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_\1' @ Background

/_4_ Hydrophobic Organic Contaminants (HOCs)
» Widespread presence in the environment
« High toxicity (mutagenic and/or carcinogenic)
» Persistent in the environment

HOCs in Subsurface Environments

« High affinity to solid phase

 Slow dissolution/desorption rate

* |naccessibility of removal agents
through fine soils
=» No in-situ remediation technologies




8 @ Objectives

Combination of

« Enhanced HOC solubilization/desorption
* Accelerated HOC transport from fine soils

Goals

e To evauate the electrokinetic/surfactant
remova of HOC from fine soil

Considerations;

 Effects of surfactant (micelles and sorbed
surfactant) on EK properties of fine soll

 Effect of EK on surfactant sorption and HOC
partitioning




\5 € Methodol ogy

—/, Experiments
~  Batch and column experiments

 HOCs: Naphthalene and Phenanthrene

 Surfactants: SDS, Tween 80, and
Hydroxypropyl-B-cyclodextrin (HPCD)

* Soil mineral: Kaolinite

Numerical Model

* 1-D Finite difference method (FDM)

« Two components (HOC and surfactant) in three
phases (water, micelle, solid) - kinetic model
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- Qurfactants in HOCs contaminated
subsurface




Solubility Enhancement Method

© Naph.+SDS, MSR = 0.0632
® Phen.+SDS, MSR = 0.0256
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only measure the saturation limit
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Fluorescence technique
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E Phen & Naph =0.1 & 5 mg/L

B Phen & Naph =0.5 & 15 mg/L
O Phen & Naph =0.8 & 25 mg/L
O Phen & Naph =1.2 & 32 mg/L
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Two-site model
K. =f (HOC type, HOC conc.)
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Sorption isotherms

® Tween 80
B SDS
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HPCD sorption isotherms
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HOC sorption isotherms (K )
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(@) Phenanthrene + SDS

¢ Sorbed SDS =0

A Sorbed SDS =0.459
M Sorbed SDS =13.2
@ Sorbed SDS =27.8

(b) Naphthalene + SDS

¢ Sorbed SDS =0
A Sorbed SDS =0.31
@ Sorbed SDS=13.2

(c) Phenanthrene + Tween 80

@ Sorbed Tween 80 = 0.563
W Sorbed Tween80=12.9
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K and K (K. basis)

Phenanthrene Naphthalene

0 Surfactant Micelle 0 Surfactant Micelle

0 Sorbed Surfactant 0 Sorbed Surfactant
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—6— 0 M NacCl
—m—0.001 M NacCl
—— 0.01 M NaCl
—— 0.1 M NacCl
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Sorbed Tween 80
Concentration (#mollg)

Surfactant sorption

<lonic strength effects>

60

¢ Tween 80 (1.S. = 0 M)
28 - 0 Tween 80 (1.S. = 0.1M) &l 150
ASDS (1S. =0 M) {
o1 | #SDS(S.=01M) i 140
!_’} 130
14 1 |
£ 12
y
" " 110
A
07 TTTTIT T T T TTTT1] T T TTTT1 0

0001 001 01 1 10 100
Aqueous Tween 80 or SDS Concentration (mM)

(*mollq)

Sorbed SDS Concentration
Sorbed SDS (#mol/g)

o

(]

(o)}

w

<pH effects>

O ;o%}.g

K &
Sorbed Tween 80 ¢mol/g)

=

S}




¢

Zeta potential of kaolinite

<pH effect> <Effect of sorbed surfactant>

@ No Surfactant Sorbed Tween 80 Concentration (umol/g)
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Phenanthrene partitioning to sorbed SDS
(K

<l|onic strength effects> <pH effects>
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Effect of pH on structural difference of
sorbed surfactant (admicelle)

Same mass of sorbed SDS on kaolinite - different pH

| opH=316
| mpH=782
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HOC distribution in multiphase
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Predict HOC
Removal

Sandy Aquifer o Effluent HOC
> contaminated with — (&)
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Surfactant breakthrough curve (5 P.V.)

——SDS =3xCMC
SDS=100xCMC

—---—-Tween80 =100 x CMC

—— Tween 80 = 10000 x CMC
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Phenanthrene + SDS (no sorption)
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Phenanthrene + SDS (sorption)
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Phenanthrene + HPCD

—— Water Only
1mM HPCD

--—--10 MM HPCD
BTC of HPCD
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Pyrene + HPCD or SDS

—— Pyrene only
Pyrene + SDS (150 mM)
—— Pyrene + HPCD (10 mM)
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High affinity of sorbed surfactants for HOCs
offers promising alternatives for removing HOCs
from water (barrier walls, landfill liners)

HOC partitioning to sorbed surfactants relative to
surfactant micelles reduces the effectiveness of

SER

SER can be effective for HOCs with higher
retardation factors than those for the surfactants

Cyclodextrin is a promising candidate for SER
applications because of itslow sorption to the
solid phase




\50 Surfactant type for EK operation ?

SDS

* Higher sorption at low pH

» K> K. (and higher K at low pH)
Tween 80
Higher sorption at low pH
<ss > Kmic
Higher zeta potential with sorbed Tween 80
HPCD

« No sorption and no change in zeta potential
* pH-Independent HOC solubilization




\50 Electrokinetic Removal of HOC
Electrokinetic process

Capillary Pore
+ + + + + + + +

Mass and Charge Flow)
] |

-+ Cathode(-)

Clay Surface

Electrolysis

2H,0 - 4e < 4H* + O, (Anode)
4H,0 + 4e < 40H" + 2H, (Cathode)
[H][OH] = K,,




\50 Electrokinetic Removal of HOC

EK Céll
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Voltage changes
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EOF w/o HPCD
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EOF w/ HPCD
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Electrokinetic permeability (k=v../E)

A 5 Volts w/o buffer
& 5 Volts w/ buffer

~
£
S)
= 2
© =
E o
n O
o
SE
5)
o @
Lu..
o 2
m:
o)
C =
gm
z E
[43)
(al

Time (days)




¢

Phenanthrene removal

—@— Water only

—A—1.37 MM HPCD

—— 6.85 mM HPCD w/o buffer
—— 6.85 mM HPCD w/ buffer
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a9 Conclusions
B

Surfactant sorption play an adverserolein
the removal of HOC from solid phase
(increase the HOC retardation)

HOC partitioning to sorbed surfactant is
dependent on the structure of sorbed
surfactant

Electrokinetic combined with HPCD
flushing and buffer solution (or keeping the
PH high) can effectively remove HOCs In
fine soils




Future Research

Microscopic investigation on the structure
of sorbed surfactant as a function of
surfactant dose (monolayer/bilayer) and
solution pH (bilayer type), and
corresponding HOC partitioning capacity

Use of alternative agents for HOC solubility
enhancement (bio-products or DOM)

Development of numerical model to predict
el ectrokinetic properties of soil with time
(EOF, charge flow, pH, and voltage) and
corresponding HOC transport




\50 Future Research

Application of in-situ EK process to remove
migrated HOC toward cathode region

(biodegradation, activated carbon, chemical
degradation)
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