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Abstract

This work considers various techniques to extract information from
the vast amount of data collected at a modern wastewater treatment
plant. If the information extracted is to be considered reliable is highly
dependent on the data screening. Data screening includes validation
and quality improvement of data. Adequate methods for validation,
noise reduction and other forms of quality improvements of wastewa-
ter treatment data are discussed. In order to detect deviations and
disturbances, the measurement variables can be investigated individu-
ally or many variables simultaneously. Single variable detection in-
volves investigation of the basic signal characteristics such as amp-
litude, mean and spread. Usable methods are discussed and examples
are given. In order to detect synergetic e�ects, techniques capable of
investigating several variables simultaneously, are needed. Multivari-
ate statistics based methods, such as principal component analysis
(PCA), principal component regression (PCR) and projection to lat-
ent structures (PLS), are considered and their applicability discussed.
Some possibilities to adapt the methods to the dynamic situation in
a wastewater treatment plant are also outlined.
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Chapter 1

Introduction

Over the last centuries the human e�ects on the hydrologic cycle have
increased. In order to establish convenient environments for living as
well as agricultural and industrial production, arti�cial recycles have
been created. In addition to the necessity to life, water is used for
numerous purposes, for example irrigation, transport of material and
energy as well as cleaning. Whatever the purpose is, processing and
use normally results in pollution of water. The �rst ideas of recov-
ery of water quality were based on physical means, such as dilution
and sedimentation. However, this became precarious as cities became
larger and the importance of hygienic issues increased. Chemical pre-
cipitation was introduced to increase the settleability of the waste.
Biological treatment of wastewater dates back to the late 19th cen-
tury (Orhon and Artan 1994). It started with the trickling �lter or
biological bed, which was developed in the early 20th century (Ham-
mer 1986). Another breakthrough in biological treatment of sewage
was the discovery that supplemental aeration of wastewater resulted
in puri�cation. In the beginning of the 20th century, experiments
were carried out on what was to be called the activated sludge pro-
cess. During the last few decades, wastewater treatment has become
an industry of high complexity. Higher demands on e�ciency in terms
of e�uent water quality and economics are important reasons. More
knowledge on the physical, chemical and biological processes involved
has been obtained, which has resulted in more advanced and e�cient
con�gurations. The ability to measure, analyse and control certain
substance concentrations, 
ow rates and other entities has in
uenced
the design and operation of treatment plants considerably.
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1.1 Motivation

In most process industries, monitoring of the process and the process
output is performed to achieve conformity with quality, safety and eco-
nomic requirements imposed on the production. The level of monitor-
ing di�ers from various �elds and pioneering e�orts can be found in, for
instance, the petrochemical and pharmaceutical industries. Wastewa-
ter treatment industries cannot be considered to be among the most
diligent and systematic users of monitoring. Up to today, monitoring
in wastewater treatment has mostly focused on a few key e�uent en-
tities upon which regulations are enforced by governments or other au-
thorities. However, as more entities are regulated and the regulations
become more rigid, the demands on the operation of the processes
increase. Minimising the use of resources, for instance, energy, chem-
icals and man power, and decreasing the amount of sludge products
produced, have also become important issues in order to adapt the
wastewater treatment processes to the ideas of sustainability. The de-
velopment towards resource e�cient and sustainable systems has led
to an increased need of process knowledge. To obtain more know-
ledge, new and upgraded wastewater treatment plants are equipped
with measurement systems for collecting data from a large amount
of entities. The measurements are used for monitoring the process
and the quality of the process output. Measurements are also used
for control directly in control loops or indirectly as a basis for manual
control actions. In large wastewater treatment plants the data col-
lecting system may include hundreds or even thousands of measured
entities.

An increased amount of data calls for techniques to handle large data
sets on-line. The methods for monitoring used today are normally
based on time series charts, where the operator can view the di�erent
variables as historical trends. It is hard to keep track of more than a
few variables and when the number of monitored variables increases,
it is di�cult to draw any conclusions. To be able to monitor the
process behaviour e�ectively, an extraction of important information
must be performed from the large number of measured variables, and
this information must then be presented in an understandable and
interpretable way.
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1.2 Objectives and Contributions of the

Thesis

The main objective of this thesis is to investigate the �rst element
in the information extraction concept of detection, diagnosis and con-
sequence analysis (D2C) of disturbances, faults and deviating events,
in on-line measurements from wastewater treatment processes. An in-
vestigation of possible methods for detection implies that monitoring
methods used in other theoretical and practical areas are investig-
ated and adapted to suit the demands of wastewater treatment pro-
cess monitoring. Important features of the processes that have to be
considered are, for instance, data quality, process dynamics and com-
prehensibility for operators. The objectives of this thesis are given
below.

� Provide techniques on how measurement data can be validated
and how the quality of data can be improved. This is important
to obtain reliable analysis results. The improvement of the data
quality should only marginally in
uence the process information
content of the data.

� Enlighten and demonstrate methods to extract information from
single variables and to show the applicability of the methods for
detection of disturbances. Single variable analysis involves in-
vestigation of amplitude, spread and short as well as long-term
variability. It also involves examination of the frequency charac-
teristics of measurement variables.

� Investigate the applicability of and adapt multivariate statistics
to the needs of wastewater treatment monitoring. The meth-
ods should be able detect deviations and isolate the variables
responsible for the deviations. The investigated methods should
also provide techniques for easy interpretation.

� As a subordinate objective, the topics discussed above should be
presented in a way that makes them understandable for people
with di�erent backgrounds. Thus, the thesis should include basic
explanations for most of the methods described, but also provide
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an adequate bibliography if more information on di�erent meth-
ods and techniques is required by the reader.

The objective that people with di�erent backgrounds should be able to
read and appreciate the thesis, implies that some readers will consider
some parts of the thesis as obvious and perhaps naive. However, since
the thesis is written with process engineers as much as the research
community in mind, the extra e�ort to fully explain the basis of meth-
ods and techniques presented is worthwhile. The main contributions
of this thesis are listed below.

� Methods to improve measurement data quality by digital �ltering
adapted to the needs of wastewater treatment data analysis, are
presented

� Some aspects of single variable analysis of wastewater treatment
data are presented. Investigation of both time and frequency do-
main characteristics of a measurement signal is discussed together
with what information that can be obtained when performing
such analyses.

� The applicability of multivariate statistics on wastewater treat-
ment data is shown, by examples on simulated and real process
data. Techniques for displaying information in a comprehensible
way are presented.

1.3 Outline of the Thesis

In Chapter 2 some basic concepts in automation and control of wastewa-
ter treatment plants are discussed. Information extraction from on-
line measurements are discussed on a general level in Chapter 3.
Chapter 4 provides methods and techniques for data screening, that is
the validation and reconstruction of erroneous data. Filtering, outlier
detection and handling of missing values are topics discussed in this
chapter. Investigation of individual measurement signals is discussed
in Chapter 5. Here, signal features such as amplitude, spread, variab-
ility and frequency are used to detect deviations in signals. Chapter
6 is devoted to the theory of multivariate statistics (MVS) and how
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MVS can be used for multivariate monitoring of processes. Some prac-
tical aspects on building multivariate monitoring models are discussed
together with what information can be achieved. The concept of op-
erational modes and how such modes can be used for detection and
control, is also discussed. In Chapter 7 multivariate monitoring res-
ults on simulated data are presented and in Chapter 8 results from
monitoring real wastewater treatment plant data are presented. Con-
clusions and a summary of results are presented in Chapter 9, which
also contain a discussion on implementation aspects and new topics
of research in the direction of this thesis.

1.4 Publications

The author of this thesis has earlier presented a few reports and art-
icles, which are all in line with the study presented here. Ros�en and
Olsson (1997a) treats the transformation from data to information and
discusses some practical aspects of data collection and information ex-
traction. Ros�en and Olsson (1997b) is a report on analysis of on-line
data from Pt Loma wastewater treatment plant in San Diego, USA.
The incentive of the Pt Loma study was optimisation and increased
knowledge of the chemical precipitation at the plant in order to meet
more stringent requirements from the government of California. Some
early results of detection and isolation of disturbances in wastewater
treatment systems are available in Ros�en and Olsson (1998). Time
delay related issues and fault propagation in multilevel 
ow models
(graph-based diagnosis) are discussed in Ros�en (1998).





Chapter 2

Basic Concepts

In this chapter some basic concepts are presented. Some important
de�nitions are presented in order to avoid misconceptions caused by
di�erent backgrounds of the readers. The principles of wastewater
treatment are discussed brie
y for the sake of uninitiated reader. The
chapter is concluded by a discussion on the di�erences between static
and dynamic process descriptions.

2.1 Useful De�nitions

In order to allow the reader to become acquainted with the termino-
logy used in this thesis, some basic de�nitions are presented.

On-line and O�-line Analysis

In a real monitoring situation, the measurement variables are known
up to the present value. No information on the future is available. The
analyses carried out can only be based on historic and present values.
In this thesis such an analysis is referred to as on-line analysis or causal
analysis. However, it is sometimes valuable to investigate historic time
periods of variable measurements in order to obtain information on the
process. In such cases, the analysis must not be causal, since the future
is known. Analysis of historic time periods is referred to as o�-line
analysis and may be either causal or non-causal.
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Measurement Sampling

Measurements are collected in series. A single measurement value
is denoted as a sample. The distance in time between every sample
is the sampling time. If several single data series are investigated
simultaneously, that ismultivariate data analysis, a sample refers to all
measurements at a speci�c point in time. Thus, a multivariate sample
consists of a single measurement from every variable considered. In
this thesis, no distinction is made between a sample and a multivariate
sample. Consequently, the term sample is also used in multivariate
analysis, even though the correct term would be multivariate sample.
In matrix form, a sample corresponds to one row of the data matrix.

Notation of Measurements

In this thesis, most of the variables of the processes discussed are
normally described in vector and matrix format. In order to easily
separate scalars, vectors and matrices the following commonly used
standard of notation is used. Scalars are written in italic lower case,
e.g. x. Vectors are written in bold lower case, e.g. x, and matrices
are written in bold capitals, e.g. X. Input data to a model or �lter
are normally denoted by x, x or X, while model or �lter output are
denoted by y, y or Y. x(k) or y(k) refers to the input or output
variable value at time k. This can also be written in subscript, i.e.
xi or yi. However, some deviations occur due to di�erent tradition in
various �elds.

Estimation Terms

There is some confusion due to di�erent conventions in the use of
the terms smoothing, �ltering and prediction. The terms seem to be
used di�erently depending on people's backgrounds. In this report the
terms have been used in the same way as by �Astr�om and Wittenmark
(1997). Assume that an estimate ŷ(k +m) is to be constructed from
Xk, where Xk is a time series of k measurements such that Xk =
fx(i)ji � kg. Then it is called
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Figure 2.1 Smoothing, �ltering and prediction (�Astr�om and Wittenmark 1997).

� smoothing if m < 0,

� �ltering if m = 0 and

� prediction if m > 0.

The distinction between smoothing, �ltering and prediction is illus-
trated in Figure 2.1. This implies that if the term estimation is used
nothing is said about the causality of the estimate.

2.2 Wastewater Treatment Systems

For readers not familiar with wastewater treatment systems a short de-
scription is given. Some basic ideas behind modern wastewater treat-
ment are discussed. For further reading on wastewater treatment in
general Henze et al. (1995a) is a good reference. For control and auto-
mation in wastewater treatment the reader is referred to Olsson and
Newell (1998), Van Impe et al. (1998) or Andrews (1992).

Wastewater Treatment Processes

Wastewater treatment processes aim at removal of pollutants in the
wastewater by transformation and separation processes. This can be



10 2. Basic Concepts
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Biological Reactors 
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Figure 2.2 The basic layout for a typical wastewater treatment plant using
physical, biological and chemical treatment.

achieved in many di�erent ways, depending on the characteristics of
the wastewater, the desired e�uent quality and other environmental
and social factors. Traditionally, the wastewater treatment processes
are divided into physical, chemical and biological treatment, which
are used in many di�erent combinations. Figure 2.2 shows the prin-
cipal layout of a typical treatment plant with physical, biological and
chemical treatment.

Physical treatment involves, for instance, screens, sedimentation, 
ot-
ation, �lters and membrane techniques. Sedimentation implies that
particles heavier than water are settled in tanks and separated from
the water phase. In 
otation, or dissolved air 
otation (DAF), particles
are separated from the water phase by using dissolved air in pressur-
ised water. When the pressure decreases, the dissolved air is released
as small air bubbles, which attach to and lifts the particles to the
surface of the tank.

Chemical treatment involves coagulation and 
occulation of colloidal
and �nely suspended matter as well as precipitation of some dissolved
matter. Typical chemicals used are ferro, ferri and aluminium salts as
well as lime. In order to further increase the e�ciency of the process,
coagulation aids such as polymeers can be used. The chemical treat-
ment also includes separation of the 
occulated matter as a chemical
sludge.

Biological processes are based on biological cultures, consisting of bac-
teria, unicellular life forms and even some multicellular life forms. The
organic pollutants in the wastewater serve as food and energy sources
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for the microbiological culture as it grows. The microbiological culture
can either grow suspended in the water phase or in a �xed position on
surfaces as a bio�lm. Suspended growth is used in so called activated

sludge (AS) reactors, while the �xed growth is used in �xed bed react-

ors. A combination thereof is, for instance, suspended carriers, where
the bio�lm grows on small carriers, which are suspended in the water
phase. Biological treatment aims at having a certain amount of mi-
crobiological culture in the process. In an AS reactor this is achieved
by separating the sludge from the water phase in a separation unit
and then returning the sludge into the biological reactor. The excess
sludge created in the process is removed and treated in sludge treat-
ment processes, which stabilise and dewater the sludge. Stabilisation
of sludge makes it biologically safe and often usable as fertiliser. The
reduction of organic matter in a biological treatment plant can be 90%
or more.

Automation and Control in Wastewater Treatment

Today, many treatment plants all over the world are equipped with
data collecting systems. These systems are used for monitoring, auto-
matic control and as a decision base for operational strategies. The
data collecting systems di�er from plant to plant and from supplier
to supplier but common sampling rates (in Sweden) are 10 and 12
per hour, i.e. every sixth and �fth minute, respectively. The sample
values are often an average over the sampling period, during which
some sensors continuously deliver values and others perhaps only once
a minute. All sensors are a�icted with time lags, but normally these
are short in comparison with the time constants of the system. Some
variables are controlled automatically with controllers. Oxygen level
in aerated basins, return and recycling 
ow rates and adding of chem-
icals are simple examples of controlled variables. More sophisticated
control can be found in some treatment plants, but is still not com-
mon. This is due to a number of factors. Since the process is changing
slowly it is possible to use manual control. The lack of accurate mod-
els of wastewater treatment processes makes it hard to implement
model based control, and of course, a conservative attitude towards
automatic control also contributes.
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Process Dynamics

A wastewater treatment process consists of many subprocesses with
dynamics of various time scales. Some variations are slow, for instance
sludge dynamics and temperature, with time scales of days, week and
even months. The daily variation in in
uent 
ow rate and substance
concentrations is perhaps the most dominant variation. However,
there are even faster variations present, such as dissolved oxygen (DO)
dynamics and hydraulic shocks.

The di�erent time scales make it di�cult to analyse the cause-e�ect
relationships, especially when recirculation and other feedback loops
are present. Therefore, it is important to establish the dynamic beha-
viour of the process and adapt the analysis methods in accordance to
the dynamics.

