2

AN

e 481 i

!
ﬁwﬁm
_Ew,,. Iy

e

NS

4

A

Bikis
._:.l. il

il

iy

3

e mﬁ.

i ».;g

"

\

&.

i)

4

ip 4 Lp

4

Ty

b
Sh
Y AY Y YR

bl

v o iy 38
e w L

k3

2

»

HA

o

ekt

vl
5#«%

A
KLy lo¥le¥ly

@.

ol

l

e

)

kel

¥

%
W

7

&ﬂg

A

17

__&t

¥
"

3L

i

0

I3

hintnihiniox
RNk
2

3]
!
T8

...»\md

X
X

p

Wil

¥

W

n,.w_

W

)
aﬁ.

t\ng_.. ¥

e
25

15514

i
oy Jf

i

¥oh

w

gl

(ot bl
AL ﬁ\«r ks
L7l

m.

RIO%S

it
L bl
T

:

w&& im
by

g,

___.
¥ole
iy

",

A
1

i

Ll

KIOLON.

Xy

L7 .

%..

o
w
-9

Tl Bt B Bt i




FREQUENCY RESPONSE APPROACHTO
AUTO-TUNING AND ADAPTIVE CONTROL IN INDUSTRIAL
PROCESS CONTROL

C.C. Hang
Department of Electrical Engineering
National University of Singapore, Singapore 119260

Abstract On-line frequency response estimation based on relay oscillations or setpoint
changes can be used to readily synthesize PID and other advanced controllers. This has led to
the frequency response approach to auto-tuning and adaptive control. It is most relevant to
industrial process control as it does not require much prior information about the process
dynamics such as the exact order and the process dead time. The development of this practical
approach for the auto-tuning and adaptive control of PID controllers for various types of single-
variable processes is outlined in this paper. Their extensions to other advanced controllers and
to multivariable systems are then reviewed. Simulations are used to substantiate and
demonstrate the robustness and achievable performance of this approach to auto-tuning and
adaptive control.

1. INTRODUCTION

The introduction of auto-tuning capabilities to PID controllers has shortened the time needed to
commission control systems and to facilitate control optimization through regular retuning
(Astrom and Hagglund, 1988; Hang and Sin, 1991; Hang et. al., 1993a). The relay feedback
auto-tuning method proposed by Astrom and Hagglund (Astrom and Hagglund, 1984a) was
one of the first to be commercialized and has remained attractive owing to its simplicity and
robustness (Astrom and Hagglund, 1988; Hang and Sin, 1991; Hagglund and Astrom 1991).

The original relay auto-tuning method is based on the estimation of one point on the Nyquist
curve. It has been shown recently in a series of papers (Wang, Hang and Zou, 1997 a and b;
Wang, Hang and Bi, 1997 c and d) that the relay oscillations could be further analyzed to
generate estimates of other points on the Nyquist curve. This, when combined with one of the
controller designs based on the frequency response information on the Nyquist curve, has
given birth to a new approach for auto-tuning PID and other advanced controllers. The use of
setpoint changes in place of relay oscillations extends the application of this approach to
adaptive control in many practical situations. As the frequency response approach does not
require much prior information about the process dynamics such as the exact order of the
transfer function, the process dead time, presence of oscillatory poles, presence of non-
minimum phase zeros, etc., it is most attractive to industrial process control where a general
purpose controller is used. It is the intention of this paper to review these new developments of
the frequency response approach.

The paper is organized as follows. In Section 2, the original relay feedback method is
reviewed. The advantages and the limitations of the method are indicated. In Section 3, the
frequency response estimation based on analysis of relay oscillations is highlighted. Refined
controller tuning methods based on frequency response information are presented in Section 4.
Extensions of the relay auto-tuning to processes with large dead-time and multivariable
processes are summarised in Sections 5 and 6, respectively. Extensions of the frequency
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response approach to facilitate adaptive control are reviewed in Section 7. Concluding remarks
are given in Section 8.

