T. Advances in Advanced Process
Control

At a3
33 3



Advances in Advanced Process Control

Jinhoon Choi

Department of Chemical Engineering
Sogang University

Outline

¢ Review of Model Predictive Control

¢ Constrained Linear Quadratic Regulation

¢ Constrained Model Predictive Disturbance
Attenuation

* Batch Model Predictive Control

¢ Conclusions




What is MPC?

What we have: Finite horizon optimal control

What we want to do: Infinite horizon feedback control
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Model Predictive Control

Open Loop Optimal Control
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Model Predictive Control

m T m-1 T
min 2 i@ ke T D ik R i

= =X
Tprintle ™ Preip VB e TR

subject to

+

* O 0
X = Uk+ik o 0
Uk et “ 5040
< 0 Y
¢ * 0 i m
k

When Is MPC Useful?

¢ Useless Case:

-Unconstrained time invariant case:
Infinite horizon linear quadratic optimal
control problem admits a static feedback

solution.




When Is MPC Useful?
(Continued)

¢ Useful Case:

-Unconstrained time varying case:

Infinite horizon linear quadratic optimal

control problem admits a static feedback
solution but requires time varying characteristics
of the plant over the infinite horizon

-Constrained case:
Both finite and infinite horizon linear quadratic
optimal control problem admit open loop solution

only.

Shortcomings of Classical MPC (DMC)

Truncated step response model is used
*Many model coefficients have to be stored.
*Unstable systems cannot be handled

*Truncation error is unavoidable




Advantages of State Space MPC

State space model is used
*The number of coefficient is substantially reduced.
* Unstable systems can be handled

* No truncation error

Linear Quadratic Optimal Control
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Input and State Constraints
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Assumption: the feasible set contains a neighborhood
of the origin
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Mixed Constrained
Linear Quadratic Optimal Control
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Requirement: constrained asymptotic stabilizability




Why Model Predictive Control
Instead of Mixed Constrained
Linear Quadratic Optimal Control

Compared to MPC, MCLQOC exhibits
® better infinite horizon performance
® better robustness property

Why MPC instead of MCLQOC

« finite dimensional formulation of MCLQOC was unknown

Key Idea in Mixed Constraints
Linear Quadratic Optimal Control

N
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For initial conditions sufficiently close to the origin, constraints
are not active throughout the entire trajectory.




Maximal Output Admissible Set
(Gilbert and Tan, 1991)

Given a static state feedback control u=-Fx,
the maximal output admissible set is the set of all

initial conditions for which constraints are not active
throughout the entire trajectory.

O ={x:(A-BF)kxeY k=0}
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Y= {x:Gng,umi" <-FxgyMmax}

Finite Dimensional Formulation

of Mixed Constrained LQOC
(Sznaier and Damborg, 1987)
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Stability of Mixed Constrained LQOC
(Choi and Lee, submitted)

Lyapunov function: J(xy)

Stable Plants: Globally Exponentially Stable

Marginal Plants: Exponentially Stable on Any
Bounded Set 3

Unstable Plants: Exponentially Stable on Any
Compact Subset C of =,

Algorithms for N*

Exponential stability for stable (marginal) [unstable] plants:
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Algorithms for N*
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Output Feedback MCLQR

Process

MCLQRj«— Observer

Observer: )A(k_‘_l = A)A(k + Buk + L[C(Aﬁk + Buk)— Yk+l]
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Comparison of MCLQR and MPC

* Near the steady state, MCLQR is computationally
more efficient than MPC. However, away from the
steady state, MPC is computationally more efficient
than MCLQR.

* Performance of MCLQR is better than that of MPC.

* MCLQR is more robust than MPC.

Disturbance Attenuation

A\

Process

Controller

minimize the effects of disturbance to output




Why Disturbance Attenuation

Disturbances are always present in any practical
control problems. However, they are not explicitly
considered in regulation problem.

12 Gain

Closed Loop Map: T, :d = z =(x,u)
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H_, Norm

For linear T, [, gainreducesto H_ norm:
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Worst possible amplification of disturbance effects

H_, Optimal Control

Find control such that the worst possible amplification
of disturbance effects is less than the desired attenuation
level 7

or

Find control such that [T,], <7




H_, Optimal Control (Continued)

Let

2 1 T €«
”Tzddnz = E{Z X Ox, + Z u{uk }
k=0 k=0
Then H_ optimal control problem becomes
J, =min maxl{ZxZka +>uju, —y* Yy dd, } <0
w42 i k=0 k=0
subjectto X, =Ax, +Bu, +Dd,

We can assume y =1 using D instead of D

Solution of H_ Optimal Control

Suppose I-D"MD>0

where
M=0+A"M[I+(BB" -DD" )M 4

Then
u, =-B"MAAx,  di=D"MN'dx,
X, =N Ax, J, () = xg Mx,
where

A=I1+(BB" -DD")M
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H,, MPC

Jy(x) = mmmax {Zxk+jlexk+Jk+Zuk+ﬂkuk+jlk de+/|k /ij}

subjectto  Xe .y = Axy + Buy,y +Dd,y 0 Xkk = Xk

+ a

Infinite horizon dynamic game problem

Unconstrained Problem is solved but is not interesting.