2.3 Process Descriptions

A process description may appear di�erently depending on the process
and the method used to describe the process. This thesis focuses on
input-output descriptions or models. Input-output models are some-
times called empirical, statistic or external models. The main feature
of input-output models is that they do not have internal states. In-
stead they are based on empirical relationships between the input and
output variables of the model. However, there are other types of mod-
els structures available. Mechanistic (or internal) models are based
on fundamental knowledge of mechanisms that a�ect the modelled
process. When the information of the process is good, models based
on elementary principles are preferable. However, this is not always
the case, and combinations of empirical and mechanistic models are
common. In this thesis, only input-output models are considered.
There are some convenient abbreviations used for input-output mod-
els depending on the structure of the model. Single input-single output
(SISO) implies that the model describes a single output variable us-
ing a single input variable. In analogy to this, multiple input-multiple
output (MIMO) models describes several output variables based on
several input variables.
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A process can either be considered to be static or dynamic. In a
static process description, the process output is only dependent on
the present state of the process. However, industrial processes, such as
wastewater treatment processes, are normally dynamic processes. As
opposed to static process descriptions, the process output of a dynamic
process description is dependent not only on the present state of the
process, but also on the history of the process. A change of the process
conditions cannot be seen immediately, but takes some time.

Input-Output Processes

As the name suggests, the variables of an input-output system consist
of input variables and output variables. Input variables are some-
times called independent variables and the output variables are, con-
sequently, sometimes called dependent variables. In this thesis inde-
pendent variables are denoted X and dependent variables are denoted
Y . The direction of causality is from the independent to the depend-
ent variables. The independent variables decide the outcome of the
dependent variables.

The system de�nition determines which variables are independent and
dependant, respectively. For instance, if the aim of a model is to es-
timate the pH level in the biological reactors, then the variables that
describe the in
uent wastewater characteristics are independent vari-
ables. The pH level is the dependent variable in this case. However,
if the aim is to estimate the e�uent pH level, the variables measured
in the biological step (including the pH level) may be added to the
in
uent variables as independent variables. As the system de�nition
changes independent variables may become dependent variables.

Dependency between Measurements

A measurement is said to be time independent if it does not depend
on preceding (or successive) measurements. This is seldom true for a
process variable. Instead process variables are normally time depend-
ent variables. The degree of dependency between the current sample
y(k) and a historic sample y(k��) can be expressed as autocovariance
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Figure 2.3 The autocorrelation function of DO measurements (left) and
in
uent ammonia measurements (right). The time unit is
samples, corresponding to 5 minutes.

or autocorrelation, which is the normalised autocovariance. In Figure
2.3, the correlation is plotted as a function of � = �30 : : :30 (� is in
unit samples, which corresponds to 5 minutes in this case). To the left
the autocorrelation function of the dissolved oxygen (DO) concentra-
tion level is displayed. It can be seen that the correlation is low when
� 6=0. Thus, the measurement can be considered as independent. The
reason for this is that the DO level is controlled to a set point value.
The variations in the signal is noise of high frequency, which can be
considered independent. To the right, in Figure 2.3 the autocorrela-
tion function of in
uent ammonia is shown. The covariance is here
high even though � increases. This implies that the measurements
are dependent over a time span of many samples. Dependent meas-
urements indicate that the process they represent is time dependent,
i.e. dynamic. Most process variables display autocorrelation functions
similar to the right function in Figure 2.3.

A characteristic feature of dynamic processes is that the change in
an input variable does not in
uence the output variables immediately.
This can be expressed by the cross-covariance or crosscorrelation func-
tion. Let x be an input variable and y be an output variable of a pro-
cess. The crosscorrelation function expresses the dependency between
x(k) and y(k + �). In Figure 2.4, the crosscorrelation function of the
in
uent 
ow rate (x) and the air valve position of an aerator in a
biological reactor (y) is plotted.
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Figure 2.4 The crosscorrelation function in
uent 
ow rate and air-valve
position of the aerator in biological reactor. The time unit is
samples, corresponding to 5 minutes.

The maximum correlation is here slightly more than 0.6 at � =37.
This means that it takes on an average 37 samples (�3 hours) for
a change in the input to fully propagate to the output. The high
crosscorrelation values for � close to � =37, indicate that the variables
are time dependent. If the variables were time independent, but still
mutually correlated, the crosscorrelation function would display a peak
at � =37 and values close to zero for � 6=37.

Static and Dynamic Process Descriptions

In order to describe a process, static and dynamic descriptions can
be used. In many cases, it is possible to achieve good results with
a static description, even though the true process is dynamic. It is
possible to make use of the fact that in certain time scales, a dynamic
process may be considered to be quasi-stationary. Quasi-stationary
means that most variables can be either considered constant, due to
slow variations in comparison with the time scale of interest, or equal
to their mean if the changes are much faster than the time scale of
interest.
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Let X be the process input and Y be the process output. A static
process description can the be expressed as:

Y (k) = fp(X(k)) (2.1)

where fp is the process function and k is the point in time. If there
are time delays between the input and the output variables have been
established using, for instance, crosscorrelation analysis, the delays
can be incorporated in the process description as:

Y (k) = fp(X(k � d)) (2.2)

where d denotes the delay. If a MIMO or MISO system is considered,
the delay may be di�erent for the various variables. The description
is now dynamic in the sense that a change in the input variable does
not immediately yield a change in the output variable. However, since
the change is momentary when the time corresponding to the delay
has passed, process dynamics is normally not well described by this
model description. An exception is the concentration dynamics in a
true plug 
ow process. In this thesis, models of the form expressed by
Equation 2.2 are referred to as static with time lag.

A better dynamic description of a process take both present and his-
toric measurements into consideration. The process can be expressed:

Y (k) = fp(X(k); X(k � 1); : : : ; X(k � l)) (2.3)

where l is the time required until the contribution of the historic states
to the present state are negligible. As discussed above, time delays
may be present. They can be introduced in the description as:

Y (k) = fp(X(k � d); X(k � 1� d); : : : ; X(k � l � d)) (2.4)

where d again denotes the delay.



Chapter 3

Detection, Diagnosis and

Consequence analysis

In this chapter the use of computers to extract information from on-
line measurements is discussed. The demands on process knowledge
and controllability of processes have increased rapidly over the last few
decades. Higher requirements on product quality, production costs,
safety and production 
exibility are enabled, as the computer control
and process knowledge develop. The use of computers for control and
process information extraction is today widely spread in all industrial
�elds.

3.1 Why Computer Aided Control and

Operation?

A lot of money is being invested into measurement and monitoring sys-
tems in most process industries today and the wastewater treatment
industry is no exception.

System Complexity

The operation and control of a modern process industry, such as
wastewater treatment plants, is often associated with high complexity.
The complexity is caused by, for instance:

� the vast source of disturbances, e.g. changing ambient conditions
and mechanical breakdowns;

� the large amount of data collected by the measurement systems;



18 3. Detection, Diagnosis and Consequence analysis

� dynamic conditions caused by changes in the in
uent wastewater;

� complex cause-e�ect relationships caused by, for instance, the use
of biological cultures, recirculations and control actions.

Thus, early detection of disturbances, methods to handle large data
sets, studies of the dynamic process behaviour and tools for track-
ing complex cause-e�ect relationships are important issues in order to
operate and control the process in the most e�cient manner.

Many of the issues listed above are suitable for computerised investig-
ations and analyses. Some tasks can be more or less fully automated,
while others are based on interactions between the operators the com-
puters. To introduce automatic or semi-automatic operation of com-
plex tasks and to present the result in a comprehensible way, may lead
to a complexity reduction of the basis for operational decisions.

Computational Capability

Information extraction often involves intensive calculations. As the
amount of available data increases, the computational capability be-
comes important. Computers are made for numerical computations
and are superior to man in that sense. To use computers for informa-
tion extraction makes it possible to process data in a way that would
be impossible if the calculations were to be carried out manually. Usu-
ally, a common PC of today is adequate to perform the calculations
required.

Consistent Monitoring

Many of the tasks involved in information extraction of process data
ought to be carried out consistently. For instance, monitoring in
u-
ent wastewater characteristics must be done continuously in order to
detect disturbances in the in
uent wastewater. This cannot be done
manually, since the disturbances may occur during times when the
plant is unmanned. Monitoring of measurements is also a task that
man �nd monotonous, especially if the disturbances are rare.
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Figure 3.1 The information 
ow and processing in a wastewater treatment
plant.

3.2 Elements of Information Extraction

If the information available from disturbances is to be taken care of, a
strategy for information extraction is needed. There are some elements
that have to be included in such a strategy:

� detection and isolation;

� diagnosis;

� consequence analysis.

The elements can be used separately, but in order to extract as much
information as possible from, for instance, a disturbance event, they
must all be carried out. Figure 3.1 illustrates the information cycle
at a wastewater treatment plant. Since the detection, diagnosis and
consequence analysis tasks are signi�cantly di�erent by their nature,
the methods for achieving the tasks are based on di�erent ideas and
methodologies.
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 Numeric Domain

 Symbolic Domains

Figure 3.2 A principal view of the available information in a system. The
numerical domain is the core of the system. The symbolic
domains can be more or less extensive.

Detection and Isolation

The detection part of the information extraction concept involves de-
tecting deviating situations. Detection is thus an important part be-
cause if nothing is detected nothing can be learned. The detection
can range from a simple binary information on, for instance, a pump
status to more sophisticated information on the current process status,
including many variables and estimates of variables. Whatever the
detection task is, the time is important if countermeasures are to be
taken. The faster the operator will be noti�ed, the greater is the
chance of saving the process if a serious disturbance hits the process.
Thus, the capability to early warn the operator is of highest the pri-
ority.

When a disturbance is detected and con�rmed, the task of �nding the
cause begins. The �rst step is to isolate what has been detected. To
�nd out what sensor reading or estimate is exceeding its pre-set alarm
value or to �nd out what binary operation that has failed, is called
isolation1. To isolate the fault is to �nd what triggered the alarm,
but not necessarily to determine what caused the alarm. The isola-
tion task will never exceed the boundaries of the monitoring system.
An example is when a pump failure is detected. The isolation will
determine what triggered the detection, which in this case could be

1In the literature, the term diagnosis is often used synonymously to isolation.
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an indicator indicating whether the pump shaft is turning or not. But
the status "pump not turning" is not the cause of the problem. The
cause may be a loose electrical wire or clogging of the pump. It is the
task of diagnosis to determine the cause. Thus, detection is limited
to the numerical domain of the process system (see Figure 3.2). A
general description of detection and isolation of faults can be found in
Kramer and Mah (1994) or Davis et al. (1996).

The methods for detection must be able to process large amounts of
data, collected as measurements. There are several di�erent steps
involved in detection:

� Firstly, the data have to be screened, in order to obtain good
data quality. Data screening involves, for instance: noise reduc-
tion; detection and correction of outliers, i.e. measurements not
representative for the physical process; estimation of missing val-
ues; trend removal. This is described in Chapter 4.

� Secondly, analysis of individual measurements (single variable de-
tection) can be carried out in order to establish deviations from
the normal measurement region. In addition to amplitude, loca-
tion and spread, the frequency domain of the measurement signal
can be analysed. Single variable detection is discussed in Chapter
5.

� Thirdly, the relations between process variables and their in
u-
ence on the output or quality variables must be investigated. This
must be done with methods capable of simultaneously analyse
multiple variables. Multivariate analysis is discussed in Chapter
6 and examples of multivariate detection are given in Chapters 7
and 8.

The focus of this thesis is directed towards the third step, that is
multivariate methods for detection. However, this does not mean that
the �rst two steps are less important.
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Diagnosis

Diagnosis of a disturbance is about �nding the cause-e�ect relation-
ships that lead from the deviation in isolated variable/variables to the
mechanism that has caused the change. Consequently, the de�nition
of system boundaries is an important issue. The system boundaries
can di�er depending on who is carrying out the diagnosis analysis. For
instance, if the operator can make a call to a pump repair service, the
diagnosis ends at the isolation. The operator does not have know why
the pump is not working. However, if the operator has to repair the
pump himself, then the diagnosis must be carried a bit further until
the cause of the pump breakdown is determined. Thus, the meaning
of diagnosis used in this thesis is that it is primarily a qualitative task,
carried out outside of the numerical domain de�ned by the measure-
ment system (see Figure 3.2). This also implies that diagnosis is not
suitable for complete automation. Instead the experience and interac-
tion of man are vital for a computerised diagnosis system to perform
well. The diagnosis task can be semi-automatic.

An approach to diagnosis analysis that has proven successful is graph-
based diagnosis. Graph-based diagnosis implies that the causal rela-
tions are described by nodes and connections in networks (see Figure
3.3). A function or entity is described by a node and the mutual
relations of nodes are represented by connections. Two di�erent ap-
proaches can be distinguished. The failure space approach focuses on
possible failures or disturbances and their propagation through the
process. As the complexity of the process increases, the failure space
modelling becomes di�cult, as the size of the failure space grows rap-
idly. This is due to the almost inexhaustible source of failures or
disturbances in a complex process. If instead the success space is
modelled, the number of successful operational modes are limited and
often just a few. In success space modelling the desired functions and
goals of the process are modelled and every unful�lled function or goal
indicates a failure or disturbance. The success space approach results
in less complex and more comprehensive cause-e�ect relation models
of the process (Lind 1990; Larsson 1994).
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Figure 3.3 An example of graph-based diagnosis. A success-space rep-
resentation of a wastewater treatment process. The compon-
ents included are: goals, functions and connections. An
example: goal G1 (maintain nitri�cation) is in
uenced by goal
G2 (maintain autotrophic growth). Goal G2 is in
uenced by,
e.g., functions So (DO) and Snh (ammonia). Function So is
in
uenced by goal G11 (oxygen transfer) and so on.
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Consequence Analysis

When a failure or disturbance has been detected and diagnosed, the
consequences for not yet a�ected parts of the process must be invest-
igated. This is important in order to take the right precautions or
activate the proper countermeasures. Consequence modelling can be
carried out on di�erent abstraction levels. Depending on the nature
of the failure or disturbance, quantitative simulations in the numer-
ical domain can be complemented with qualitative investigations of
the cause-e�ect relationships. Mechanistic models based on di�eren-
tial equations can be used for quantitative simulations, or predictions,
whilst qualitative prediction can be achieved by shifting the chrono-
logy and using the diagnosis model "backwards". Consequence ana-
lysis can be carried out in both the symbolical and numerical domain,
depending on the desired granularity of the result.

D2C

The combination of detection, diagnosis and consequence analysis of
disturbances, faults and other deviating events form a basis for an
information extraction concept, which we call D2C.



Chapter 4

Data Screening

This chapter emphasises the task of processing data to establish the
validity and quality of data consisting of variable measurements. On-
line measurements are di�cult. This is due to the almost inexhaust-
ible sources of disturbances. The sources may consist of, for instance,
electromagnetic interference, hostile measuring environment, defect-
ive installation, insu�cient maintenance or erroneous use and hand-
ling of the measuring system. Therefore, before any analysis of the
measurements can be carried out, data screening is crucial. Corrupt
measurements must be found and dealt with, so that false conclusions
based on the measurements are avoided. Proper validation of data
quality is essential to achieve reliable results. Corrupt data can be
found and replaced/removed by di�erent methods depending on the
situation and the nature of the disturbance or fault. Computers make
it possible to treat large amounts of data digitally and thereby the
quality of the data increases. However, one should never forget the
device: "garbage in - garbage out". Digital processing of data can-
not perform miracles. Therefore, the quality disturbing factors must
be kept at a minimum and maintenance and handling be performed
professionally. Further reading on data screening within the �eld of
biotechnology can be found in Hellinga et al. (1998).

4.1 Corrupt Data

In order to achieve good analysis results, the validation of the col-
lected measurements is important. The measurement data must be
representative for the investigated process. A continuous critical data
validation gives information on the data quality and the condition of
the measurement system. There are many di�erent methods for data
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4.2 Noise Attenuation

Noise - that is disturbances found in the measurement signal that do
not have a physical interpretation in the actual process - is a common
problem in almost every measurement system. Measurement noise is
caused by electromagnetic disturbances, the design of the measuring
devices, the methods used and so on, and is hard to avoid. The noise
can be further ampli�ed by incorrect installation, poor maintenance
and changes in the ambient environment in which the measurement
system is located. A typical example of changes in the environment is
when temporary mechanical equipment or heavy electrical machinery
has been located too close to the measuring device. Cleaning, calibra-
tion and exchange of worn parts are also important, in order to keep
the noise level on an acceptable level.