2. RELAY AUTO-TUNING

The majority of controllers used in industry are of the PID type. A large industrial process may
have hundreds of these controllers. They have to be tuned individually to provide good and
robust control performance (Astrom and Hagglund, 1984b). The tuning procedure, if done
manually, is very tedious and time consuming; the resultant system performance depends
mainly on the experience and the process knowledge the engineers have. It is recognized that
in practice, many industrial control loops are poorly tuned. Automatic tuning is thus attractive
to researchers and practicing engineers. By automatic tuning (or auto-tuning), we mean a
method which enables the controller to be tuned automatically on demand from an operator or
an external signal (Astrom and Hagglund, 1988; Astrom, et. al., 1993). Industrial experience
has clearly indicated that this is a highly desirable and useful feature.

Astrom and co-workers successfully applied the relay feedback technique to the auto-tuning of
PID controllers for a class of common industrial processes (Astrom and Hagglund, 1988). The
relay feedback auto-tuning technique has several attractive features. Firstly, it facilitates simple
push-button tuning since the scheme automatically extracts the process frequency response at
an important frequency and the information is usually sufficient to tune the PID controller for
many simple processes. The method is time-saving and easy to use (Hang et. al, 1993a).
Secondly, the relay feedback auto-tuning test is carried out under closed-loop control so that
with an appropriate chdice of the relay parameters, the process can be kept close to the setpoint.
This keeps the process in the linear region where the frequency response is of interest, which is
precisely why the method works well on highly nonlinear processes (Astrom and Hagglund,
1988). Thirdly, unlike other auto-tuning methods, the technique eliminates the need for a
careful choice of the sampling rate. This is very useful in initializing a more sophisticated
adaptive controller (Lundh and Astrom, 1998). Fourthly, the relay feedback auto-tuning works
well under disturbances and it is robust to process perturbation.

The critical point, i.e., the process frequency response at the phase lag of =, has been employed
to set the PID parameters for many years ever since the advent of the Ziegler-Nichols (Z-N)
rule (Ziegler and Nichols, 1942). The point is traditionally described in terms of the ultimate
gain k, and the ultimate period T,. The relay auto-tuning is based on the observation that a
system with a phase lag of at least 7 at high frequency would oscillate with the period T, under
the relay control. To determine this critical point, the system is connected in a feedback loop as
shown in Fig. 1.

Since the “describing function™ of the relay is the negative real axis, the output y(f) is then a
periodic signal with the period 7, and the ultimate gain k, is approximately given by (Astrom
and Hagglund, 1984a; Hang and Astrom, 1988)

' , _ 4d

k,=—, ' )

m -

where d is the relay amplitude and a is amplitude of the process output.
With the estimated information of the process critical point, the Z-N tuning rule or the
modified Z-N rules (Astrom and Hagglund, 1988; Ziegler and Nichols, 1942; Hang et. al.,

1991a) can be used to tune the PID controller. The relay auto-tuning procedure is thus
completed and the controller can be commissioned.




While the standard method is successful in many simple process control applications
(Hagglund and Astrom, 1991; Astrom, et. al., 1993), it also faces two problems. First, due to
the adoption of the describing function approximation, the estimation of the critical point using
the standard relay feedback method may not be accurate enough. Under some circumstances
such as high order or long dead-time of the processes, the method could result in a significant
error which would cause the system performance to deteriorate (Wang et. al., 1997b). Second,
only one frequency response point is obtainable from this method and it may be insufficient for
describing the important dynamic characteristics of some processes or for designing advanced
model based controllers. ‘

3. FREQUENCY RESPONSE ESTIMATION FROM RELAY OSCILLATIONS

As mentioned above, the critical point estimation based on equation (1) is not always accurate.
Furthermore, with the standard relay feedback auto-tuning, only one point on the process
Nyquist curve is determined. For designing of the model-based controllers like Smith-Predictor
(Plamor and Blau, 1994), (Hang et. al., 1995), more points on the frequency response need to
be extracted from the relay feedback experiment. It is possible, for example, to cascade a
known linear dynamics to the relay in Fig. 1 to obtain a point other than the critical point.
However, the testing time will increase proportionally when more frequency response point
estimations are required, especially when high accuracy is required. This is particularly tru
when the process has a long dead-time. '

