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Abstract

This material is made for the course \Wastewater treatment" in the Aquatic and

Environmental Engineering program. The sections which are marked with a � are

not central in the course.
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1 Background

Mathematical models are an important tool also in wastewater treatment. Typical
general applications include

� Design of the process. A model is then helpful in evaluating the impact of changing
system parameters etc. It is, however, fair to mention that often empirical rules
or thumb rules are used in design of wastewater treatment plants.

� Process control. E�cient control strategies are often model based.

� Forecasting. Models can be used to predict future plant performance.

� Education. Models used in simulators can be used for education and training.

� Research. Development and testing of hypotheses.

Below we will derive some simple models for bioreactors (including the activated sludge
process). Such models can help explain some fundamentals properties of bioreactors and
also give suitable background for understanding more advanced models like the IAWQ
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model no 1.

Even if we in this course mainly focus on the use of bioreactors for treatment of wastewa-
ter it is fair to mention that the bioreactors are used in many other applications including
industries concerned with food, beverages and pharmaceuticals. Biotechnology, which
deals with the use of living organisms to manufacture valuable products, has had a long
period of traditional fermentations (production of beer, wine, cheese etc.). The devel-
opment of microbiology, around hundred years ago, expanded the use of bioreactors to
produce primary metabolic products. In 1940's the large scale production of penicillin
was a major breakthrough in biotechnology. Some 20 years ago, the computer technology
started to make advanced process control possible. The development of genetic engineer-
ing have played a major role in creating the current progress in the �eld of biotechnology.

Until recently, the biotechnical industry has been lagged behind other industries in
implementing control and optimization strategies. A main bottleneck in biotechnological
process control is the problem to measure key physical and biochemical parameters.

2 The speci�c growth rate

Many biochemical processes involves (batch) growth of microorganisms. After adding
living cells to a reactor containing substrate1, one may distinguish four phases, see also
Figure 1:

� A lag phase when no increase in cell numbers is observed.

� An exponential growth phase.

� A stationary phase.

� A death phase. The number of cells decreases due to food shortage.

Time

ln(X)

Lag phase Exp. growth

Stationary

phase
Death

phase

Figure 1: Typical bacterial growth curve.

Next we will consider the exponential growth phase. Let X(t) denote the concentration
of biomass population (mass/unit volume). An exponential growth can be expressed as

dX(t)

dt
= �X (1)

1Substrate is de�ned as the source of energy, it can be organic (for heterotrophic bacteria), inorganic
(e.g. ammonia), or even light (for phototrophs).
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The parameter � is denoted the speci�c growth rate, \rate of increase in cell concentra-
tions per unit cell concentrations" ([1/time unit]).

2.1 Derivation

For completeness we give a derivation of (1) commonly used in microbiology literature.

An exponential growth means that the concentration (or number of cells) is doubled
during each �xed time interval. Hence, X(t) can be expressed as

X(t) = Xo2
(t�to)=td (2)

where td is the doubling time and Xo is the initial concentration at time t = to. Loga-
rithming both sides gives

lnX(t)� lnXo

t� to
=

1

td
ln 2 (3)

Let, t! to, the use of the de�nition of the derivative then gives

d

dt
lnX(t) =

1

td
ln 2 (4)

Now, since
d

dt
lnX(t) =

1

X(t)

dX(t)

dt
(5)

we have
1

X(t)

dX(t)

dt
=

1

td
ln 2 = � (6)

which can be written in the standard form (1).

3 The Monod function

Often the growth rate is limited by substrate. The following empirical relation is often
used and is commonly named the Monod function2

� = �max
S

KS + S
(7)

where

�max is the maximum speci�c growth rate
S is the concentration of growth limiting substrate
KS is the half saturation constant

The e�ect of the substrate concentration on the speci�c growth rate is shown in Figure
2.

2It was initially proposed by Michaelis-Menton in 1913 (the relation is therefore also often called
Michaelis-Menton law) and extended by Monod in 1942 to describe growth of microorganisms.
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Figure 2: Illustration of the Monod function. The following parameters are used KS =
0:5 and �max = 1. Note that S = KS gives � = 0:5�max.