Irregularities within the process can also be considered as noise. Pro-
cess noise is the noise which cannot be explained by variations in
the measurement or communication system. Process noise may be
caused by inhomogeneous mixing, random variations of, for instance,
air bubbles and other non-measurable causes. For noise reduction of
measurement data �lters can be applied. Depending on where in the
measurement system the �lters are applied, they can be either ana-
logue or digital. Analogue �ltering is commonly used in sensor devices
for basic noise reduction, while digital �ltering is used to achieve a
wide variety of outputs in computers. Digital �lters allow for a smart
compromise between signal information and noise corruption. Only
the basics of digital �ltering will be discussed here but further reading
on digital �ltering can be found in, for instance, Krauss et al. (1994)
or Proakis and Manolakis (1992).

Digital Filtering

Digital �ltering is a large discipline and only the basics for noise re-
duction purposes will be discussed. Digital �ltering of data is almost
exclusively a question of reconstructing or estimating a certain sample
value based upon preceding (or succeeding) values in the same data
series. As illustrated in Figure 4.2 di�erent �lters are used to achieve
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Figure 4.2 Di�erent �lters are used for di�erent purposes.

signals suitable for di�erent purposes and the resulting signals may
di�er signi�cantly depending on the �lter characteristics. The digital
�lters presented here are simple but e�ective as they are easy to im-
plement. There are more sophisticated �lters, such as adaptive �lters
that can be used with good result. A moving average adaptive expo-
nential (MAX) �lter for wastewater applications has been proposed
by Bergh (1996). In the applications described in this thesis, median
�lters are mostly used, due to their ability to preserve discontinuities
(Piovoso et al. 1992).

Linear Filters

For noise reduction low-pass �lters are usually used. Measurement
noise is normally of much higher frequency than the process variations
themselves and, therefore, it is possible to �lter the signal without
losing too much information. Low-pass �lters allow, as the name sug-
gests, low frequencies to pass while high frequencies are removed. A
linear causal digital �lter (i.e. a digital �lter using only the present
and historic measurements to calculate the �lter output) can be writ-
ten in a general form as (Olsson and Piani 1992):

ŷ(k) = �a1ŷ(k � 1)� a2ŷ(k � 2)� : : :� anŷ(k � n)

+ b0y(k) + : : :+ bmy(k �m) (4.1)

where ŷ is the �ltered signal and y is the measurement signal. De-
pending on the choice of the parameters a1; : : : ; an, b1; : : : ; bm, n and
m, the �lter will be given di�erent characteristics. If at least one of
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the a coe�cients is non-zero and only b0 is non-zero, it is an autore-
gressive (AR) �lter. This implies that the �lter has an in�nite impulse
response (IIR), i.e. the �lter has an in�nite "memory". If all a coe�-
cients are equal to zero the �lter is a moving average (MA) �lter. The
impulse response of an MA �lter is �nite and MA �lters are sometimes
called �nite impulse response (FIR) �lters. The combination of AR
and MA �lters are called ARMA �lters.

MA �lters are widely used as low-pass �lter. The MA �lter forms
the weighted mean of a certain number of samples within a moving
window. It can be written as:

ŷ(k) = b0y(k) + : : :+ bmy(k �m) (4.2)

where m is the number of previous measurements used to calculate
the �lter output. If the weights (i.e. the b parameters) are distributed
equally over the samples and the sum of the weights are equal to one,
then Equation 4.2 becomes:

ŷ(k) =
1

m+ 1
(y(k) + : : :+ y(k �m)) (4.3)

A major drawback of the MA �lter is the delay, which if m becomes
large, is considerable. In o�-line situations the delay can be com-
pensated for, but in on-line situations the average delay will be m=2
samples.

Another simple and widely used low-pass �lter is the exponential �lter.
The �rst-order exponential �lter can be expressed as:

ŷ(k) = �ŷ(k � 1) + (1� �)y(k) (4.4)

where � has a value between 0 and 1. When � is close to one, the noise
sensitivity of the �lter is low at the expense of a large time constant

and thus poor agreement with the signal variations. The time constant
of a signal is de�ned as the time required to reach approximately two
thirds of the �nal value after a step change in the �lter input and
is used as a measure of the �lter speed. Figure 4.3 shows the e�ect
of di�erent �-values on a step change. There is a time delay when
using exponential �lters as well, and this delay increases and becomes
severe when signi�cant noise reduction is desired. Digital �lters of
higher order, i.e. �lters using more than one historic estimate to



30 4. Data Screening

0 100 200 300 400 0 100 200 300 400

0 100 200 300 400 0 100 200 300 400
 time (samples)

si
gn

al
 a

m
pl

itu
de

time (samples)

si
gn

al
 a

m
pl

itu
de

time (samples)

si
gn

al
 a

m
pl

itu
de

time (samples)

si
gn

al
 a

m
pl

itu
de

Figure 4.3 The e�ect on the noise using di�erent �-values: � = 0 (upper
left),� = 0:5 (upper right),� = 0:9 (lower left) and � = 0:97
(lower right) (arti�cial data).
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Figure 4.4 The original signal and the �lter output from an exponential
�lter and a Butterworth �lter of the eighth order (Real pH
measurements from a direct precipitation plant).

calculate the output, compensate for this to some extent, but there
will always be a compromise between noise reduction and time lag.
In o�-line situations, where the �lter does not have to be causal, it is
possible to achieve high noise reduction with no time lag. In Figure
4.4, the original signal, the output from a �rst order exponential �lter
and a higher order Butterworth (Krauss et al. 1994) �lter are shown.
The time constants of the exponential and the Butterworth �lters are
approximately the same.

Median Filters

A completely di�erent �lter not based upon Equation 4.1 is the median
�lter. A median �lter is simply a moving time window in which the
median of the samples is equal to the output.

ŷ(k) = median(y(k); y(k � 1); : : : ; y(k � l)) (4.5)
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The median is the middle measurement if the measurements are sorted
in descending or ascending order:

median(y) = y(i); i =
1

2
(m+ 1) (4.6)

if m is an odd number and

median(y) =
y(i) + y(i+ 1)

2
; i =

1

2
m (4.7)

ifm is an even number. The median �lter in Equation 4.5 is causal, but
non-causal �lters can also be constructed. Median �lters can be used
for coarse and fast removal of outliers if their duration is shorter that
half the �lter length (i.e. the number of points used to calculate the
�lter output). Another appealing feature of the median �lter is that
it does not smooth the shape of a step change. The noise reduction
achieved by a median �lter is limited, unless a large time window is
used and the output is constructed from numerous samples. Causal
median �lters also introduce a time delay, for which it is possible to
compensate in o�-line (non-causal) situations. Figure 4.5 shows the
output of a median �lter when a step change and a few single outliers
are introduced. Notice the di�erence in time lag between the causal
20 samples median �lter in (c) and the non-causal 20 samples median
�lter in (d). An extended form of the median �lter is the FIR Median

Hybrid (FMH) �lter. The FMH �lter is a �lter algorithm for obtaining
steady state values from noisy data (Piovoso et al. 1992). The FMH
�lter can be described as:

ŷFMH;l(k) = median(
1

l

k�1X
i=k�l

y(i); y(k);
1

l

k+lX
i=k+1

y(i)) (4.8)

This means that the �lter output is the median of three estimates
of y(k): the average of l previous values, y(k) itself and the average
of l future values. The �lter is obviously not causal and ,therefore,
only applicable in o�-line situations. The length of l is used to give
the �lter di�erent characteristics. The �lter can be applied iteratively
with better noise reduction as a result.
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Figure 4.5 The median �lter based on n number of samples, n = 1 (upper
left),n = 3 (upper right),n = 20 (lower left) and n = 20 (non-
causal) (lower right) (arti�cial data).
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4.3 Outliers and Missing Values

An outlier - that is a sample value that di�ers notably from the mean
of the measurement series - can be caused by many factors. A problem
in detecting outliers is to decide whether they represent a true value
or whether they are false and, consequently, caused by a disturbance
in the measurement system. In order to ensure the validity of data,
outliers must be removed or replaced, depending on the requirements
of the analysis. Removing the outlier and, consequently, the complete
sample is straightforward, but is only recommendable if the amount
of data is su�cient and if the analysis does not take dynamics into
consideration. On the other hand, replacing outliers is di�cult if no
redundant information is available. Removing/replacing outliers is
similar to the task of replacing missing values. In static analysis the
sample, including all variables, can be removed if no data are avail-
able. In dynamic analysis such an approach may distort the dynamic
properties of the data.

Outlier Detection

Algorithms for detection of outliers based on the statistical properties
of the measurements can be found in the literature, for instance in
Barnett and Lewis (1994). Detection of outliers can also be handled
by using redundant sensors or digital �ltering (�Astr�om and Witten-
mark 1997). However, one must be careful when dealing with outliers.
A highly unexpected value may sometimes be both true and signi�cant
(Bergh 1996). The di�culties in discerning outliers make it important
that the number of outliers caused by poor maintenance of the meas-
urement system is kept at a minimum. The task of detecting outliers
has a lot in common with disturbance detection in general, which will
be described in Chapters 6, 7 and 8.

Manual Detection of Outliers

A straightforward method for o�-line detection of outliers is to manu-
ally remove outliers. In time series, the human eye has a remarkable
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ability to pick out outliers with good result. By a careful investiga-
tion of the time series in combination with experience of the process,
the manual detection and replacement of outliers can be as good as
any automatic method. This is, however, a very time consuming task
and can only be performed o�-line. In on-line situations an auto-
matic algorithm must replace the human eye. When preparing data
for model identi�cation or training, manual detection of outliers is
sometime preferable. It gives the model builder a sense for the data
and also of what can be expected from the model. Manual detection
and replacement of outliers involves a great deal of subjectivity and
the result will depend on who is performing the task.

Detection of Outliers Using Redundant Sensors

Redundant sensors are useful for outlier detection. If two redundant
sensors are used, then an indication of an outlier is achieved when the
sensors do not deliver the same value (within an reasonable margin).
An alarm can inform the operators that something is wrong with one
of the sensors (not telling which one) and then a calibration procedure
can be initiated. The information from the combined sensors is then
the measurement value or an alarm. If the measured variable is of high
importance, three redundant sensors can be used. The measurement
is then considered true when two out of three sensors display the same
value. A simple logic algorithm can be applied to supply the measure-
ment system with the accepted value and alarm the operator if none
of the sensors display the same value. However, direct redundance is
expensive as it demands a large number of sensors and are seldom used
unless in situations where extremely high reliability is required, e.g.
in operation of nuclear power plants. In many wastewater treatment
plants, the wastewater is treated in parallel lines, which gives a possib-
ility to use measurements from another line to make a validity check.
The conditions are rarely exactly the same but if the con�gurations
do not di�er signi�cantly the information from such a validation can
be used together with other methods for outlier detection.
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Other Methods for Detection of Outliers

The e�ect of an outlier on a time series model can be analysed in order
to detect outliers in the data series. Other statistics based detection
techniques of outliers can also be used, but are not discussed here.
However, some aspects of residual based detection in association with
multivariate analysis are discussed in Chapter 6. The reader is referred
to, for instance, Johansson (1993) or S�oderstr�om and Stoica (1989)
for time series analysis and to Barnett and Lewis (1994), for outlier
detection in statistical data.

Missing Values

A missing value is caused by a sensor that does not deliver a meas-
urement value, which makes the sample incomplete. Depending on
the measuring equipment, missing values can appear as, for instance,
blanks, zeros or negative values for entities limited to positive values.
Therefore, missing values are often simple to detect. Some measuring
equipments have the capability to perform a test on the reasonable-
ness of the measurement. If the actual value does not pass the test,
the result may be a missing value.

Missing values are a serious problem as they distort the dynamic prop-
erties of the signal. In order to perform a dynamic analysis the value
must be estimated in di�erent ways depending on the signal and the
type of analysis. Especially when multivariate analysis is considered,
a missing value is problematic, as it makes the complete sample dif-
�cult to use. However, when multivariate models are used, there are
good possibilities to accurately estimate a missing value from other
variables.

Longer time periods of missing values are often impossible to recre-
ate, and this makes the data unusable. Missing values may lead to
severe problems, while some dynamic analyses demand long periods of
good and reliable data. Therefore, it is important that the number of
missing values are kept at a minimum and when the situation occurs,
immediate actions are taken to eliminate the problem.
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Replacing Outliers and Missing Values

When the occurrence of an outlier or a missing value has been es-
tablished, the replacement can be done in many ways. Interpolation
can be carried out in an o�-line situation and the simplest form of
interpolation is:

y(k) = 0:5[y(k � 1) + y(k + 1)] (4.9)

where y(k) is the replacement value for an outlier or a missing value.
This is normally su�cient when the problem only occurs during one
sample. If there are several successive outliers, the interpolation can
be done in a more sophisticated way by using, for example, spline
techniques (MathWorks 1996). In on-line situations interpolation is
not possible. Extrapolation using the preceding value such as:

y(k) = y(k � 1) (4.10)

is simple and often accurate enough when the number of succeeding
outliers or missing values are few. If there are long periods of missing
values or outliers, the di�culty increases and normally the information
must be considered lost. Figure 4.6 illustrates the di�erent methods.
If a model has been used either to detect the outliers or is run in
parallel with the process the estimate from the model can be used,
i.e.:

y(k) = ŷ(kjk � 1) (4.11)

where ŷ is the model output at time k, based on measurements up to
time k � 1. If the model is a time series model, the use is limited,
but if the model is based upon other measurements than the signal of
interest, the estimate can be used for shorter periods. The accuracy
of the estimate depends on how good the model is and how long the
period of missing values extends.
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Figure 4.6 Original signal(a), interpolation using nearest neighbour (b),
linear interpolation (c) and interpolation with splines (d).
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4.4 Detection of Drifting Measurements

Handling of drifting measurements involves three important elements:

� detecting the slow change;

� establishing whether it is caused by a drifting sensor or if it de-
scribes a true change in the variable;

� if necessary make corrections.

In addition to the misleading information, drifting measurements can
distort the mutual relations between measurement variables and make
multivariate analysis di�cult. Therefore, it is important to detect drift
in data and to establish whether the drift describes a true variable
change or a deteriorating performance of a sensor.

Detection

Detection of slowly drifting measurement series is basically the same
as detecting trends. Consequently, the same techniques can be used
and they are discussed in Chapter 5.

Establishing Cause

It is not possible to establish whether a change is caused by a true
process change or a drifting sensor without some additional informa-
tion. This information can naturally be achieved if redundant sensors
are available. When this is not the case, an experienced operator may
be able to determine the state of the problem. However, multivariate
analysis can be a helpful tool in establishing the cause of a drifting
sensor. By looking at other variables and their mutual relationships
with regards to the investigated variable, the probable cause may be
determined. This is discussed further in Chapters 6, 7 and 8.
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Correcting Data

If a drifting sensor has been detected, the �rst step is to make correc-
tions of the measurement system, i.e. calibration or cleaning of the
sensor. However, the data collected can be used if the drift is com-
pensated for. This can be done by simply subtracting (or adding) the
slope of the change to the data series. In this way drifting data can
still be used for model building or o�-line evaluation of the investigated
time period.

4.5 Preparing Data for Analysis

In addition to the screening mentioned above, di�erent analysis meth-
ods may require further preparation of data to be e�ective. Such pre-
paration may include, for example, mean centring, scaling and weight-
ing of variables. Mean centring, i.e. subtracting the variable by its
average, is a way to make calculations easier and is useful in both
single and multivariate analyses. Scaling is important to obtain com-
parable variables, especially when the analysis is based on comparison
of variables. In single variable analysis, the scaling becomes less im-
portant.