It was shown in Hang et al. (Hang et. al., 1995) that multiple points on the process frequency
response could be obtained in a step test by first removing DC components from the input and
output and then applying the Fourier Transform (FT) to the remaining signals. This has been
further improved by Wang, et al. (1997c) who propose a method that can identify multiple
points simultaneously under one relay test. For a standard relay feedback system in Fig. 1, the
process input () and output y(¢) are recorded from the initial time until the system reaches a
stationary oscillation. u(¢) and y(t) are not integrable since they do not die down in finite time.
They cannot be directly transformed to frequency response data meaningfully using FT. The
solution is to introduce a modulation by a decay exponential e™* to form

u(t)=u(t)e™, V)
and

y(O)=y(0)e™, 3)
such that &(z) and y(¢) will decay to zero exponentially as ¢ approaches infinity. Applying the
Fourier Transform to (2) and (3) yields

U(jow)= J: (e ™ dt

| @)
= jo' u(t)e e dt =U(jo +a),
and
Y(jo)=] ye dt
b _ 5)
= f y(t)e e ™ dt =Y (jo +a).

For a process G(s)=Y(s)/ U(s), at s = jw+ , one obtains

Gliw+a)= Y(jw+a) Y(jw) ©6)

UGjo+a) O(jo)
¥( jw) and U(jw) can be computed at discrete frequencies with the standard FFT technique
(Bergland, 1969; Ramirez, 1985). Therefore, the shifted process frequency response G(j@ + @)
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can be obtained from (6). To find G(jw) from G(jw+ ), we first take the inverse FT of
G(jo+a) as

g(kT):= FFT™(G(jw+ @) = g(kT)e™". )
It then follows that the process impulse response g(kT) is
g(kT) = g(kT)e™ . (8)
Applying the FFT again to g(kT) leads to the process frequency response:
G(jw) = FFT(g(kT)). &)

The method can identify accurate frequency response points as many as desired with one relay
experiment. They may be very useful for improving performance of PID and model-based
controllers. The required computations are more involved than the standard relay technique;
especially if a large number of frequency response points are needed. The method has been
applied to other non-decaying excitation test such as a step test and ramp test (Wang et. al.,
1997b). Note that the inverse FT computations of equations (7)-(9) are not needed in practice
as the controller designs can be performed using the shifted frequency response data directly.

To illustrate the method, several different typical processes are considered. Fig. 2 shows the

identified frequency responses for these processes using this method. The excellent results are
self-explanatory.

4. REFINEMENT OF PID TUNING

In this section, we consider the tuning of a PID controller in the form of

de

t t
u(t)'—'KP(eP‘l“"‘"l Iedt+TD—'de)=erP +K118&+KD (10)
TIO dt 0

where e, =byg, —y, b is the setpoint weighting factor which is useful in reducing any large

overshoot in the setpoint response. In the standard relay tuning case, the Z-N-like formulas are
employed to tune PID controllers. These tuning rules are suitable only for those processes
which can be accurately characterized by the critical point. To overcome this limitation, many
modifications of the PID tuning rules have been reported.

4.1 Single-point Based Methods

It has been shown by Astrom, et al. (Astrom, et. al., 1992) that for processes with monotone
step responses, there exist quantities, such as the normalized dead-time and the normalized
process gains, that are useful for assessing the achievable performance and choosing suitable
controllers. Refined tuning formulae of the PID controller by incorporating heuristic knowledge
of normalized dead-time to replace manual fine-tuning were developed (Hang et. al., 1991a). A
set of PI/PID controller tuning formulae for different normalized dead-time was given. They
eliminate the need for manual fine-tuning and human expertise.

The above mentioned tuning rules depend on only one frequency pdint, the critical point, which
~may not be adequate to tune the PID controller to achieve an expected response. PID tuning
rules that employ two or more points have thus been proposed.

4.2 Gain and Phase Margin Method

The gain and phase margins are very useful as measures of performance as well as robustness.
Controller designs to satisfy gain and phase margin criteria are not new (Franklin et. al., 1986)."
However, the solution is normally obtained by numerical methods or by trial and error using
Bode plots. Such approaches are certainly not suitable for use in auto-tuning and adaptive
control. The modified Ziegler-Nichols rule (Astrom and Hagglund, 1988) is a gain and phase
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margins tuning method. The solution is to achieve a compromise in phase and gain margins by
moving the compensated Nyquist curve to pass through a specified design point. The method
works well for processes with relatively small dead-time. When the dead-time is dominaxit, the
actual phase margin may be very conservative although the prespecified gain margin is
achieved.