As the microorganisms increase, substrate is used. This is commonly expressed as:

dX

dt
= �Y

dS

dt
(8)

where Y is the yield coe�cient, \the ratio of the mass of cells formed to the mass of
substrate consumed". The yield coe�cient can be expressed as

Y = �
dX

dS
(9)

In the literature, it is common to \neglect" the minus sign in the de�nition of Y and/or
to consider the inverse of the yield coe�cient.
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4 Microbial growth in a stirred tank reactor

We will consider the dynamics of a completely mixed tank reactor shown in Figure 3.
The in
uent 
ow rate is equal to the e�uent (output) 
ow rate Q [volume/time]. Hence,
the volume V is constant. The in
uent has a substrate concentration Sin [mass/volume].
No in
uent biomass is assumed.

Inflow Q, Sin

Volume V

S, X Outflow Q, S, X

Figure 3: A completely mixed bioreactor.

The rate of accumulation of biomass is obtained from a mass balance. Assume that the
biomass has a speci�c growth rate of �. The total amount of produced biomass per time
unit in a reactor with volume V is �V X, cf (1). Since the reactor is completely mixed,
the out
ow concentration of biomass is equal to the concentration in the tank. The rate
of change of biomass is then given as

V
dX

dt
= �V X �QX (10)

Now, de�ne the dilution rate

D =
Q

V
(11)

The model (10) can now be written in the following simple form

dX

dt
= (��D)X (12)

For the substrate consumption we assume that the yield is Y , see (8). Paralleling, the
procedure above for the substrate mass balance gives

V
dS

dt
= QSin �

�

Y
V X �QS (13)

Introducing the dilution rate (11) gives

dS

dt
= �

�

Y
X +D(Sin � S) (14)

The model consisting of (12) and (14) form the basis for most bioreactors models in-
cluding the activated sludge process.

Typical extensions of the model are

� The use of a speci�c grow rate which depends on several variables S1, S2, ... Sn
(substrates and nutrients). That is

� = �max

NY
n=1

Sn

KS;n + Sn
(15)
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See, for example, the IAWQ model no 1. Note also that other environmental
factors like pH and temperature a�ect the growth rate. This may be modeled in
a similar way. It is also common that a substance, say Si, has an inhibitory e�ect
at high concentrations. This may be modelled as

�i =
Ki

Ki + Si
(16)

If Si >> Ki then �i is close to zero. A typical example is the modelling of anoxic
growth of heterotrophs. Then Si corresponds to the concentration of dissolved
oxygen in the water.

� The Monod function (7) does not account for any inhibitory e�ects at high sub-
strate concentrations (overloading). Substrate inhibition may be modeled by the
Haldane law

� =
�oS

KM + S +KIS2
(17)

It is clearly seen in (16) that �! 0 as S !1.

� The use of di�erent substrate and biomass compounds. Very often the oxygen
consumption is included in the model.

� Conversion relations between di�erent compounds, i.e. hydrolysis3.

� A decay term for biomass can be added to account for the death of microorganisms.
The speci�c biomass decay rate b is de�ned similarly as the speci�c growth rate �:

b = �
dX(t)

Xdt
(18)

The net growth rate is then �� b and (12) becomes

dX

dt
= (�� b�D)X (19)

Finally, it is worth mentioning that COD (chemical oxygen demand) is often used (g
COD/m3) since it gives a consistent description when oxygen is used as a model param-
eter.

4.1 State space description and stationary points

The model consisting of (12) and (14) can easily be written in a state space form. De�ne
the state space vector as

z(t) =

 
X(t)
S(t)

!

Let X be the output (denoted y(t)) and Sin be the input signal. The model (12){(14)
can now be written as

_z(t) =

 
��D 0
�

�
Y �D

!
z(t) +

 
0
D

!
Sin

(20)

y(t) =
�
1 0

�
x(t)

3In the hydrolysis process, larger molecules are converted into small degradable molecules.
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The model (20) is linear if �, Y , and D are constant. This is rarely the case! The model
can be linearized around a stationary point (also called equilibrium state or �xed point)
Xo, So obtained from solving _z = 0.

Assume D is constant. If we look at X(t) (the �rst component of z), it is seen that a
necessary condition for _z = 0 is

Xo = 0 (21)

or
� = D (22)

The �rst condition (21) is known as wash-out. All biomass will disappear! In most
cases the wash-out condition is undesirable and should be avoided. If D > �, the only
possible stationary point is (21). This means that, initially, more biomass is taken out
from the system than is produced. Note that, the corresponding So for the condition
(21) is So = Sin which is very natural. Why?