Standard Manipulation

Standard manipulation is performed to make it possible to compare
variables with di�erent amplitudes and variances. It normally involves
scaling and mean centring of the data. Scaling is done to ensure that
the variables are comparable, independently of the absolute value of
the variable. For example, if one variable is varying between 0.1 and
1 and another one is varying between 100 and 110, then the second
variable would be much more in
uential than the �rst one if they were
not scaled properly. The information content of changes in the second
variable is not evidently greater than the information content of the
�rst variable. A rule of thumb in this matter is to scale each variable
to unit variance, that is divide each variable data by its standard de-
viation value. Autoscaling is a simple way to scale the data. It implies
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Figure 4.7 Data pre-processing. The data for each variable are represented
by a variance bar and its center. Unmanipulated data (A),
mean centred data (B), variance scaled data (C) and mean
centred and variance scaled data, i.e. autoscaling (D) (Geladi
and Kowalski 1986).

unit variance and mean centring, i.e. the data is adjusted to have zero
mean by subtracting the mean value from the variable data. Figure
4.7 illustrates some of the di�erences in scaling and centring. How-
ever, a word of caution is justi�ed when dealing with almost constant
variables with a low signal-to-noise ratio. If such a signal is scaled
to unit variance, the noise contribution to the variability will be high
(Kresta et al. 1991). The problem can be reduced by digital �ltering
before scaling or by a di�erent scaling method.

Non-linear Manipulation of Data

There are situations where it may be wise to scale the variables in a
di�erent manner. A typical situation is when the variable is gener-
ated by highly non-linear devices. For example, valve measurements
are often expressed in percentage opening. This is a non-linear meas-
urement, as the 
ow rate through the valve does not depend linearly
on the percentage opening. Changes in a valve position close to fully
open will generate smaller changes in the 
ow rate than a change by
the same amount in a position, for instance, at half closed. The non-
linearity of a device can be partly compensated for by simply raising
the variable to a desired power. The manipulation, e.g. ynew = y2 or
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ynew = y
1

2 , is done prior to scaling and mean centring.

A second situation where it can be useful not to use standard scaling is
when it has been empirically or theoretically established that a certain
variable has a signi�cant in
uence on the process. In this case it is
possible to scale this variable in such a way that its variance is slightly
greater than unit variance and, consequently, the variable will have a
stronger in
uence on a model describing the process.



Chapter 5

Single Variable Detection

In this chapter methods to extract information from single measure-
ment variables are presented. Detection of deviations in single meas-
urements time series can be carried out both in the time domain and
the frequency domain. Time domain detection involves signal amp-
litude, mean and variance. Frequency domain detection is based on
changes in the measurement signal frequency.

5.1 Monitoring Measurement Variables

Monitoring single variables is perhaps the most basic way to obtain
information from measurements. The monitoring can be performed
at various complexity levels, but all monitoring normally utilise basic
statistical features such as location and spread.

Basic Statistical Features

In order to extract information from measurement signals the basic
properties of the signal must be recognised. Each individual signal
can be analysed with respect to a number of characteristic features:

� amplitude;

� center of location;

� spread.
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Amplitude

The amplitude is the basic information content of the measurement.
Usually, a normal range with high and low limits is de�ned in order
to make qualitative comparisons.

Mean and Median

The arithmetic mean or just mean is the most basic statistical feature
of a signal. The mean is used in many statistical analyses and is
expressed by:

mean(y) =
1

m

mX
k=1

y(k) (5.1)

A second useful measure of the center of location is the median. As
described in Chapter 4, the median is the middle measurement if the
measurements are sorted in descending or ascending order:

median(y) = yi; i =
1

2
(m+ 1) (5.2)

if m is a odd number and:

median(y) =
y(i) + y(i+ 1)

2
; i =

1

2
m (5.3)

if m is an even number of measurements in the data set. If the meas-
urements are symmetrically spread and there are no outliers, the mean
and the median agree well. However, if there are outliers present the
results can di�er signi�cantly. The median is una�ected by single
outlying values and, thus, a more robust measure of the center of
location. In order to make the mean measurement more robust, the
trimmed mean can be used. As the denotation indicates, trimmed
mean implies that some of the largest and smallest measurements are
removed prior to the calculation (Chapman 1992).

Spread Measures

The variability of a measurement series can be expressed by its stand-
ard deviation. The standard deviation of m independent samples is
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estimated by:

� =

vuut mX
k=1

(y(k)�mean(y))2

m� 1
(5.4)

Sometimes it is more convenient to use the square of �. This gives the
estimated variance: the variance.

�2 =
mX
k=1

(y(k)�mean(y))2

m� 1
(5.5)

Standard deviation as presented above can be used as a measure on
the spread if the measurements are normally distributed. If this is not
the case, other measures can be used to describe the spread.

A simple and intuitive measure of spread is the range (R). This is
simply the distance between the largest and smallest value in the data
set. The range can also be calculated as the interquartile range (IQR).
The IQR is the distance between the 0.75 and 0.25 quantile. A quantile
corresponds to the value below which a certain percentage of the data
set is located. Thus, the 0.90 quantile is larger than 90 percent of the
data. This implies that the 0.50 quantile is the same as the median,
i.e. the middle value in a data series. The calculation of quantiles is
based on the rank of the measurements, that is the measurements are
sorted in ascending order. The smallest value gets rank r = 1 and the
largest value gets rank r = m (m is the number of values in the data
series). The corresponding fracture can be calculated as (Chapman
1992):

fi =
r � 1

2

m
(5.6)

From the fractures quantiles can be calculated. Range and quantile
are often referred to as non-parametric measures.



46 5. Single Variable Detection

Charts and Plots

The most straightforward type of plot technique is time series plots.
In time series plots the individual measurement is plotted on the y-
axis and time on the x-axis. This is an intuitive way of presenting the
variable state and an example of time series plots has already been
shown in Figure 4.4. Typical ways to present di�erent aspects of the
measurement signal are, for instance:

� raw measurement signal;

� �ltered measurement signal;

� cumulative sum of the measurement signal.

The evaluation of the measurements is done by using control and alarm
limits, indicating normal and abnormal ranges for the measurement
variable.

Alarm Limits

In order to decide when a variable is inside its normal range, adequate
limits must be determined. In the process industry it is common with
two types of limits: warning limits and actions limits. Warning limits
do not call for immediate action. Instead the purpose is to warn
the operator that the measurement variable may be drifting away. If
a variable exceeds an action limit, there is need for action in order
to bring the variable back into the normal range. For the detection
purposes, alarm limits are used. A violation of an alarm limit triggers
a detection alarm. The limits may be derived from a previous period
when the process is operating in a desired manner or when the product
quality is acceptable. They can also be derived from a desired target
value, from which the process variable should not deviate signi�cantly.
If the measurements are normally distributed, the measurement mean
plus two and three standard deviations are a common choice for upper
warning and action limits, respectively, while the mean minus two and
three standard deviations de�ne the lower limits.

However, if the normal distribution is not applicable, there may be
ways around this problem by transformation of data to an approxim-
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ately normal distribution. A usable transformation for this purpose
is the logarithm of the measurement. Measurements from wastewa-
ter treatment plants not seldom tend to be more log-normal than
normal distributed (Chapman 1992). If a transformation is not pos-
sible then the normal distribution constraint can be avoided by using
non-parametric methods. Non-parametric methods do not make any
assumptions about the shape of the distribution from which the data
are taken (Miller and Miller 1993).

In some cases the limits can be derived from physical limitations. For
example, the upper level of a tank is limited by its height (and a safety
margin). Empirical information and desired targets may also be the
basis for decision of limits.

Alarm and Detection Rules

When a limit is exceeded, it must be decided whether it is a true
disturbance situation or simply a false alarm. To determine this, a set
of rules can be worked out. Depending on the monitored variable and
the use of limits, the rules will have di�erent appearances. In addition
to violation of the action or detection limit, rules for more than one
consecutive sample above (or below) the warning limit can trigger an
alarm or detection. More sophisticated rules, such as more than a
certain number of consecutive samples on the same side of the target
value or more than a certain number of samples above (or below)
the warning limits within a speci�ed time range (or sample range), is
discussed by Bissel (1994).

Statistical Process Control

Monitoring process operation in time series is often referred to as
statistical process control (SPC). The �rst ideas of SPC for quality
improvement go back as far as to the beginning of the century when,
for instance, Vilfredo Pareto and Walter Shewart made some import-
ant contributions to SPC (Thompson and Koronacki 1993). The ideas
were further developed during the 1950s, but it is not until the 1970s
that SPC has become a standard tool for quality improvement in the



48 5. Single Variable Detection

process industry. SPC involves many methods for monitoring and
presenting measurement variables, but perhaps the most common ones
are:

� 'x'-charts, that is measurement values plotted against the time;

� MA charts, i.e. a moving average of the measurement series plot-
ted against time;

� EWMA charts, that is exponentially weighted moving average
�ltered measurements;

� CUSUM charts, cumulative sum of the di�erence between the
measurement and a target value.

These methods have great similarities to conventional signal processing
techniques. There are many references to SPC in the literature, such
as Bissel (1994), Thompson and Koronacki (1993) and Box and Lu-
ceno (1997). SPC in wastewater treatment applications is described
in Chapman (1992). In this thesis, only some basic aspects of SPC is
discussed.

5.2 Detection in the Time Domain

Feature extraction in the time domain can be carried out in many
ways, but the most basic information can be found by analysing a sig-
nal with respect to location, spread, rate of change and slow variations
or trends.

Monitoring the Value

As mentioned earlier in this chapter, the actual value must be com-
pared with a reference value to be informative. Ideally, the limits
can be de�ned by an experienced operator. However, this is a time
consuming e�ort since it implies a continuous update of every meas-
ured variable as the conditions in the process change. One method
is to use constant limits calculated from the spread of the measure-
ment variable during a period of normal operation. A second way is
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Figure 5.1 Monitoring the location of in
uent ammonia concentration
with constant limits based on the 0.01 and 0.99 quantiles of
normal operating conditions, respectively (real data from the
Ronneby wastewater treatment plant).

to let the computer calculate limits from a historic moving window.
The limits are continuously updated and thus adapted to the actual
situation. Depending on the purpose of the detection, the adequate
choice of detection limits may di�er. If the main objective is to keep
the level below or within speci�c limits, constant limits based upon
desired levels are used. On the other hand, if the purpose is to de-
tect relative changes then adapting limits are normally more e�cient.
In
uent ammonia measurements from the Ronneby wastewater plant
are investigated. It is established that the data cannot be considered
as normally distributed. In Figure 5.1, a constant limit, based on 3
weeks of normal operation, is used as the detection limit for in
uent
ammonia. Peaks in the in
uent ammonia concentration are easily de-
tected and so are major decreases. However, the number of triggered
detections are increasing when the process conditions change. From
day 45 and onwards deviating measurements are constantly detec-
ted. Figure 5.2 shows monitoring of in
uent ammonia concentration
with adapting limits. Even though the limits adapt to the changing
conditions, major increases or decreases are detected. But instead of
continuously triggering the detection, the limits adapt to the new situ-
ation. The detection limits are based on the 0.01 and 0.99 quantiles
of the previous 14 days of data.

Instead of using the 0.01 and 0.99 quantiles, the IQR of previous data
can be used. The limits are then calculated as the median � f IQR
where f is typically in the range of 2 to 3. When the distribution
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Figure 5.2 Monitoring the location of in
uent ammonia concentration
with adapting detection limits based on 0.01 and 0.99 quantiles
of the last 14 days of data (real data from the Ronneby
wastewater treatment plant).

of deviating values are distorted, the direction of detection may be
taken into consideration. Kanaya et al. (1996) use a factor times
the di�erence between the 0.75 and 0.50 quantiles of a previous day's
data to calculate the upper limit. The lower limit is, consequently,
calculated as a factor times the di�erence between the 0.50 and 0.25
quantiles of the same previous data.

Monitoring the Spread

The spread or variability of a signal may reveal information on process
stability or sensor performance. A sensor exposed to a disturbance
may show an increase of the noise level of the measurement signal.
An increase of the noise level will add variance to the signal in the
frequencies dominated by the noise. By monitoring the signal variance,
a disturbance of this type can be detected. One way of monitoring the
measurement signal variance is to calculate the variance of a moving
window from a certain number of measurement samples. However,
it may be necessary to high-pass �lter the signal before the variance
calculation can be performed. This is done in order to remove the
slow variations (in comparison with the noise variation) caused by
process changes, since this will distort the variance calculations. In
Figure 5.3 (top) a measurement signal is displayed. It can be observed
that the noise level increases signi�cantly at sample 480. This may be
an indication that something has happened to the measuring device.
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Figure 5.3 In
uent ammonia measurement signal (top) and the variance
of the high-pass �ltered measurement signal (bottom).

A moving window of 24 samples is used to calculate the variance.
Here, 24 samples correspond to 2 hours of continuous sampling. The
variance of the inter-sample di�erence (a di�erence builder used as
high-pass �lter) is calculated for every sample and can be viewed in
Figure 5.3 (bottom). There is a sudden increase in the variance at
sample 480. The peak is caused by the large intersample distance
when the amplitude increases quickly, but the variance level is kept at
a high level and is easily detected.

In order to detect changes in the variance, the noise of the measure-
ment must not be removed during the data screening phase, since it
is the noise that is the important information. However, outliers and
missing values must still be dealt with. This emphasises the need for
di�erent data-screening methods for di�erent types of analyses.

Rate of Change Monitoring

The rate of change or the derivative of a measurement signal will
provide information on some of the dynamic properties of the signal.
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The rate of change is calculated in its simplest way with a di�erence
builder expressed by (Olsson and Piani 1992):

ŷ(k) = �y(k) = y(k)� y(k � 1) (5.7)

which is a special case of the general high-pass �lter.

Trend Detection

Recognising trends in data series is important to understand the long
term variations or tendencies of the process. By trends we mean signal
changes with time constants in the range of days, or more likely weeks,
months and even years. Trends are normally not recognisable if only
a day or a few days are considered in the analysis or monitoring task.

Trends in time series do not display a speci�c point in the time series
that is easily detected. This makes it hard to detect drifting measure-
ments and, consequently, a drift may continue for a long time before
it is detected. For this reason the damage may become severe and
be costly in terms of quality and economics. In varying conditions,
a limit of the amplitude of the signal is not applicable. Instead, the
long-term trend must be addressed. Two ways of accomplishing this
are slope �tting and cumulative residuals.

Slope Fitting

By identifying the slope of the long-term changes in measurements,
trends can be detected. For mean-centred data the slope can be found
by the least squares method, that is:

y = bx (5.8)

where b is de�ned by

b = (xTx)�1xTy (5.9)

This can be done on not mean-centred data as well, but since we are
only interested in the slope, mean centring is convenient. Monitoring
the slope of a signal over a longer period of time can give us some
indication of how the variable changes. Deviating slope values can be
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Figure 5.4 A measurement signal (top) and the slope coe�cient of the last
week's data.

a criterion for detection. Figure 5.4 (top) shows a signal which varies
slowly during 28 days. Below, the slope of the preceding week's data
is shown. This means that the slope b is calculated from a moving
window of a length of one week. As a new sample is obtained, the
slope is calculated again and the result can be plotted as a time series.
It is clear that the data display some slow variations or trends.



54 5. Single Variable Detection

5 10 15 20 25
−1

−0.5

0

0.5

1
cu

m
ul

at
iv

e 
su

m
 x

103

time (days)

Figure 5.5 Cumulative residual between the present sample and a mean
of the preceding week.

Cumulative Residuals

Plotting the cumulative residual between the measurement and a tar-
get value, may reveal a long-term trend in the signal, which is di�cult
to detect manually. The target value can be one out of several choices.
Some examples are:

� set-point value where the process is known to perform well;

� long-term mean of the signal;

� predicted or forecasted value of the signal.

The absolute value depends on when the summation was started and
may, therefore, look completely di�erent depending on the start time.
Instead, the important criterion for detection in a cumulative residual
plot is the change within a certain time window. In Figure 5.5, the
cumulative sum of the residual between the signal, shown in Figure 5.4
(top), and a mean of the preceding week (2016 samples), is presented.
It can be seen that there is an increasing trend and especially the
period between day 10 and 14 displays a signi�cant increase.
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5.3 Feature Extraction in the Frequency

Domain

In this section, a few examples of how information can be obtained
by investigating the frequency domain, are shown. The intention is
not to provide an exhaustive discussion about frequency analysis but
rather to show that there may be potential tools for disturbance or
fault detection purposes.