An analytical method to tune the PID controller to pass through two design points on the
Nyquist curve as specified by the gain margin A, and phase margin ¢, was proposed (Ho et.
al., 1995). The method is based on the measurement of ultimate gain, ultimate period and the
static gain of the process. For a first order plus dead-time process,

Ke &
Gle)= Ts+1’ (th
the PI controller
K(s)= K,,(1+—l—) (12)
sT, .
is given by
K, = @7 (13)
"TAK'
2 |
do,"L
T, =(2wp - +——] R (14)
- w
where
L -
© _A9. +im, (4, 1). (15)

’ (A,7-DL
Example 1 Consider a process given by
1

G=—-o2c".
s+1

With the gain margin A, and phase margin ¢, specified as 3 and %t respectively, the PI

controller parameters in (13)-(14) are computed as

K, =052
and

I, =1

For comparison, the PID controller tuned by the modified Z-N method (Astrom and Hagglund,
1988) is also considered, and given by [K,,T,,T,]=[0.80,2.38,0.59]. The step responses
obtained are shown in Fig. 5. The reason why the Ziegler-Nichols based method performs so
poorly for this process is that the dead time is significant. It is well known that Ziegler Nichols
methods give too small integral action in such cases.

The gain and phase margin method for the PI case can be extended to PID case using pole-zero
cancellation. These simple PI/PID tuning formulae are particularly useful in the context of
adaptive control and auto-tuning. The tuning method works well on processes that have the
forms of (11). Simulation shows that the tuning rule, though simple, produces a much better
system performance than the Z-N and modified Z-N tuning rules, especially for large dead-time
processes.

4.3 Tuning via Frequency Response Fitting



A different but efficient solution to controller design using the estimated frequency response
data was developcd in (Wang et. al., 1997b). It shapes the loop frequency response to optimally
match the desired dynamics over a large range of frequencies.

Suppose that multiple process frequency response points G( Jw;), i=1,2,--.m, are available.

The control specifications are formulated as a desirable closed loop transfer function

2
, e""

. s+ 20w, s+ w,’
where L is the apparent dead-time of the process, @, and { dominate the behaviour of the

desired closed-loop response. The dead time can be read off from a process step response or be
estimated by the knowledge-based approach (Lee, Wang and Tan, 1995). If the control
specifications are given as the phase margin ¢, and gain margin A,, { and w, in H, are

approximately determined by
_ |I-cos’ @, amn
4cos @,

. (16)

H,=

and
- 2@
tan™ p2_1
o, =__pL_’ (18)
where p is the positive root of equation
(A, =D’ =45p* +(I-p*). (19)

The default settings for { and @,L values are {=0.707 and @,L =2, which imply that the

overshoot of the objective set-point step response is about 5%, the phase margin is 60" and the

gain margin is 2.2 (Wang et. al., 1997b). The open-loop transfer function corresponding to H,

is

H,
Q4= ~H,

The design of the controller K is such that KG is fitted to Q, in frequency domain as well as

possible. Thus, the resultant system will have a desired performance.

(20)

For a PID controller in form of (10), we have
. 1 . .
G(jw;) [1 o jo;l x=04(jw;), i=12--.m, (21)

where x=[K, , K,T,T, mis chosen such that @, is bigger than the critical frequency of

Q, . Equation (21) can be rearranged into a set of linear equations. The least squares method
can then be employed to obtain the PID parameters. If the solution satisfies the criterion
max |G(j@)K(jo)-Qalio) < &, (22)

)
where € is the pre-specified fitting error thresholds then the design is finished. Otherwise, a
high order controller may be considered or the control specifications may need to be relaxed.
Then, we use the above procedure again to find a better fitting.

- Simulations show that this is a simple and effective way of obtaining a desired response. The
algorithm gives the optimal combination of PID settings that can achieve the desired transients.
Its performance will be demonstrated by an example of an oscnllatory proccss where other
methods could not yield good results. :




Example 2 Consider a plant with oscillatory dynamics:
1
G . -0.2s ,
, ) S +025+1°
the PID controller designed by the method is
1
K(s)=0.59(1 + — +5.0s) ,