4.2 Di�erent 
ow rates*

In the case the in
uent 
ow rate is di�erent from the e�uent 
ow rate, the volume
variation in the reactor need to be taken into account:

dV

dt
= Qin �Qout (23)

where Qin is the in
uent 
ow rate and Qout the e�uent 
ow rate.
A mass balance for the biomass yields

d

dt
(V X) = �V X �QoutX (24)

By applying the chain rule, we have

d

dt
(V X) = X(

d

dt
(V ) + V (

d

dt
X) = X(Qin �Qout) + V (

d

dt
X)

In the last equality, (23) has been used. Rearranging the terms gives

V
dX

dt
=

d

dt
(V X) + (Qout �Qin)X (25)

Inserting (24) in (25) gives

V
dX

dt
= �V X �QinX (26)

For this case, it is feasible to de�ne the dilution rate as

D =
Qin

V
(27)

The model (26) can now be written in the following simple form

dX

dt
= (��D)X (28)

which is the same as (12), given the (more careful) de�nition of the dilution rate in (27).

For the substrate concentration, a similar modeling exercise can be done. The results is
the same as (14).
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5 The activated sludge process

In this section we will apply the basic models derived in Section 4, to a simple activated
sludge process with recycled sludge and wasting (removal of excess sludge) from the re-
cycle line. In the clari�er, the biomass is separated from the treated water. A layout of
the process is shown in Figure 4. In the aeration tank, air 
ow is feed in order to supply
the microorganisms with oxygen. Here, we will not model this oxygen consumption.
Instead it is assumed that enough oxygen is available.

 

Return sludge, Qr, Xr, Sr Excess sludge, Qw, Xr, Sr

Effluent, Qe, Xe, Se

Aeration tank, volume V, X, S

Influent, Qin, Xin, Sin

Clarifier

Qin+Qr, X, S

Figure 4: Schematic representation of a completely mixed activated sludge process. Flow
rates are denoted Q, substrate concentration S, and biomass (microorganism concentra-
tion) X.

In the basic layout in Figure 4 we assume that

Qin = Qe +Qw

That is, the water volume is constant.

Applying a mass balance for the aeration tank depicted in Figure 4, gives

V
dX

dt
= QinXin +QrXr + �V X � (Qin +Qr)X (29)

For the clari�er we assume that

� No biological reactions take place.

� The dynamics can be neglected.

The following mass balance then holds for the clari�er

(Qin +Qr)X = (Qr +Qw)Xr +QeXe (30)

It is often reasonable to set S = Sr = Sw = Se ie the concentration of the substrate is
assumed soluble and una�ected by the sedimentation. This is generally assumed for all
soluble components.

Using (30) in (29) gives

V
dX

dt
= QinXin + �V X � (QeXe +QwXr) (31)

Normally, Xin is much smaller than the biomass concentration in the system and can
therefore be neglected. Hence, we assume Xin = 0. We can thus write (31) as

V
dX

dt
= �V X � (QeXe +QwXr) (32)
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A model for the substrate consumption can be derived in a similar way.
Next, consider the steady state condition (dXdt = 0) and assume a stationary value of
X > 0. We then obtained from (32)

1

�
=

V X

QeXe +QwXr
(33)

The right hand side of (33) is known as the sludge age and is denoted �s ie

�s =
V X

QeXe +QwXr
(34)

Other names for �s is biological solids retention time and mean cell residence time.
The sludge age is the average time that the biomass is in the system. It can be expressed
as

�s =
Total mass of biomass in the aeration tank

removed biomass per time unit

and it is often expressed in the time unit days.

If � < 1
�s
, the consequence is wash out. Then more biomass is taken out from the system

than is produced, cf the discussion in Section 4.1. Hence, the sludge age is one of the
key parameters in the operation of an activated sludge process. For example, nitrifying
bacteria has a relatively low growth rate. It is then necessary to have a high sludge age
to obtain nitri�cation in the system. During winter time one may need a sludge age
around 15-20 days for obtaining nitri�cation.

9