Spectral Analysis

The underlying theory of frequency analysis is beyond the scope of
this thesis, but a short description of the basic components are de-
scribed below. Estimation of the frequency content of digital signals
is based on the discrete Fourier transform (DFT). DFT is de�ned as
(Johansson 1993):

Y (f) =
m�1X
k=0

y(k)e�i2�fk (5.10)

where m is the number of samples in the data series and the frequency
f is:

f = �
1

2
fs; : : : ;

1

2
fs (5.11)

The frequency fs corresponds to the sampling frequency. The estim-
ated spectral density of a signal can expressed by the periodogram:

R�

per =
1

m
jY (f)j2 (5.12)

There are ways to improve the estimated spectral density. One way is
to divide the time series into several time intervals and then calculate
the mean of all periodograms. The length of the time interval determ-
ines the resolution in frequencies. Thus, if high resolution is needed,
then the time series must be long. There are more sophisticated ways
to improve the estimate but the reader is referred to text books in the
�eld. However, methods for frequency analysis are available in most
computer packages for numerical computing and the study presented
below is based on functions available in MATLAB.
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Figure 5.6 The periodogram for in
uent 
ow rate measurements. Two
dominant frequencies can be discerned at one and two per day.

O�-line Frequency Analysis

Most signals display more or less periodic variations. However it is
not always obvious to determine the frequencies of the variations, es-
pecially not when there are many frequencies present. This is due to
the fact that some frequencies tend to "drown" in the most dominant
frequency of the signal. A useful tool for periodic variation detection
is spectral analysis. This is mostly done in o�-line situations in order
to gain information on the process. In Figure 5.6 the periodogram of
a measurement is shown. It can be seen that the most dominant fre-
quencies are in the order of one and two per day. This is not surprising
as the analysed signal is the in
uent 
ow rate. Flow rates typically
display dominant frequencies of one or two per day.

In Figure 5.7 (top), a measurement signal displaying the DO level is
shown. The DO concentration is controlled with a setpoint value of
3.0. No obvious frequencies can be discerned. The periodogram of the
signal is shown below in the �gure. It con�rms that there are no signi-
�cantly dominant frequencies. The DO control system is performing
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Figure 5.7 The DO concentration measurements (top), and the periodo-
gram of the measurements (bottom). No dominant frequencies
of signi�cant magnitude can be discerned. (Note that more
than the measurements shown in the �gure are used to calcu-
late the periodogram.)

well. However, in Figure 5.8 (top), another DO signal is displayed (also
three days, but with slightly di�erent sampling frequency). Here, some
dominant frequencies can be discerned. Looking at the periodogram of
this signal reveals that there is a diurnal variation but also a variation
of �22 per day (Figure 5.8, bottom). The higher frequency can be an
indication of an oscillating control system. There are no indications
that the higher frequency is caused by in
uent variations. Instead,
there are suspicions that the control system is incorrectly tuned. The
DO data of Figure 5.8 are not from the Ronneby wastewater treatment
plant.
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Figure 5.8 The DO concentration measurements (top), and the period-
ogram of the measurements (bottom). The periodogram re-
veals a dominant frequency at 22 per day, possibly caused by
oscillations in the control system. (Note that more than the
measurements shown in the �gure are used to calculate the
periodogram.)
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Detection of Frequency Content Changes

High frequencies in a measurement signal with normally only low fre-
quencies present may indicate that the signal is subjected to disturb-
ances. The disturbances may originate, for instance, from electromag-
netic sources, but it may also be an indication that the sensor device
is defective. Whatever the cause is, it is important to quickly detect
and correct the problem.

In Figure 5.9 (top), the original measurement signal is shown. This
is the same signal that was investigated with respect to variance (see
page 51). It is clear that the latter part of the signal contains high
frequencies. This may be an indication of an imminent sensor break-
down. Is it possible to detect this by looking at the frequency con-
tent of the signal? A moving time window of a certain number of
samples, y(k); y(k � 1); : : : ; y(k � l), is investigated with respect to
its frequency content. The periodogram is calculated for the time
window and the result is denoted R�

per(k). The sum of the frequency
magnitudes between a threshold and the Nyquist frequency (half the
sampling frequency), constitute the measure used for the detection.
The sum for time k:

Ef(k) =
k�lX
j

R�

per(k) (5.13)

where j is the element in R�

per(k) that corresponds to the threshold
frequency. The threshold frequency used here is 0.2 of the sampling
frequency. The accuracy of Ef depends on the length of the time win-
dow. There is a tradeo� between fast detection and accuracy. The
present situation determines the appropriate window length. It is
possible to extend the time window when there is an indication of a
change in the frequency content. In Figure 5.9 (bottom) a moving time
window of 48 samples has been used to estimate the high frequency
content of the in
uent ammonia concentration signal. It can be seen
that there is a signi�cant increase of high frequency components after
sample 480. This may be an indication that a more thorough invest-
igation of the signal frequencies is needed and that corrections must
be made.
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Figure 5.9 In
uent ammonia concentration measurement signal (top) and
the sum of the frequency magnitudes between f = 0:2 and
f = fs=2 of the corresponding periodogram calculated from a
48 samples time window.



Chapter 6

Detection Using Multivariate

Statistics

In this chapter methods formultivariate statistical (MVS) analysis and
monitoring are discussed. Kresta et al. (1991) list some challenges for
any statistical monitoring method:

1. The method must be able to deal with collinear data of high
dimension, in both the independent and the dependent variables.

2. The method must reduce the dimension of the problem substan-
tially and allow for simple graphical interpretations of the results.

3. If both process and quality variables are present, it must be able
to provide good predictions of the dependent variables.

The challenges listed above will be discussed and some simple ex-
amples will be given to illuminate the discussion. The examples in
this chapter are based on real wastewater treatment plant data from
the Ronneby wastewater treatment plant in Sweden. In the follow-
ing chapters monitoring is applied to data from a simulation model
(Chapter 7) and from the Ronneby plant (Chapter 8) to exemplify the
methods described here.

Multivariate statistics or MVS is a group of methods for investigation
of large data sets with many variables. Often, several variables are
highly correlated, since most variables only re
ect a few underlying
mechanisms that drive the process in di�erent ways (Kourti and Mac-
Gregor 1994). The "true" dimension of the process space is often a
lot smaller than the dimension of the variable matrix space (Davis et
al. 1996). The aim is to project the high-dimensional process space
into a more visual low-dimensional space and by doing so identifying
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key variables and important features of the data. This is achieved by
transforming the measurements of the original coordinate system in
such a way that a maximum of the variability1 of the process vari-
ables is described by a new coordinate system. Thus, there will be a
number of new variables, so called latent variables (LVs) or principal
components (PCs), which describe most of the process variability in a
space of fewer dimensions than the original space.

There are many available multivariate statistics methods but here only
the most classical approaches, such as principal component analysis
(PCA), principal component regression (PCR) and projection to latent

structures (PLS), are discussed. Descriptions of multivariate analysis
in process monitoring and control can be found in the literature, e.g.
Geladi and Kowalski (1986), Kresta et al. (1991), MacGregor et al.
(1994). In the discussion below, the nomenclature of Wise and Galla-
gher (1996) is mostly used. Further reading on multivariate analysis in
wastewater treatment systems can be found in, for instance, Mossberg
(1995), Krofta et al. (1995), Champely and Doledec (1997). Piovoso
and Kosanovich (1994) is a good reference on multivariate statistical
methods in control applications and Wold (1987) and H�oskuldsson
(1988) thoroughly describe the theoretical basis of PCA and PLS,
respectively.

In order to fully appreciate the theory behind PCA, PCR and PLS,
basic knowledge in linear algebra is required. This information can
be found in most textbooks in mathematics today and will not be
presented here. However, the intention is that the uninitiated reader
should be able to appreciate the basic ideas behind the methods.

6.1 MVS Methods

In this section the basic theory of PCA, PCR and PLS is presen-
ted. Appendix B provides supplementary details on the calculations
of PLS, but is not needed for the basic understanding of the method.

1In this context, variability or variance can be seen as the information content of the data.
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Figure 6.1 Reducing process space from three to two dimensions. The new
space is de�ned by principal components.

Principal Component Analysis

Principal component analysis (PCA) is one of the most basic MVS
methods. In PCA the process variable space is projected to a space
with less dimensionality, described by the principal components (PCs).
Such a projection is illustrated in Figure 6.1. Even though there are
only three dimensions in the �gure, there are no di�culties to extend
the methodology to an arbitrary number of dimension. The complex-
ity of the mathematics behind PCA will not increase as the number
of dimensions is extended.

The PCA Algorithm

LetX be an autoscaled (i.e. mean centred and scaled to unit variance)
[m� n] matrix of measurement values for n variables at m number of
samples de�ning a variable space of r dimensions. This means that
X is of rank2 r. X can be expressed as a sum of matrices Mi of the

2Here, the term rank refers to the matrix rank.
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same size as X but of rank 1:

X =M1 +M2 + : : :+Ma +E (6.1)

where E is the residual (or error) matrix and a � r. If a = r then
E = 0, as all the variability directions are described. However, if
a < r, that is, less principal components than original variables are
retained, then E describes the variability not described by the sum of
the M-matrices .

The matrixMi can be written as the outer product of two vectors ti
and pTi . Thus:

X = t1p
T
1 + t2p

T
2 + : : :+ tap

T
a + E (6.2)

or

X = TPT +E (6.3)

The vectors of T (ti) are called the score vectors or scores and the
vectors of P (pi) are the loading vectors or loadings. The matrix
P can be determined by singular value decomposition (SVD) of the
covariance matrix of X:

cov(X) = P�PT (6.4)

where � is the diagonal matrix of the eigenvalues �. A column vector
pi of P is the ith eigenvector of cov(X), such that:

cov(X)pi = �ipi (6.5)

where �i is the eigenvalue associated with pi. The covariance matrix
of X is estimated by:

cov(X) =
XTX

m� 1
(6.6)

The orthogonal loading matrix P is a so called unitary matrix. Im-
portant properties of unitary matrices are that PTP = I, PPT = I

and PT = P�1, where I is the identity matrix.

The �rst pair of ti and pi captures the largest amount of variation
possible to capture by a linear factor in matrix X. Consequently, the
subsequent pair will captures the largest amount of variation left in
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X when tip
T
i is subtracted from X. The score vectors are the original

data projected in the new coordinate system de�ned by the principal
components. When the model is subjected to new data the scores are
calculated as:

T̂ = XnewP (6.7)

The new scores can be visualised in di�erent ways, which will be dis-
cussed later.

Principal Component Regression

In many processes there are key quality variables that are of higher
interest than others, e.g. output or e�uent quality variables. It would
be convenient to build a model that especially considers the variables
in
uencing the quality variables of interest. The characteristics of the
process variables must be linked to the quality variables so that the
features a�ecting the variables of interest can be emphasised. Regres-
sion techniques provide us with methods for this.

The PCR Algorithm

In multiple linear regression (MLR), the quality variables are regressed
onto to the process variables. In matrix form MLR is:

Y = XB+ E (6.8)

whereY is the dependent variable matrix,X the independent3 variable
matrix,B the regression matrix and E the residual matrix. Using a set
of training data, B is calculated by minimising E. A popular method
for this is the least-squares method (S�oderstr�om and Stoica 1989). The
regression matrix is calculated as:

B = (XTX)�1XTY (6.9)

However, MLR is not always applicable since the inverse of XTX may
not exist, which is due to collinearity of X. A combination of PCA,

3The term independent is here used in the meaning that the state of the X-block variables do
not depend on any other variables included in the analysis. The measurements of the X-variables
are normally not time independent.
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which produces a matrix of orthogonal variables, and MLR may then
be a successful way to proceed. Principal component regression (PCR)
is an extension of PCA where the independent variables of X are
linked to the dependent variables of Y, that is the process variables
are linked to the quality variables. In PCR, the system properties
are regressed onto the principal component scores instead of onto the
original measurement variables as in MLR. The scores are better suited
for regression as the scores are orthogonal. This solves the collinearity
problem often encountered in process monitoring. The MLR equations
become:

Y = TB+ E (6.10)

which has the solution:

B = (TTT)�1TTY (6.11)

with T and E de�ned by Equation 6.3.

In MLR, the aim is to capture the correlation between dependent
and independent variables and the internal structure of the input or
independent block is not considered. PCR, on the other hand, only
considers the internal structure of the input block in order to maximise
the capture of input block variance. Projection to latent structures

(PLS) could be said to be a combination of these two extremes. As
a matter of fact, there are ways of uniting all three methods in a
continuum regression (Wise 1991), but this will not be discussed here.

Projection to Latent Structures

Projection to latent structures or partial least squares is also a MVS
method. In PLS the latent variables (LVs) of the X space are calcu-
lated to maximise the correlation between an input matrix X and an
output matrix Y. In this way the detection e�ort can be applied to
the variables that have the most in
uence on one or several speci�c
quality variables.
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The PLS Algorithm

Building a PLS model involves creating the outer relation for the inde-
pendent variables (X-block) and the dependent variables (Y -block),
separately. The inner relation linking the two blocks is then estab-
lished. The outer relation for the independent block is the same as in
Equation 6.3, i.e.:

X = t1p
T
1 + t2p

T
2 + : : :+ tap

T
a + E (6.12)

or

X = TPT +E (6.13)

In the same way, the outer relation for the dependent block is arranged
as:

Y = u1q
T
1 + u2q

T
2 + : : :+ uaq

T
a + F (6.14)

or

Y = UQT + F (6.15)

where U and Q corresponds to T and P, respectively. The inner
relation can be expressed in di�erent ways depending on the relation
between the input and output blocks. The simplest form is a linear
relation:

uj = bjtj (6.16)

where uj and tj are the jth columns of U and T, respectively. bj is
estimated with the least-squares method as:

bj =
tTj uj

tTj tj
(6.17)

The mixed relation becomes:

Y = TBQT + F (6.18)

where B is the diagonal matrix of the regression vector b.

To calculate the mixed relation in Equation 6.18, the iterative non-
linear iterative partial least squares (NIPALS) algorithm can be used.



68 6. Detection Using Multivariate Statistics

The algorithm is described in Appendix B. However, an important
remark is that in order to obtain an orthogonal loading matrix for the
X-block, a weight matrix (W) must be introduced to replace P.

When the PLS model is identi�ed, the new latent variable projections
are given by:

T̂ = XnewW(PTW)�1 (6.19)

MVS and Prediction

PCR and PLS can be used for prediction4 of the Y -block. In the PCR
case the predicted Y -block is:

Ŷ = T̂B (6.20)

with T̂ de�ned by Equation 6.7 and B by Equation 6.9. Since T̂ =
XnewP, Equation 6.20 can be written as:

Ŷ = XnewPB (6.21)

In the PLS case the predictor equation becomes:

Ŷ = T̂BQ
T

(6.22)

where T̂ is given in Equation 6.19, B is the diagonal matrix of the
regression vector b and Q is the loading matrix for the Y -block (b
and Q found iteratively by the PLS algorithm). Equation 6.22 can
also be written as:

Ŷ = XnewW(PTW)�1BQT (6.23)

if Equations 6.19 and 6.22 are combined. For both PCR and PLS
predictions, it is important that the input data are scaled in the same
manner as when the model was built.

Statistical Properties of MVS

MVS methods are useful tools to detect disturbances in measurement
data. An MVS model can be combined with techniques from stat-
istical process control. If the scores are normally distributed, the ith

4The term prediction is used even though the implication in some cases is �ltering.
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con�dence limit (ti;�) of scores for the ith principal component is cal-
culated as (Wise and Gallagher 1996):

ti;� =
p
�i tm�1;�=2 (6.24)

where tm�1;�=2 corresponds to the probability point on the single sided
t-distribution and �i is the the eigenvalue associated with the ith load-
ing vector. The assumption that the scores are normally distributed
is not always true, even if the number of samples is large enough,
according to the central limit theorem. The theorem states that the
sampling distribution of the mean tends to the normal distribution
when the number of independent observations increases (Miller and
Miller 1993). Firstly, the observations (samples) can seldom be con-
sidered time independent. Secondly there may be situations when the
distribution is severely distorted by, for instance, control actions or
saturation.