() ( 02s )

and the controller by the modified Z-N rule is

| 1
K(s)=0.36(1 +
() I+

KA

+0.86s)
The system response is shown in Fig. 6.
S. PROCESSES WITH LONG DEAD-TIME

For a process with a long dead-time, a dead-time compensator is necessary for tight control.
However, it requires a transfer function model. From the relay feedback test, the ultimate gain
k, and the ultimate frequency @, can be obtained. A primary PI controller tuned by Ziegler-
Nichols formulae is then commissioned. With the system in closed-loop, the auto-tuner will
wait for the next set point change to occur, and after the transient, the process static gain K can
be calculated. It is well known that most of the industrial processes can be adequately
approximated by a model of the form
K

Ts+D)"

The model can be recovered from k, and @, by

e, n=12. @3

» i

(Kk,)" -1

7= -1 24
wll

L= (r—ntan~ (Ta),). ©5)
@

The order of the model can be specified by the user based on prior knowledge of the process.
The Smith predictor controller is the most popular dead-time compensator and can be auto-
tuned (Hang et. al., 1995) by combining the above relay identification and a primary controller
design to be described below.

The Smith predictor scheme is shown in Fig. 7, where G(s)=G,e™™ is the process and

6(5‘) =G,e™  is the model. Theoretically, the Smith predictor eliminates the dead-time from
() P

the closed-loop, and if the PI controller in the form of (12) is used as primary controller, it can
be designed based only on the dead-time-free part of the model. The dead-time-free part is
given by
K
(Ts+D"’
For a first order model, n=1, the design objective is such that
Go(s)C(s) _ 1
1+Go(s)C(s) 1+T,s’

where T, can be chosen as T, =T and a suitable range of & is 0.2 to /. The PI controller is
given by

Go(s) =

n=], or 2. (26)

27

(28)



For the second-order modeling, n=2, we choose PI parameters such that
Gy (s)K(s) _ o,
14GK(s)  s*+2lwys+w,”

(29)

A simple solution is
1

4K’
The only user-specified parameter is the damping factor {, which is chosen in the range of 0.5
to 1.

T,=T. K,= (30)

Example 3 For a long dead-time process

-18.70%
G(s) = 0.57¢ 2,
(8.60s +1)
the identified model from relay feedback is
-18.80s
G(s) = 0.57e .
(7.995+1)

The PI controller settings according to the method are
K,=175, T,=7.99.
The pure PI controller without Smith predictor tuned by the Gain and Phase Margin method
(Hoet. al., 1995) is
K,=050, T,=13.86.
The respective closed-loop responses are presented in Fig. 8.

This auto-tuning technique has been found to be effective even for high-order or non-minimum
phase processes that exhibit apparent dead-time-like characteristics in their dynamics.

6. MULTIVARIABLE PROCESSES

Auto-tuning techniques for PID controllers are very successful when the process is essentially
single-input single-output (SISO). For the commonly applied multi-loop controllers such as
cascade control, the application of the frequency response method to their auto-tuning is quite
straight forward (Hang et.al, 1994). The extension of these techniques to multivariable
processes is non-trivial and has attracted recent attention in the literature. Luyben (Luyben,
1986) has presented an iterative tuning procedure for multi-loop PID controller, where the
stability of the whole system can only be guaranteed by introducing appropriate detuning
factors on the PI/PID parameters. Hang et al. (Hang et. al., 1994) propose two relay auto-tuning
methods for ‘multi-loop PI controllers. The first method, which adopts the seéquential relay
tuning method, tunes the multivariable system loop by loop, closing each loop once it is tuned,
until all the loops are done. The Z-N rule is used to tune the PI controllers after the critical
points are obtained. In the second method, all the loops of the multivariable are placed on the
~ relay feedback in a multi-loop fashion, and the controllers are tuned simultaneously. The
method is time-saving. However, several modes of oscillation may occur and should be treated
individually. As in SISO cases, only one point information is usually used to tune the multi-
loop controllers. In case of significant interaction, a fully cross-coupled multivariable controller
rather than mutti-loop PID controllers should be employed, and its auto-tuning becomes more
difficult.

In principle, the relay identification techniques described in Section 3 can be applied for
multivariable process modeling, if independent relay or the sequential relay test is adopted. In

8




particular, it is straightforward (Wang et. al., 1997b) to extend the method in Section 3 to the
MIMO case, with the sequential relay. The arrangement is shown in Fig. 9. For a mxm
multivariable process, its frequency response matrix G(j) is obtained with m relay tests. In
what follows, we will briefly present two newly-developed tuning methods. One is for multi-
loop controllers, the other for multivariable controllers, using the identified frequency response
matrix. They can achieve performance improvement over other control schemes.