Constrained H_, MPC for Stable Plants

Jy(x)= mm max {Z xk+j|kak+j|k + Zuk+j|kuk+/|k -V Z dk+/|k k+j|k}

subjectto X, = Ax,, + Buy,  +Dd, e Xk = Xk
u™ <uy, o <u™ 0<j<N-1
Jj>N

Uiy =0

Problem is not defined for marginal or unstable plants




Reduction of H_, MPC to QP

* Reduce to a finite horizon dynamic game problem by
substituting the analytic solution of the inner maximization
over [N,)

* Reduce to a QP by substituting the analytic solution of
the resulting finite horizon dynamic game problem.

QP Formulation of Constrained H, MPC

118 1
Jy(x)= mum{EZu;ﬂku,Hﬂk + |:§ kaikSoxk‘k - x,f[kv0 -q, :!}
j=0
SUbjeCt to v, = AT[I + DPijH]T[vjn - Sj+1Buk+j|k]7 Yy = 0
u™ Suy, g, Su™ 0<j<N-1
where
S =Q+A'S [I+DPS, 14, Sy=C

P =[I-D'S, DI D

J+l

Complexity of this QP is compatible with that of standard MPC
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Example
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Example (Continued)

1[& N-1 w
—_ H — T _ T
Jx) = minmax 2 Zxkﬂleka‘lk + 2 :uk+j|kuk+jlk 2 K
J= j= j=1

subject to

X jeik = Axk+j|k + Buk+j|k +de+,-!k

-80<u,, ; <80 (0<7<19), u,, =0 (j=20),

where

0.9725  0.0261 B=["°‘0001}
0.2002 0.7158 -0.0080

Do1.0x10 00201 01652 0 - 500 1 0
‘ 0.0022 0.9427 B 0 1
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Example (Continued)
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H, MPC outperforms over MPC

Small Gain Theorem

uncertainty
A

closed loop
system S

The overall system is stable if [Al,,|S],, <1




Robust Control
under Unstructured Uncertainty

IS, <y if  Jy(0)<0

Hence if J,, (0) <0, small gain theorem dictates that
constrained H_ MPC robustly stabilizes the plant
with unstructured uncertainties satisfying

A, <=

Operation of Batch Process

+————— IstBatch —» «—— 2ndBatch —»
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Feedback Control of Batch Process

N\

AL 2t

Servo problem over a finite horizon

* removal of error by integrator is impossible

Iterative Learning Control
of Batch Process
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Quadratic Criterion Based
Iterative Learning Control (Q-ILC)

Process Model: Ve =Gu,
where  y=[y() y@ - yNJu=[u0) un - uN-9]

h1,1 0 0
h h :
6= T
: - . 0
h1,N h2,N4 e hN,1

S V=Y +tG(u,,, —u)
Let e, =r.—y,, Au ,=u, —u,

Output Error Transition Model : e, ,, =e, -G Au,,,

Q-ILC (Continued)

g T
min 7 {ek+1Qek+1 + Ay RAY,, }
k+1

subjectto e, ., =e, —G Au,,,

+ a

U

Optimal input adjustment (unconstrained case)

u. =u ~(G'QG +R)'G'Qe,
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Drawbacks of Q-ILC

Q-ILC can achieve zero tracking error in spite
of the presence of batchwise repetitive disturbances.

However, Q-ILC cannot handle real time disturbances.

U

Q-ILC needs to be combined with real time control

Batch Model Predictive Control (BMPC)

Let 6=[6(0) G() - G(N-1)]
and e, {t)=e, when Au(t)= Ay (t+1)=--=Au(N-1)=0
-1t t+l
kth Batch ———F—F—F—F—F—F——
u,()=u,,0)

From e, =e, ,- GAu,
e () =e, , —G(0) Au,(0) - --- — G(t - 1)Au,(t - 1)

Similarly
e (t+1)=e,_,-G(0) Au,(0) - - G(t)Au,(t)

T-22




BMPC (Continued)

Hence
e (t+1) =e,(t)-G(t)Au(t), e, (0)=e,,(N)

Predictor:
Au,(t)
e (t+m|t)=e ()-[G(t) - G(t+m=1) :
Ay, (t+m-1)
=e,(t) - G"(t)Auy(t)
BMPC (Continued)
BMPC:

min %{e[(nm 1)Qe, (t+m|t)+Au" (HRAUP () }

A (1)
subject to

e (t+m|1)=e,(6) - G"(1Au] (1)

+ a
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Comparison between MPC and QMPC
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Example (Continued)

Temp

time

v" "’

Example (Continued)

No real time disturbance

Tome(C}

TemaC)

PID control Batch MPC(6th run)
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Example (Continued)

Real time disturbance: 15% change in heat of reaction

Q-ILC(7th run) (Learning only) Batch MPC(7th run)
Conclusions

¢ As far as regulation concerned, constrained infinite
horizon linear quadratic optimal is the ultimate
alternative of MPC and its implementable algorithm
is now available.

¢ Constrained model predictive disturbance attenuation
algorithm is now available and can be used for both
effective rejection of disturbances and robust control
under unstructured uncertainty.

¢ For batch processes, conventional MPC is likely to
work very poor due to batchwise disturbances and
thus needs to be fortified with learning mechanism.
Batch MPC that can handie both real time and
batchwise disturbances is now available.
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