The squared prediction error (SPE) of a sample and its projection
into the new space (de�ned by the principal components) indicates
how well the model �ts the data set. The residual variable can be
visualised in a chart with con�dence limits. The residual at time k is
calculated as (Kresta et al. 1991):

SPEX(k) =
nX
j=1

(xj(k)� x̂j(k))
2 (6.25)

for the X-block. n is the number of variables of the X-block and
x̂j(k) is the model prediction. If PLS is considered, the residual of the
Y -block becomes:

SPEY (k) =
nX
j=1

(yj(k)� ŷj(k))
2 (6.26)

where n is the number of variables in the Y -block and ŷj(k) is the
model prediction at time k. For detection purposes, the SPEX is
mostly used and from now on the term SPE refers to SPEX if nothing
else is stated. SPE can also be written in matrix form as:

SPE(k) = e(k)eT (k) (6.27)

where e(k) is the kth row of E. In PCA modelling Equation 6.25
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becomes:

SPE(k) =
nX
j=1

�
xj(k)� t(k)pTj

�2
=

nX
j=1

�
xj(k)� x(k)PpTj

�2
(6.28)

as t(k) is substituted by x(k)P (Equation 6.7). pj is the jth row of
P. In PLS modelling the SPE is calculated as:

SPE(k) =
nX
j=1

�
xj(k)� t(k)pTj

�2
=

nX
j=1

�
xj(k)� x(k)W(PTW)�1pTj

�2
(6.29)

where t(k) is substituted by x(k)W(PTW)�1 (Equation 6.19). Ac-
cording to Wise (1991) the con�dence limit for SPE from a PCA
model is:

SPE� = �1

"
c�
p
2�2h20
�1

+ 1 +
�2h0(h0 � 1)

�2
1

# 1

h0

(6.30)

where

�i =
nX

j=a+1

�ij (6.31)

for i = 1; 2; 3 and

h0 = 1�
2�1�3

3�2
2

(6.32)

c� in Equation 6.30 is the standard normal deviate corresponding to
the upper (1-�) percentile and a in Equation 6.31 is the number of
principal components retained in the model. However, the SPE stat-
istic of PLS is often not well behaved, which shows itself in a not
normally distributed SPE measure. Wise and Gallagher (1996) use
an empirical form of calculation used for PCA as an approximation.
Here Equation 6.31 is replaced by:

�1 =
1

m� 1

mX
k=1

SPE(k) (6.33)

�2 = (n� a)

�
�1(n� a)

n� a

�2

(6.34)
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�3 = (n� a)

�
�1(n� a)

n� a

�3

(6.35)

where a is the number of components or latent variables retained in
the model and n is the number of variables in the X-block. However,
this results in an underestimation of the con�dence limit, but it is com-
pensated for by choosing a higher value of c�. Non-parametric meas-
ures to determine appropriate detection limits, such as the quantile
discussed in Chapter 5, can also be used to avoid that false conclu-
sions are drawn.

Another measure used to validate the model is Hotelling's T 2 statistics,
which is the normalised sum of scores. The T 2 at time k is calculated
as (Wise and Gallagher 1996):

T 2(k) = t(k)��1tT (k) = x(k)P��1PTxT (k) (6.36)

where t(k) is the scores at time k and ��1 is the diagonal matrix of the
inverse of the eigenvalues associated with the retained principal com-
ponents (see Equation 6.4). The con�dence limits for T 2 are obtained
using the F-distribution (Wise 1991; MacGregor et al. 1994):

T 2
a;m; � =

a(m� 1)

m� a
Fk;m�a; � (6.37)

where m is the number of samples in the model and a is the number
of principal components.

What do SPE and T 2 tell us and how can they be used? SPE is
the Euclidian distance from a sample to the hyperplane de�ned by
the principal components. If the model is valid, the distance from
the sample to the model plane has to be small, since this is a direc-
tion not included in the model. Thus, SPE is a measure of how the
data characteristics vary orthogonally to the model plane. The T 2

measure describes how the data vary within the plane of the model.
Consequently, T 2 is a measure of how far a sample is from the inter-
section of the principal components (origin, if the variable matrix is
mean centred). The geometrical interpretation of SPE and T 2 is visu-
alised in Figure 6.2. Both SPE and T 2 plots can be used to monitor
the statistical �t of a model to real data. Plotting the SPE and T 2

measures as time series with the con�dence limits from Equations 6.30
and 6.37 are a condensed way of monitoring the process. However, the
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Figure 6.2 The geometrical interpretation of the SPE and T 2 measures,
respectively.

SPE measure, as stated before, is a measure of the distance between
a sample and the model plane. The implication of this is that when all
possible principal components are retained in the PCA or PLS model
(i.e. as many PCs or LVs as original variables), the SPE residual will
be zero. This is because the model in this case contains components
to model all the directions present in the original data set. Thus no
sample can be positioned outside the model plane.

6.2 Building Multivariate Models

In this section the �rst step of multivariate monitoring is described.
Before the on-line monitoring task can be initiated, the model devel-
opment must be carried out. Model building involves pre-processing
of data and model identi�cation.
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Preparing Data for Multivariate Analysis

Pre-processing of data is described in Chapter 4 and processing needed
for data used to identify MVS models may include:

� outlier reduction and replacement of missing data;

� noise reduction by digital �lters;

� mean centring, i.e. subtracting the variable mean value from the
variable value;

� variance scaling, i.e.dividing each variable value by the variable
standard deviation;

� auto scaling, i.e. mean centring and variance scaling.

Noise reduction is especially important in the model building phase
in order to obtain a model, based on the key features of the process.
Centring and scaling can be used to level the various variables and
to make the calculations easier. As a rule of thumb, autoscaling is a
good start when the information on the data is limited. Autoscaling
has been used in all examples in this thesis.

However, other manipulations may be called for. In order to increase
the information content of the X-block, new variables can be cre-
ated from combinations of the original variables of the X-block. All
combinations are not increasing the information content. Linear oper-
ations on a variable will not increase the information. Typical linear
operations are:

� scaling and centring of variables;

� subtraction and addition of di�erent variables of the X-block.

Linear combinations of variables do not increase the dimensionality of
the process space, as the linear combinations are captured by the plane
de�ned by a combination of the original variables. Consequently, in a
PCA model of three variables, where the third is a linear combination
of the �rst two variables, two principal components will cover 100
% of the variability. On the other hand, non-linear operations on
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the variables may increase the information content. The variability
of the process will increase, but this does not mean that the usable
information content increases. Typical non-linear operations are:

� exponential and logarithmic operations;

� product of and ratio between di�erent variables of the X-block.

However, it is important to validate the increased content of inform-
ation, so that a new variable does not only add random noise. In
diagnosis it is an advantage if the new variable has some physical
interpretation, in order to quickly determine ways to handle a dis-
turbance. Typical non-linear combinations of process variables are
mass transport, which is a combination of a 
ow rate and a substance
concentration or loads, which may be the ratio of two substance con-
centration variables. In some cases it may be a good idea to replace
variables by linear combinations. For instance, if the concentration
level is less important, but the di�erence between two concentration
levels are crucial, the di�erence between the two variables can be used
instead.

Non-linearities

In most processes the relations between variables are not linear. PLS,
as discussed above, does not take this into consideration. However,
there are ways to introduce non-linearities. Scaling of data, as men-
tioned earlier, can be used but extensions to the PLS algorithm are
also possible.

In linear PLS modelling the scalar b relates the X-block score vector
(t) to the Y -block score vector (u). However, the relation between
t and u is sometimes better described in a non-linear way. A more
sophisticated representation of the inner relation is when the scalar
bi in Equations 6.16 and 6.17 is replaced by a vector of polynomial
coe�cients. The inner relation is then expressed as:

uj = b2;jt
2
j + b1;jtj + b0;j (6.38)

if a second-order polynomial is used. Note that t2j is t squared element
by element. Thus, t2j is of the same size as t. In Figure 6.3, a non-
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Figure 6.3 The relation between t and u described by a scalar and a
second-order polynomial.

linear relation between t and u is shown. When linear PLS is used, the
relation between t and u is described by the dashed line. A second-
order polynomial PLS model describes the relation as the dash-dotted
line. It is obvious that the second line describes the relation better.
However, one must use non-linear relations with caution as the model
becomes more sensitive to extrapolation as the order of the polynomial
increases.

There are other methods to introduce non-linearities. Spline tech-
niques and neural networks are two examples that can be found in
the literature, for example Qin and McAvoy (1991) and Wise and
Gallagher (1996).

Representing Dynamics

In their basic con�guration the MVS based methods are static, and the
dynamics of the system is not represented. The static methods can be
used for monitoringwith good results, but when the goal is to estimate,
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and especially predict, variable values, dynamics must be taken into
consideration. Here, extensions to MVS aiming at representing the
dynamics of the process, are presented.

Time Lags

In all dynamic processes time lags are present. By time lag we mean
the time it takes for a change in the X-block to propagate to the
Y -block. In basic MVS the time lag between the X-block and the Y -
block is not addressed. One way of dealing with this, if there is just one
quality variable in the Y -block, is to investigate the cross-covariance
function between every input variable and the output variable and
calculate the suitable lag (�Astr�om and Wittenmark 1997; Wise and
Gallagher 1996). A second way is to use an a priori model for the
time lag of every relation, for example, depending on the retention
time. By doing so the time lag between each process variable and the
quality variable will change dynamically as the 
ow rate changes and
we will have a quasi-dynamic representation of the 
ow dynamics.

FIR and IIR Models

A distinguishing feature of dynamic processes is that the present state
is a result of its history. Therefore, it is desirable to take the history
into consideration. This can be achieved by applying the ideas be-
hind time series modelling and �nite impulse response (FIR) models
(or MA models). Consider Equation 4.1. A FIR �lter is obtained if
all a coe�cients are equal to zero. Let the estimate ŷ be based on
x(k); x(k � 1); : : : ; x(k � l) (m in Equation 4.1 is replaced by l to
avoid ambiguity) and let the prediction error be e. This is the same
case as in Equation 4.2. The equation expresses a single input-single

output (SISO) model. However, the equation can be extended to com-
prise multiple inputs and multiple outputs, i.e. a MIMO model. The
MIMO form of Equation 4.2 is expressed as:

ŷ(k) = B0x(k) +B1x(k � 1) + : : :+Blx(k � l) + e(k) (6.39)

where ŷ(k) is a column vector of a length corresponding to the number
of variables in the Y -block (ny). The B matrices are of size [ny � nx]
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and the x:s are column vectors of size [nx � 1]. This can also be
expressed as:

ŷ(k) =
�
B0 B1 : : : Bl

�
2
6664

x(k)
x(k � 1)

...
x(k � l)

3
7775+ e(k) (6.40)

In order to obtain the above matrices in the format used earlier in this
thesis, let:

ŷ(k) = ŷT (k) (6.41)

xFIR(k) =

2
6664

x(k)
x(k � 1)

...
x(k � l)

3
7775
T

(6.42)

and

BFIR =
�
B0 B1 : : : Bl

�T
(6.43)

Then the estimate for a certain time k is:

ŷ(k) = xFIR(k)BFIR + e(k) (6.44)

and the estimate for all samples is:

Ŷ = XFIRBFIR +E (6.45)

where Ŷ is of size [m� ny], X̂FIR is of size [m� nxl], BFIR is of size
[nxl � ny] and E is of size [m � ny]. The identi�cation of the FIR
coe�cients in BFIR can be carried out with MVS. Let the training Y -
block be Ŷ and the training X-block be XFIR from a historic period
of known Ŷ and XFIR. The FIR coe�cients, BFIR, can then be
identi�ed by (compare with Equation 6.23):

BFIR =W(PTW)�1BQT (6.46)

where W, P, T, B and Q are determined by the PLS algorithm.

The same approach as used for FIR model identi�cation is applicable
if in�nite impulse response (IIR) model (or AR model) is desired. In
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an IIR model the a coe�cients in Equation 4.1 are not equal to zero.
Consequently, Equation 6.39 must be rewritten:

ŷ(k) = �A1ŷ(k � 1)�A2ŷ(k � 2)� : : :�Alyŷ(k � ly)

B0x(k) + : : :+Blxx(k � lx) + e(k) (6.47)

Analogous to the FIR model, the IIR model can be written as:

ŷ(k) = xIIR(k)BIIR + e(k) (6.48)

where

xIIR(k) =

2
666666666664

ŷ(k � 1)
ŷ(k � 2)

...
ŷ(k � ly)
x(k)

x(k � 1)
...

x(k � lx)

3
777777777775

T

(6.49)

and

BIIR =
�
A1 A2 : : : Aly B0 B1 : : : Blx

�T
(6.50)

The estimate for all samples is:

Ŷ = XIIRBIIR + Ei (6.51)

Thus, the identi�cation of a PLS model with Y and X-blocks from
Equations 6.45 and 6.51 is also an identi�cation of the FIR and IIR
coe�cients, respectively. However, identi�cation of the coe�cient
matrices BIIR is done based on one important assumption. The equa-
tion errors e(k) are assumed to be uncorrelated. In this way, the
identi�cation is kept linear.

There are two reasons to use PLS (or PCR) in order to identify the
FIR and IIR coe�cient matrices, instead of direct identi�cation with
the least-squares method (see Equation 6.9). Firstly, the inverse of
XTX may be ill-conditioned or may not exist at all due to collinear-
ities. Secondly, the primary goal is not to identify the best possible
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model. Instead, the goal is to obtain key variables for detection and
visualisation with consideration taken to the dynamics of the process.

A problem with FIR and IIR models is the increased number of vari-
ables. The number of variables is now the original number of values
multiplied by the length of the �nite time window. If the compu-
tational power is limited, this may be a problem. The problem can
partly be solved by not using every sample in the range k to k � l.
Instead, every jth sample can be used. The data preparation becomes
somewhat more complicated, but is solved by a simple computer al-
gorithm.

Number of Components

A crucial question when building MVS models is the number of com-
ponents to use. If too many components are retained in the model, the
dimensionality of the process has not been reduced and the only gain
is the orthogonality of the new variables. On the other hand, if too
few variables are retained, information will be lost as the variability
captured by the model decreases with the number of components.

For PCR and PLS a decision criterion, the total SPEY , can be used.
If the model is built for prediction, the SPEY is a natural choice, as
SPEY measures the prediction error of the model. Cross-validation
techniques can then be applied in order to �nd the optimal number
of components. Cross-validation implies that a part of the data set is
kept out of the model development. This data are then compared with
predictions made by the model and the total SPEY is calculated. The
number of components used is altered and the number of components
resulting in the smallest total SPEY is chosen. The procedure is
repeated keeping di�erent parts of data out of the development. A
more thorough description of cross-validation can be found in (Wold
1978).

For PCA, it is not possible to use the SPEY as a criterion. Neither is it
possible to use SPEX , since it decreases as the number of components
increases. Instead an investigation of the eigenvalues associated with
the model can be used. Figure 6.4 shows the eigenvalues versus the
number of components of a PCA model. If there is a "knee" in the
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Figure 6.4 The eigenvalues associated with the principal components in a
PCA model.

plot, this may indicate a good choice of the number of components
(Wise and Gallagher 1996). In this case, a reasonable choice of the
number of components retained in the model may be 4. Knees in
the eigenvalue plot can be further accentuated if the squares of the
eigenvalues are plotted.

Outliers in Training Data

Once a model has been built, there may be sample values not consist-
ent with the model behaviour. There are various techniques available
to decide whether a sample is in agreement with the model or not
(Wise and Gallagher 1996). The SPE and T 2 measures of the train-
ing data can be used to decide whether a sample is representative for
the process mode or not. Caution must be taken though, when us-
ing the con�dence limits as limits for outliers. Firstly, the limits are
calculated based on the assumption of normally distributed variables,
and secondly, if the amount of training data is great, representative
samples will exceed the limits. In Figure 6.5, the SPE (top) and T 2
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Figure 6.5 The SPE (top) and T 2 (bottom) residuals with approximate
95 % limit. Probable outliers can be seen at sample 72 and
100.