6.1 Multi-loop Controllers

The method to be described here is in fact a multi-loop extension of the original Astrom and
Hagglund's modified Ziegler-Nichols method. In order to take into account the multivariable
interactions, each loop is viewed as an independent equivalent process with all .possible
interactions lumped into it. For each loop, a controller is designed to meet the specifications
that a given point on Nyquist curve be moved to a desired position for each equivalent process.
A novel approach is developed to solve this nonlinear problem.

Consider a stable 2 by 2 process:

[}’1(3)]____[811(5) 812(-9)] -u,(s)] 31)
y2(s)] L821(5) g22(s)] |ua(s)
The process is to be controlled by the multi-loop feedback controller:

k 0 |
k(=] : (32)
0 Kk, (s)
The resultant control system is shown in Fig. 10. Let k,(s)and k,(s) be of PID type, i.e.,
k(s)=K,, (1+F1_+T”"s) , =12, (33)

hi

which can be reduced to PI type when T}, =0.

The boxed portion in Fig. 10 can be viewed as an individual SISO process with an equivalent
transfer function g,(s) between input «, and output y,. It follows that g,(s) can be obtained
as .

8128

=g - . 34
817 &n k{'+gzz (34

Similarly, the equivalent process between «, and y, is given
82 - g22 _ gZIgXZ (35)

k' g,
Now, the modified Ziegler-Nichols method is applied to the equivalent transfer function g, (s)
and g,(s), i.e, the controllers k;(s), i=1,2, are designed such that the given points on the
Nyquist curve of g;(s), i=1,2, where
A =g,(jo)=re ™, i=12, 36)

is moved respectively to the points:

B, =g, (jo)k,(jw,)=re™™*, i=12. 37
It should be pointed out here that, unlike the SISO case, due to the dependence of g,(s) (or
g,(s)) on k,(s) (or k,(s)), @, and thus k,(s) (or @, and k,(s)) cannot be determined until
k,(s) (or k,(s)) has been fixed. This is circular and causes a major design difficulty. A novel
graphical method is presented by Wang, et. al. (1998) for finding k,(s) and k,(s).



Example 4 The 24 tray tower separating methanol and water has the following transfer
function matrix:

— 2‘2e -5 l .3e—().3.v

| 7s+1 Is+1
G(s) - 2.86-“’ 4.36—0.351

9.5s+1 92s+1

As all its elements are of first-order in nature, we use a simple PI controller. It is designed with
our method as

i I
K(s) = diag{-1.46(1+ ——), 3.40(1 + ——)!.
() g{ 60+ 7305 34U 5.84s)}

The step responses of the resultant feedback system to unit set-point changes followed by load
disturbance changes are shown in Fig. 11 with solid lines, where load disturbance changes of
0.5 and 1 are applied directly on the two process inputs, u, and u,, respectively. The proposed

PID controller gives better loop and decoupling performance than the well-known BLT
(Biggest Log Modulus) method (Luyben, 1986) (dashed lines).

6.2 Multivariable Controllers

The design method in Section 4.3 can be extended (Wang et. AL, 1997b) to the multivariable
case. Let G(s) be the process transfer function matrix. The multivariable controller is chosen

as PID type:
K(s)=K,+lK,+sK,,. (38)
s

Assume that the desired closed loop transfer function matrix H is

w,’e™
H(s)=dia = . 39
) g{s’ +2C,.a>,.s+wm2} 9

Matching GK to open-loop H[I —H]™ yields

K

I 4

GK=G [I ! sIl | K, |=H[I-H]", (40)
s

K,
where K is the controller matrix. The parameters of the PID controller K can be computed by
solving the above equation with the least squares method. This multivariable tuning method
concerns a range of important frequencies instead of an individual frequency, and no iteration
is needed. Extensive simulations have shown that the proposed method gives very satisfactory

results for most processes. In some special case of large interaction, more than one stage of
compensators may be employed to enhance the control performance.

