (day)
1 2 3 4 5 6 7
L3 I3 6 1212 12 18 18
L3 J5 35 35 45 4 4 45 5
L4 J3 65 65 13 13 14 14 16
L4 J5 45 45 45 5 5 5.5 6
Table A.9. Changeover cost in processes (SEO4/number of setup)
Scheme
(Process, Scheme) K1 K2 K3 K4
(P1,K1)
(P2,K1) 10
(P2, K2) 12
(P3, K1) 14 15 16
(P3,K2) 14 20 18
(P3,K3) 17 23 17
(P3,K4) 12 14 16
(P4,K1) 17
(P4,K2) 14
Table A.10. Inventory cost for each chemical ($/1b)
Site Chemical
J1 J2 K] J4 JS J6
C1 0.02 0.03 0.025 0.05 0.4 0.55
C2 0.02 0.03 0.025 0.05 0.4 0.55
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Table A.11. Upper bound of inventory for each chemical (million ib)

Site Chemical
J1 12 I3 J4 IS J6
C1 560 680 270 275 250 265
C2 560 680 270 275 250 265
Appendix B.

Property 1. The following constraints based on Iyer and Grossmann'® are valid

integer cuts for the p+1 th relaxed problem (RP).

P 2Pl 3 YPy = D YPy —(M,|-D)]

(d,[,(,r)eMp (d,l,c,t)eNp
Yj.1,c,t (B1)
VV[jkct 2 ng”[ z Yl)dlcl - Z Y})dlct - (‘Mpl - 1)]
(dlct)eM, (dl.et)eN,
Vi, jk,c,t (B2)
j(‘t = VJ“ z YRilct - Z Y})d[ct - (‘Mpi - 1)]
(ddc.)eM,, (d.Le.eN,
Vi, et (B3)
SFy 2 SFul 2 YPuo= 2 YPuy = (M,[-D)
(d.lct)yeM, (d.let)eN,
V), 1.t (B4)
F, 2 Fial Y YPy, ~ ZY&C,—('M,,‘—I)]
(d.l.c.eM, (d.lcheN,
Yj,c,t (B5)
where M, = {(d,],¢,t)| YPaa =1} (B6)
N, ={(d,l,c,1)| YPi =0} (B7)

Proof: The proof for this property is analogous to that of Iyer and Grossmann'’. Let
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Py, Wisew Ve SFji, and F, be X for simplicity. Then we can represent all inequalities

as the following representative constraint.
=P
X2X'[ YYPy - Y YPu —(M,|-D] (B8)
(d,l,c,t)eMp (d,l,c,t)eNp

— _
For given YPae, the solution to the subproblem gives an optimal X ' that is the

optimal value for the original problem when the corresponding deliveries are made
(YPliet =1). For the selected value YPee, the right-hand side for X is multiplied
by a positive number or 1. Therefore, the inequality X > X’ is enforced through the
above equation. Clearly, these inequalities are valid cuts since the objective function

SRP
has X with negative coefficients. Note that for any other choice of YPa.:, X 20

dominates equation, since Z YP,., — z YP,, < ’M p’ -1. (B9) n

(dlct)eM, (dlceN,
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