(bottom) measures are plotted. At least sample 72 in the top �gure
and sample 100 in the bottom �gure ought to be further investigated.
If the deviating samples are believed to represent a true event in the
process, they should be kept. A similar situation may occur in the
future, and the information is then critical for predictive performance.
If the samples are believed to be outliers and thus not representing a
true deviation of the process, they ought to be removed in order to ob-
tain a good model. However, depending on the model, the method to
treat outliers di�er. In a static model, erroneous samples can simply
be removed. No consideration to the history is taken, and the order of
the samples is not important. If the model is dynamic, that is a FIR
or IIR model has been developed, the time is important. Therefore, it
is not possible to simply remove a sample. Instead, the sample must
be replaced with an estimated value as discussed in Chapter 4.
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6.3 On-line Monitoring

On-line monitoring of measurement variables aim at continuously ana-
lyse and interpret the measurements in order to detect and isolate
disturbances and faults. MVS provide us with tools for analysis and
interpretation. An important part of the analysis and interpretation
is visualisation of the measures and variables.

Visualisation

In order to present variables and measures discussed in this chapter,
di�erent methods for visualisation can be used. The visualisation
methods must be easily interpretable and comprehensible, so that the
key features of the present situation can easily be extracted. If a
disturbance or failure occurs, the operator should not have to spend
precious time to interpret the information presented.

SPE and T2 plots

The most basic way to present the results from a PCA monitoring
model is to monitor each principal component individually in a time
series plot. The number of principal components is hopefully fewer
than the original number of variables, but there may still be a con-
siderable number of variables to view. The SPE and T 2 measures,
however, describe the statistical �t of the model. This means that if
one or a few variables are deviating from the normal model area, the
SPE and/or T 2 measures will increase. SPE and T 2 plots with con-
�dence or alarm limits are very e�ective for the initial detection task.
When the measure exceeds a certain threshold, an alarm or detection
is triggered. Figure 6.6 shows how a large disturbance at sample 230
a�ects SPE. The e�ect on T 2 is shown i Figure 6.7.

Score Plot

Monitoring of the SPE and T 2 residuals is e�ective, but not partic-
ularly transparent. The dimension reduction capability of MVS can
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Figure 6.6 The SPE residual with the approximate 95 % con�dence limit.
A disturbance is visible at sample 230.
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Figure 6.7 T 2 residual with 95 % con�dence limits. A disturbance is visible
at sample 230.
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Figure 6.8 The scores of the �rst and second principal component with
approximate 95 % con�dence limits.

be used to visualise the process status changes in a two- (or perhaps,
three-) dimensional plot. As mentioned before, the nature of most in-
dustrial processes implies that just a few latent variables or principal
components will cover most of the variability in the process space. The
MVS algorithms give us the principal components or latent variables
which describe the variability in descending order, and the �rst few
variables cover a great part of the total variability of the process. By
plotting, for instance, the �rst score vector against the second score
vector, the process changes can be viewed as a point moving around
in the plane as new samples are added. Points that cluster represent
similar process behaviour and, consequently, deviating points indicate
process changes. This makes the score plot comprehensible and usable
for classi�cation purposes. In Figure 6.8, such a plot is shown. The
data are the same as in Figure 6.6 and 6.7. Every dot represents the
values of the �rst and second scores at a point in time. Under normal
operating conditions the centre of gravity of the points ought to be
close to the origin, due to the mean centring of data. Points far from
the origin indicate a disturbance and, consequently, the operational
mode is not longer classi�ed as normal. To be able to di�er between
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Figure 6.9 The scores on the �rst, second and third principal component
with 95 % con�dence limits.

in-control variations (that is variations within the normal operation)
and disturbances, control limits can be used. The ellipse in Figure 6.8
represents the 95 % con�dence limits of the �rst and second training
data score vectors. These limits are calculated using Equation 6.24.
Other limits, such as limits based on quantiles or strictly empirical lim-
its, can be used to indicate whether the process is in control or not.
The disturbance indicated by the SPE and T 2 plots, can here be seen
as a signi�cant deviation from the origin, far outside the con�dence
limit.

It is not always su�cient to monitor the �rst and second PC (or LVs).
When it is established that only two PCs do not cover enough vari-
ability of the process, three dimensions can be used. There are little
use to visualise all three dimensions in one �gure. Instead the result
can be presented as shown in Figure 6.9. Here the axes are de�ned by
t1; t2 and t3. It is not as comprehensive as a score plot with t1 and
t2, but it is still an improvement compared to monitoring all original
variables.
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Rate of Change

The process status changes within the PC space may reveal interesting
information. Fast changes in the process, even though they are inside
the de�ned normal region indicate that the process is not stable (ac-
cording to the measurements). The Euclidian distance between every
sample in the PC space is:

de(k) =

vuut aX
j=1

�t2j(k) (6.52)

where a is the number of components retained in the model

�t2j(k) = (tj(k)� tj(k � 1))2 (6.53)

The intersample distance de normally changes with high frequency.
A single large change is perhaps not interesting. Instead, if there are
several consecutive samples with great intersample distance this may
be valuable information. Therefore, it is sometimes convenient to �lter
de with, for instance, a median �lter prior to using it for detection.

Isolation

The monitoring charts described above are e�cient to detect devi-
ations from the normal situation, but the reasons for the deviations
are not indicated. The process location in two- (or three-) dimensional
score plots provide information that can be linked to speci�c events by
experience. An expert system, based on historic data and experience,
may then be used to derive the possible causes for a disturbance. Clas-
si�cation algorithms, using the tendency of data to gather in clusters
in the process space are also a possible way forward. However, there
is more information to gain from a deeper investigation of the PCA
model. When a disturbance is detected in score plots or SPE and
T 2 plots, a physical interpretation can be found by transforming the
model output to the original process space. So called contribution plots
can isolate the variable/variables that has/have caused the deviation.
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Figure 6.10 The contribution of every variable to the prediction error at
sample 243.

Prediction Error Contribution

In Equation 6.27, SPE(k) is de�ned as the sum of squares of e(k).
Thus, the vector e(k) contains information on the individual predic-
tion errors of each process variable at sample k. By plotting e(k) as a
bar graph, the contributions to SPE(k) can be viewed (Figure 6.10).
The relative size of the bars indicates the contribution from each vari-
able to the prediction error, or lack of �t of a sample to the model. In
some situations, when the SPE measure is varying, it is a good idea
to use a mean of the contribution to SPE. This is done by replacing
the vector e(k) by a vector expressing the mean error over a period of
length l. The delay introduced by the mean �ltering makes this less
applicable in on-line situations.

Score Contribution

When T 2 exceeds it limits, the contribution to the T 2 measure is of
interest. In Equation 6.36, T 2 is de�ned as the normalised sum of
scores. Another way of expressing Equation 6.36 is:

T 2(k) =
t21(k)

�1
+
t22(k)

�2
+ : : :+

t2a(k)

�a
(6.54)

where tj(k) is the score and �j is the eigenvalue associated with the jth
principal component. The score,which gives the largest contribution to
T 2, is the score associated with the largest term in Equation 6.54. The
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Figure 6.11 Variables contributing to the deviation from origin along PC
no 1 (left) and PC no 2 (right) at sample 234.

next step is to �nd which physical process variables have contributed
to the score deviation. If the data are mean centred, it can be seen
from Equation 6.54 that T 2 becomes large when the scores are far
from zero. The variables that have forced the score away from zero
along the jth PC can be found by:

c(k) = x(k)Pj (6.55)

where c(k) is a vector with the contributions from each process vari-
able at time k. Pj is the diagonal matrix of the row vector pj. If PLS
is used the Pj can be exchanged by Wj (MacGregor et al. 1994). A
bar graph of the contribution to the score changes along the �rst and
second PCs is shown in Figure 6.11.

A second way to isolate deviating variables is to investigate the change
of the score from a sample when the score was inside its limits to a
sample outside the limits, i.e.:

�x(k) = x(k)� x(k � l) (6.56)

where x(k � l) represents a sample with normal process behaviour.
When this method is used, x(k) in Equation 6.55 is replaced by �x(k).
It is often necessary to look at the movement along more than just
one PC and score plots suggest along which PC the deviation is large.
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Figure 6.12 A load plot indicates variables that have similar impact on the
process. The plot also shows how the process status moves
when a variable is changed. This can be used to determine
possible counteractions.

Counteractions

The score plot forms a composite representation of the process status
changes in the space de�ned by the principal components. Plotting
the loads instead, a picture of the relations between the original vari-
ables appears. Clustering points in such a plot, indicate variables that
a�ect the process in a similar way. A score plot can be used to gain in-
formation on how changes in original variables move the process point
in the PC space. In Figure 6.12, the �rst and second loading vectors
from the previous example are plotted against each other. Variables
near each other in
uence the process in a similar way and the distance
from the origin depicts the relative force of the in
uence in the PC
plane. By looking at the load plot, variables that drive the process
back to the origin can be established for each disturbance event. In
this way, if some of the variables are controlled, it is possible to de-
termine variables that will drive the process back to the normal region.
The plot can be used as control strategy advise for the operators.
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Monitoring Slowly Changing Conditions

MVS based methods are sensitive to long-term trends in one or several
of the independent variables. For instance, the centre of the samples
in the score plot will slowly change, and the boundaries de�ning the
normal region or other classi�cation regions, will not be correctly loc-
ated. The simplest way to solve this problem is to exclude variables
that show indications of long-term trends. However, exclusion is not
always feasible as it will lead to information loss. If information on
the long-term trends is available, it can be compensated for.

It is di�cult to �nd a model that covers all the situations occurring in
a process. A model performing satisfactory during certain operating
conditions, may be far from usable during other conditions. Radically
changed conditions sometimes call for di�erent control strategies and,
consequently, di�erent monitoring models. It is, therefore, sometimes
necessary to have several models to choose from, all adapted to speci�c
operating conditions. During transition periods several models can be
run in parallel. The model showing the best �t is then used.

Slow variations in the surrounding conditions could possibly also be
addressed by updating the detection model. New models can be con-
tinuously built from a certain number of historical data. The perform-
ance of a new model is compared with the performance of the model
which is currently used, and if the new model performs better, the
old model is exchanged. In this way slow variations are taken into
consideration but there is a risk that the model will not detect other,
undesirable, slow variations as it adapts to these as well.

6.4 Classi�cation of Operational Modes

Since we are able to analyse many variables simultaneously, MVS
provides us with tools for describing the process conditions, or the
operational mode of the process. Descriptions of operational modes
can be divided into two groups depending on what they are aiming at
describing. General operational modes indicate the general conditions
of the process and are described by as many information contributing
variables as available. From the general mode description an overall
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evaluation of the process can be made. A possible tool for describing
the general operational mode is principal component analysis (PCA).
In PCA, the analysis emphasises the description of the variability of
the process variables (the X-block) with no regard to any speci�c tar-
get variable. However, it is sometimes convenient to de�ne modes
based upon a speci�c variable, for instance, an e�uent quality vari-
able of great interest. In this case the speci�c mode is described by
the variables most in
uential to the e�uent quality variable. For in-
stance, projection to latent structures (PLS) provides us with a way
of doing this, as PLS aims at describing the variability of the process
variables (the X-block) in
uencing one or several quality variables
(the Y -block).

Qualitative and Quantitative De�nitions of Modes

There are two ways to de�ne an operational mode. Firstly, the mode
can be de�ned as a mode with a physical interpretation. Such modes
may typically be night, rain, winter and so on. The mode is then
linked to the numerical characteristics of the measurement data during
such operational periods. Thus, the mode is pre-de�ned and de�ned
qualitatively and then characterised by the numerics. However, this
approach yields overlapping modes, which may result in misclassi�ca-
tions or ambiguous classi�cation of the mode. When a speci�c opera-
tional mode is de�ned, the qualitative criteria for di�erent modes can
be linked to the quality variable (Y -block). For instance, the modes
can be chosen in such a way that there is a mode for high, normal and
low level of a certain quality variable.

Secondly, the mode can be de�ned directly from the numerical char-
acteristics of the measurement data and then labelled in a suitable
way. Consequently, the mode is de�ned quantitatively and then ad-
dressed by a qualitative label. Typical examples of numerical modes
are normal, abnormal, upper right corner (in a two-dimensional pro-
cess variable or latent variable space) and so on. The quantitative
modes can sometimes be linked to more interpretable and qualitative
labels, but this is not true for all modes. However, the classi�cation is
reduced to the location in a space and is not ambiguous. A quantit-
ative description of speci�c operational modes gives some qualitative
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Figure 6.13 The mapping of two qualitative operational mode de�nitions
(left) and two quantitative mode de�nitions (right) into a nu-
merical space.

interpretation of the modes, since the modes are de�ned with a spe-
ci�c quality variable in mind. However, it may not be possible to link
the modes directly to a variable level.

What type of mode de�nition to use, depends on the aim of the detec-
tion task. Under some conditions, qualitative and quantitative de�n-
itions may coincide, and that makes the choice easy. However, the
quantitative approach is more suitable for the methods presented in
this thesis, since it is based on the numerical characteristics of data.
Figure 6.13 shows an attempt to illustrate the di�erence between qual-
itative and quantitative mode de�nitions.

Detection of Operational Modes

The ability to detect and determine the present operational mode is
useful in many ways. The most obvious reason for detecting a change
in operational modes is to inform the operators and process engineers
that something is happening with the process. Secondly, a new opera-
tional mode may demand a di�erent control strategy. The goals of the
control system during normal conditions may di�er signi�cantly from
the goals during, for instance, rain events or toxic shocks. Thirdly, it
is sometimes wise to have several models for di�erent situations, as a
general model often becomes too general and, therefore, not informat-
ive. Detection of new operational modes may then be used to trigger
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a change of models.

Detection of di�erent operational modes is a task of classifying the
present mode as one of the modes available or by de�ning a new class
if no mode covers the current situation. The classi�cation can be car-
ried out in di�erent ways. In the case when there are normal and
abnormal modes, the classi�cation is reduced to determine whether
the present operational mode is within the limits for normal opera-
tion (binary classi�cation) or not. In the case where there are many
modes available, the classi�cation is straightforward if the modes are
de�ned as quantitative modes since the mode is directly determined
from the process location in the PC space. However, if the modes are
de�ned qualitatively, the class membership may be ambiguous and an
evaluation of the class membership must be carried out.

Binary Classi�cation

If the aim of the classi�cation is to determine whether the process
is in a normal operating mode or not, the SPE and T 2 measures
provide us with information on this. Limits can be imposed on these
measures. Exceeded limits indicate an abnormal mode (see Figures 6.6
and 6.7). Classi�cation can also be done with the use of score plots,
i.e. by using the ellipse de�ning the normal region (see Figure 6.8).
The limits can be statistical con�dence limits, empirically established
limits or limits corresponding to physical conditions. Due to not evenly
distributed measurements, the use of ellipses as class boundaries is not
always suitable. The process representation may very well move along
a path with little resemblance to an ellipse. Instead, empirically found
boundaries can be de�ned. It is important that the model represents
the mode that is normal or desired, and that it is not too sensitive
to minor faults that do not in
uence the product quality or endanger
the safety of the process.

Multiple Classes

To take full advantage of the capability of MVS, more classes than
normal and abnormal can be de�ned as regions in the PC space. As
we have seen before, di�erent disturbances will locate the process in
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di�erent regions in the PC space. By linking these regions to di�erent
disturbance types it is possible to quickly establish the present oper-
ational mode and decide upon appropriate counteractions. The task
of de�ning the regions can be carried out both o�-line and on-line.
When classes are de�ned o�-line, the training data must contain data
from all the operational modes that the model is designed to classify.
Using PCA, general mode regions can be determined by looking at the
data in a score plot and manually de�ne di�erent operational modes
based on the process location in the PC space. When PLS is used,
restrictions on the Y -block can be used to de�ne regions in the PC
space, i.e. speci�c operational mode regions.