Example 5 Consider the well known Wood & Berry's binary distillation column process:
| [ 12.8¢”  —18.9¢™ ]
1+16.7s  1+21s

G(s) = .
6.6e”* —19.4e™
 1+109s 141445 |
The controler obtained with the method is

K(s _ [ 0.156 +0.053+ +0.065s -0.029-0.032++ 0.046s} '

—-0.021+0.024+ +0.028s —-0.103-0.024+-0.094s
10




and the controller by BLT Tuning (Luyben, 1986) is

0.375(1+ !
K(s)= 8.29s
0 -0.075(1 + 3

) 0

1
3.6s

)

The closed loop responses are illustrated in Fig. 12.

Recently, a method for auto-tuning fully cross-coupled multivariable PID controllers from
decentralized relay feedback was proposed for multivariable processes with significant
interactions (Wang et. al., 1997b). It was shown (Wang et. al., 1997b) that for a stable mxm
process the oscillation frequencies would remain almost unchanged under relatively large relay
amplitude variations. Therefore, m decentralized relay feedback tests are performed on the
process and their oscillation frequencies would be close to each other so that the proce
frequency response matrix can be estimated at that point. A bias was further introduced into the
relay to obtain the process steady state matrix. For multivariable controller tuning, a new set of
design equations were derived under the decoupling conditions where the equivalent diagonal
processes were independent of off-diagonal elements of the controller and used to design its
diagonal elements first. The PID parameters of the controllers were determined individually by
solving these equations at two points given above. The method has been successfully applied to
various typical processes.

7. EXTENSION TO ADAPTIVE CONTROL

After a successful commissioning, the process will be under closed-loop control. When a new
setpoint change occurs, the resultant output and input time responses may be employed to
estimate a possible newly changed process frequency response and to re-tune the controller X
with the same method used in auto-tuning. If this is done continuously, an adaptive control
feature is provided. If the operator is alerted after a certain threshold of parameter variation has
exceeded, an intelligent monitoring and auto-tuning feature is provided.

Example 6 Consider example 2 again. Suppose that the plant dynamics is changed to
1
G(s) =—-——e™",
(s) s’+08s+1
When a setpoint change occurs (say, at t=0), the new model of the process can be identified
by the method in Section 3 from the measured input and output data. The PID controller design
method in Section 4.3 is used to automatically generate the new controller-

K(s)=0.7488(1 + L +0.8122s).
0.7506s

The system responses before and after adaptation at + =50 are shown in Fig.13.

If no set-point change has occurred, any significant transient must be the result of some load
disturbances. We shall approximately model all these disturbances as an equivalent disturbance
d acting at the process output y through an unknown dynamic element G,, as shown in Fig.

14. y(t) and u(t) are recorded from the time when the y(¢) starts to change, to the time when
the system settles down. The process frequency response is re-estimated as follows.

We know
Y(s) =G(s)U(s)+G,D(s) @4
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If d is measurable, the FFT technique could be applied to compute D(jw,). If it is
unmeasurable, then we could wait for the process input to reach a steady state and, then infer

that
1 ifu(ee) =u(0);
D(s) =
© { ifu(e=) = u(0). “
We model G and G, respectively as
Gis)=— ¥ (43)
as’ +o,s5+a,
and
RO P — (44)

As+A,5+A,
Equation (41) can then be rearranged into
a,s'Y(s)+a,s’Y(s)+---+a,Y(s)
=b,s’U(s)e™ +---+b,sU(s)e™ +bU(s)e™ 45)
+¢,8°D(8) +---+¢,5D(s) + D(s),
Equation (45) is re-written as
D(s)X = D(s), (46)
where D =[s*Y(s) $’Y(s)---Y(5) -s’U(s)e™ ----U(s)e™ -5’ D(s)-- - sD(s)], and
X =[a,,a,...a,,b,,b,,....b,c,,..c,]" is the real parameters to be estimated. Assume first that the
process dead-time L is known, then with frequency responses Y(j@;), U(j®;) and D(j@,),
i=1,2,---,m, computed via the FFT, (46) yields a system of linear algebraic equations. We can
obtain the least squares solution X in (46). This solution in fact depends on L if L is unknown.
The squared fitting error for (46) will be a scalar nonlinear algebraic equation in one unknown
L only. The error is then minimized with respect to L in the given interval which is an iterative
problem on one parameter L. Each iteration needs to solve a Least Squares problem
corresponding to a particular value of L. The model parameters are obtained when the
minimum J is achieved. To facilitate solution further, we next derive some bounds for L so
that the search can be constrained to a small interval. This will greatly reduce computations,
improve numerical property, and produce a unique solution. It is noted that the phase lag

contributed by the rational part of the model, G,(s)=—; B+l , is bounded, i.e.,

agGo(jo)el-r , 7, Voe 0m) @7
so that we can impose an upper L and a lower L bound on L:

. T
arg G(jw, ) - 2

L =min{- , k=12,-,m (48)
Wy
and
L=mﬂ{_w}, k=12,--m (49)
Wy

Actually, from a relay feedback or setpoint change, one can directly find out a gross estimate

for dead time by measuring the time L between the control signal change to the output starting
to move. Another possible bound may then be:

12
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Le| osi 15 ] (50)
Remark 1. If the process dead time L is unchanged since the last identification of G, no
iteration is needed to solve (46). This is a special case that the bound for L is specified as a
zero interval. This case greatly simplifies the identification. It may be true in many practical
cases as process dynamics perturbations are usually associated with operating point changes
and/or load disturbance, which mainly cause time constant/gain changes. Furthermore, any
small dead time change can be accommodated as in other parameters.

Remark 2. If the environment is noisy, all the measurements y, « and d can be filtered to
yield y,, u, and d, which are than used to produce @, and D, . Equation (46) then becomes

D, (s)X=D, (s).

Example 7 As a demonstration, the process was chosen as

| G(s) = L

(5s+1)°
With the PID design method (Wang et al., 1997d), the PID controller was obtained as
1
K(s)=0.66(1 + . 51
() ( 0 O4s) 61

The process response to a setpoint change at ¢ =0 is pretty good, which is shown in Fig. 15.
Suppose that after the process settles down, the process gain was suddenly changed from I to 2
at t = 66s as

2

e

(5s+1)°
The transients of the process input and output were recorded as shown in Fig. 15. As shown
before, the process response under gain change is equivalent to a step load disturbance. The
process model was re-estimated using the proposed method in Section 3 and the PID controller
was re-tuned based on the re-estimation using the method in Section 4.3. This resulted in a new
controller

G(s)=

K(s)=045(1+ +0.11s). ' (52)

11.67s
The next step set-point change at # = 228s led to a satisfactory response, as shown in Fig. 15
(solid line). For comparison, if the controller in (51) was still used for the new process, the
resultant response (dotted line) was also displayed in Fig. 15. The improved response due to
adaptation was evident. Assume next that the process was further perturbed with a major

Z‘ change in process structure from 2™ order to 4™ order and with a dead-time reduction to 2.5 as
' 2
G(s) = e, 53
j ) (5s+1)* 3)

An unknown load disturbance then occurred, which was generated by applying.a step signal
through an unknown disturbance channel:
1

(2s+1)*°
The load disturbance responses were utilized to run the adaptation scheme. The process model
was updated and the controller was adjusted to

K(s)=033(1+

d

(34)

1
55
15.323) (35)

to reject the process perturbation. A subsequent setpoint change occurred at ¢ = 5/0s and the
control performance of the new process under controller in (52) was shown in Fig. 15 (dotted
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line). The adaptation performance with the controller of (55) was also shown (solid line) and its
improved response is evident. :

8. CONCLUDING REMARKS

The relay feedback auto-tuning technique has been widely used to automatically tune single-
loop PID controllers and to initialize adaptive controllers. The standard relay tuning technique
has been successfully modified and extended by means of the frequency response approach to
auto-tune advanced controllers. The relay-FFT technique that can be used to identify multi-
points on the frequency response is most promising and impactful as it can be used to auto-tune
dead-time compensators and multivariable controllers. The FFT technique can also be applied
to setpoint changes or load responses to infer any significant changes in the process frequency
response and hence provide information for on-line adaptation. This paper takes stock of these
recent developments and extensions of the relay feedback auto-tuning technique. It is evident
that this tuning and adaptation technique has become mature and ready for wider practical
applications, in tune with the increasing demand for better control performance and also of new
opportunities for implementation especially in modern distributed control.
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20



Fig 10. Multi-loop control system
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Fig. 11,Multi-loop control system step responses
— Proposed method; ---- BLT method
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Fig. 13. Adaptation test.
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K(s) > G(s) O

Fig. 14. A SISO control system with load disturbance.

Fig. 15 Performance of adaptive control
— with adaptation; -— without adaptation
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