When the classes are de�ned on-line, the model is built from normal
operating data. When disturbances occur, the regions into which the
process representation moves, can be determined and linked to the
present disturbance. In this way, normal data will �t the model well,
but when disturbances arise, the �t may decrease signi�cantly. The
way to accomplish this depends on the use of the model and the desired
sensitivity.

Cluster Classi�cation

When the class regions are determined (or rather the class member-
ship for the instances in the training set), the k-nearest neighbours al-
gorithm can be used in order to automatically �nd the class of a new
sample. In k-nearest neighbours, a new point in the a-dimensional
PC space is simply assigned the most frequent class of the k-nearest
neighbours. Thus, the training set in the k-nearest neighbours method
is here the score matrix (T) with classes assigned to every row. When
new data are applied, the distance between the new point (tnew) and
every point in PC space corresponding to the training set is calculated
as the Euclidian distance:

d(tnew; ti) =

vuut aX
r=1

(tnew;r � ti;r)2 (6.57)

where ti is the ith row in T used as training data. The class mem-
bership of the k-nearest training points are investigated and the most
common class is assigned to tnew. In this way every new sample of T
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Figure 6.14 A 1-nearest neighbour algorithm classi�es tnew as negative (left)
whereas a 5-nearest neighbour algorithm classi�es tnew as pos-
itive.

can be assigned a class. In Figure 6.14, a set of training points can be
viewed along with their values (or classes) in a two-dimensional space.
A new instance tnew is located in the space as well. Let t1 to tk be
the k-nearest neighbours from the training examples. If a 1-nearest
neighbour algorithm is used the classi�cation of tnew is negative. How-
ever, looking at the training data it is more likely that tnew is positive
and a 5-nearest neighbour algorithm classi�es tnew as positive. The
procedure can be extended to handle continuous outcomes. Instead
of assigning the most frequent outcome of the k-nearest neighbours, a
mean of the outcomes can be assigned.

6.5 Other Detection Techniques

This thesis focuses on MVS based methods for detection or classi�c-
ation of operational modes. The examples in Chapters 7 and 8 are,
consequently, based on MVS methods. However, there are many other
alternatives available for analysis of multivariate data and a short de-
scription of some groups of methods is appropriate. The practicability
of di�erent methods depends on data and the aim of the analysis. In
Figure 6.15, a unifying perspective of available methods is shown. Es-
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Figure 6.15 Unifying view of methods for data analysis usable for opera-
tional mode classi�cation (Davis et al. 1996).

tablishing the operational mode is, as mentioned before, a task of
recognising speci�c process �ngerprints or patterns, characteristic of
di�erent operational modes. According to Davis et al. (1996), there
are three distinct components involved in pattern recognition:

1. numeric-numeric analysis or pre-processing of data;

2. numeric-symbolic analysis, which constitutes the core of process
monitoring techniques;

3. symbolic-symbolic analysis, which typically consists of knowledge-
based systems.

In order to extract the maximal amount of information from on-line
data, combinations of the above listed components may prove suc-
cessful and comply well with the idea of D2C described in Chapter
3.

Numeric-numeric

Numeric-numeric methods for feature extraction is basically what has
been discussed in Chapters 4 and 5.
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Symbolic-symbolic

Knowledge-based systems (KBS) belong to this group of analysis meth-
ods. KBS can be developed using expert knowledge, as in expert sys-
tems, or from di�erent kinds of inductive inference engines applied
directly to data. KBS is often used on a higher abstraction level,
not directly linked to measurements. Due to the extensive knowledge
required for building, KBS is normally not used in monitoring applica-
tions. However, KBS can be e�ective as an advisory tool for operators
in abnormal situations.

Numeric-symbolic

This group of methods comprises distribution-function based as well
as dimension-reduction based methods. MVS based methods are con-
sidered as dimension-reduction methods together with, for instance,
arti�cial neural networks (ANN). A combination of MVS and ANN
is proposed by Qin and McAvoy (1991). However, a few words about
distribution-function based techniques are appropriate. These tech-
niques are based on calculation of the class membership probabilities
or possibilities. In Bayesian decision theory, a decision on class mem-
bership is made upon calculations of the probability that a particular
pattern can be associated with a speci�c class or label. A problem with
Bayesian decision theory is that it requires a great deal of informa-
tion on a priori probabilities, which is often not available in many
possible applications. Fuzzy-set theory describes numerical data qual-
itatively by specifying how well data satisfy qualitative descriptions of
the measured feature.

A guide to available methods in the �eld of process monitoring can be
found in Kramer and Mah (1994) or Davis et al. (1996).





Chapter 7

MVS Applied to Simulated Data

In this chapter, monitoring of simulated data is discussed. There are
mainly two reasons for using simulated instead of real data. Firstly,
available data may have low quality, which makes it hard to isolate
the process disturbances from other disturbances related to the meas-
urement system. Secondly, the desired excitation of the system does
not appear. The question is then: what is the use of the models if
they do not work in real situations? On the other hand, in order to
develop adequate methods, which may work in real situations, simu-
lations are a useful method for evaluation and validation. If a method
does not work with simulated data, it will certainly not work in reality.
Studying simulated data enable us to mimic failures and disturbances,
occurring rarely in reality, and test the methods in situations not rep-
resented in available real data. As the next logical step, it is necessary
to validate the methods in real situations to be able to really speak of
their applicability.

7.1 Creating Simulated Data

It is important that the model used to produce data, is adequate and
has demonstrated its ability to mimic the behaviour of the true pro-
cess. The IAWQ Activated Sludge model No.1, or ASM1, (Henze, et
al. 1987) was developed by a task group appointed by the Interna-
tional Association on Water Quality (IAWQ) and models biological
carbon and nitrogen removal. The ASM1 has been used in many ap-
plications during the last decade, and many references can be found
in the literature on its performance and validity (Dold and Marais
1986; Dold et al. 1991). ASM1, or derivatives thereof, is used in
most commercial simulation packages for wastewater treatment avail-
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able today. Since the ASM1 only describes the biological reactions,
the model must be supplemented by a settling model. In this chapter,
only the biological reactions are taken into account and, consequently,
a fairly simple settler model is adequate.

Ensuring the Credibility

When simulation models are used to produce wastewater treatment
data, the credibility of the experiment is inevitably decreasing. How-
ever, there are a several ways to make the simulations more realistic:

� Choice of model - the model used must be adequate for the pur-
pose and the model parameters must have reasonable values. In
this work, the ASM1 model is used with default parameter values
(if nothing else is indicated).

� In
uent data - the input (in
uent) data to the model must be as
realistic as possible. This implies variations, noise and disturb-
ances. The in
uent �les used here are hybrids of real and ma-
nipulated data. The data are developed by a working group on
operation of wastewater treatment plants within the European
scienti�c research exchange programme COST 682 (Vanhooren
and Nguyen 1996).

� Noise - applying noise to the variables assumed to be measured
mimics the disturbances of a real measurement system. The ap-
plied noise contains both high frequency noise and outliers.

� Variables - only the variables possible to measure should be used.
Thus, no information not readily available at a plant can be used
for detection purposes.

Choice of Model

The ASM1 is today probably the most widely used model for describ-
ing the kinetics of activated sludge systems, including organic carbon
and nitrogen removal. The model chosen here for creating simulated
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data is based on a study currently undertaken within the earlier men-
tioned COST group. The model is implemented in Simulink, which is
a simulation package for MATLAB users.

In
uent Data

The development of the in
uent data is described by Vanhooren and
Nguyen (1996). However, a short description is appropriate. In
uent
data have been constructed for a period of 7 days. There are three sep-
arate in
uent data series representing dry weather, dry weather with
two di�erent storm events and dry weather with a longer continuous
rain. The data series can be used repeatedly to simulate longer periods
of time. In
uent 
ow rate data are based on data from a large activ-
ated sludge plant. However, some modi�cations have been performed,
based on available information on in
uent 
ow characteristics. The
data have been scaled from an average of � 75.000m3/day to �18.400
m3/day to suit the size of the modelled plant.

Noise

To mimic the presence of measurement and random high frequency
process disturbances, a �lter adding noise to every measured variable
is applied. This can be done by just adding a mean centred normally
distributed white noise with appropriate variance. However, such an
approach will not mimic true disturbances especially well. Instead,
a �lter creating noise with signi�cant "outliers" is used. The �lter
model can be expressed as:

e(k) = 0:4e(k � 1) + 0:8e(k � 1)z(k � 1) + z(k) (7.1)

where e(k) is the noise at time k and z(k) is normally distributed
white noise. The new "distorted" signal is then:

yn(k) = max(0; y(k) + ea(k)) (7.2)

where ea is the result of mean centring and scaling to an appropriate
variance of e. The limitation is due to the fact that most measurement
systems do not produce negative values. The �lter produces an output
with good resemblance to noise found in real measurements. In Figure
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7.1, an output of the model can be seen before and after applying the
�lter discussed above.
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Figure 7.1 Model output (top) and model output with noise added (bottom).

Variables

No variables not available with today's measurement technology should
be used. This implies that many of the state variables in the ASM1
remain unknown for the user of the simulated data. This approach
ensures that the internal structure of the model is not used to derive
states, that cannot possibly be known at a real plant.

The Activated Sludge Model No.1

A brief presentation of the the Activated Sludge Model No.1 (ASM1)
model is given here. The model state variables, dynamics and para-
meters are discussed.
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State Variables

The state variables included in the ASM1 are listed in Table 7.1. The
state variables di�er somewhat from the ones we normally measure and
observe at a plant and so do the units. Organic matter and dissolved
oxygen have the unit mg COD/l. The nitrogen fractions have the unit
mg N/l, and the unit for alkalinity is moles HCO�

3 /m
3.

Symbol Variable

SI Inert organic matter
SS Readily biodegradable substrate
XI Particulate inert organic matter
XS Slowly biodegradable substrate
XB;H Active heterotrophic biomass
XB;A Active autotrophic biomass
XP Particulate product from biomass decay
SO Dissolved oxygen
SNO Nitrate and nitrite nitrogen
SNH Ammonia nitrogen
SND Biodegradable organic nitrogen
XND Particulate biodegradable organic nitrogen
SALK Alkalinity

Table 7.1 The states of ASM1 model.

At the plant the total suspended solids (TSS) is normally measured.
Therefore, the particulate matter must be converted to TSS. Henze
et al. (1995b) proposed following conversion:

TSS = 0:75(XI +XP +XS) + 0:9(XB;H +XB;A) (7.3)

Dynamic Processes

There are eight di�erent dynamic processes in the ASM1 model de-
scribing the dynamics.

� Aerobic growth of heterotrophs - readily biodegradable substrate,
dissolved oxygen, ammonia and alkalinity are consumed and het-
erotrophic biomass is produced. The growth is modelled by a
Monod expression.
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� Anoxic growth of heterotrophs - readily biodegradable substrate,
nitrate (nitrite) and ammonia are consumed and heterotrophic
biomass and alkalinity are produced. The growth is modelled by
a Monod expression.

� Aerobic growth of autotrophs - dissolved oxygen, ammonia and
alkalinity are consumed and autotrophic biomass and nitrate (ni-
trite) are produced. The growth is modelled by a Monod expres-
sion.

� Decay of heterotrophs - heterotrophic biomass is decomposed into
slowly biodegradable substrate and other particulate products.

� Decay of autotrophs - autotrophic biomass is decomposed into
slowly biodegradable substrate and other particulate products.

� Ammoni�cation of soluble organic nitrogen - biodegradable or-
ganic nitrogen is transformed to ammonia. Alkalinity is pro-
duced.

� Hydrolysis of entrapped organics - slowly biodegradable substrate
is transformed to readily biodegradable substrate.

� Hydrolysis of entrapped organic nitrogen - particulate biodegrad-
able organic nitrogen is transformed to biodegradable organic ni-
trogen.

The processes are also included in the matrix describing the ASM1
model in presented Appendix C.

Parameters

The kinetic and stoichiometric coe�cients of the ASM1 model must
be given values. The task of determining these values is known as
model calibration. If the model is used to simulate a speci�c plant,
the calibration must be carried out for this plant. This implies long
experiments at pilot and bench-scale plants. In Appendix C, the para-
meter values suggested by the IAWQ task group are presented. The
values can be used when no further information is available, or when
the task is to model a plant in general.
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Settler Model

The settler model used in the simulation model is known as a one-

dimensional layer model. One-dimensional models only describe the
settling process along the vertical axis, leaving only cross-sectional
area and depth as design parameters. The one-dimensional layer
model is thoroughly described in, for instance, Jeppsson (1996) and
only the basic ideas behind the model will be presented here.

Layers

The idea behind one-dimensional layer models is that the settler is
divided into a number of layers. The mass balance for each layer is
calculated, assuming complete mixing within each layer. The sludge
transport between the layers is assumed to depend on two mechanisms;
bulk movement and gravity settling. The bulk movement is caused by
the hydraulic 
ow and can thus be directed both upwards and down-
wards. A feed layer must be determined. Above the feed layer the bulk

ow is directed upwards, corresponding to the e�uent 
ow (Qe). Con-
sequently, below the feed layer the bulk 
ow is directed downwards,
corresponding to the under
ow (Qu). However, the gravity settling is
always directed downwards due to the gravity action on the sludge. In
Figure 7.2, the principle of the one-dimensional layer model is shown.

Settling Velocity Functions

Many di�erent settling velocity functions can be found in the literat-
ure. Traditionally, the settling velocity function is based either on an
exponential or a power function, where the settling velocity only de-
pends on the local concentration. In the model used in this study, the
double-exponential settling velocity function is used. In this function,
consideration is taken to the fact that low concentrations result in a
low settling velocity. The function is de�ned as (Tak�acs et al. 1991):

vs = max
�
0; min

�
v00; v0

�
e�rh(X�Xmin) � e�rp(X�Xmin)

���
(7.4)
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Figure 7.2 General description of the traditional one-dimensional layer set-
tler model (Jeppsson 1996).

where v00 and v0 is the maximum practical and theoretical settling
velocity, respectively. rh is a settling parameter characterising the
hindered settling zone and rp is a parameter associated with the set-
tling behaviour at low solids concentrations. Xmin is calculated as a
fraction of X:

Xmin = fnsXf (7.5)

where Xf is the concentration into the feed layer. Figure 7.3 shows
the double-exponential settling function.
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Figure 7.3 Schematic description of the double-exponential settling velo-
city model at a constant Xf (Jeppsson 1996).

Simulation Model in Simulink

The ASM1 model is implemented in MATLAB as a Simulink model.
Simulink is a package used in MATLAB for mathematical modelling,
simulation and analysis of dynamical systems. Simulink is capable of
handling both continuous and discrete systems as well as combinations
thereof. Models are built as block diagrams, which make Simulink
models easy to use and comprehend.

Model Structure

The structure of the model is shown in Figure 7.4. The structure
basically consists of six bioreactors, a 
ow splitter, a settler unit and
a 
ow combiner. There are two recirculations present; return sludge

ow and the internal recirculation 
ow. The DO concentration is
controlled in bioreactor 6 and the internal recirculation 
ow rate is
controlled based on an SNO setpoint in reactor 2. The bioreactor and
the settler blocks are implemented as C MEX S-functions. This means
that the blocks are programmed in C, instead of using graphic blocks
or M-�les. This has been done to increase the performance of the
simulation, reducing the simulation times by a factor of ten.
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Figure 7.4 The plant model implemented as blocks and functions in Simulink.
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Model Parameter Values

In the simulation model, the parameter values decided by the COST
group are used (Table 7.2). The chosen parameter values for the settler
model are listed in Table 7.3.

Symbol Unit Value

Heterotrophs �H 1/day 4
bH 1/day 0.3
�h - 0.5

Hydrolysis �g - 0.8
kh 1/day 3.0

Ammoni�cation ka - 0.05

Autotrophs �A 1/day 0.5
bA 1/day 0.05

Half-saturation KOH mg/l 0.2
coe�cients KS mg/l 10

KX - 0.1
KNH mg/l 1.0
KOA mg/l 0.4
KNO mg/l 0.5

Stoichiometry YH gCOD/gCOD 0.67
YA gCOD/gN 0.24
iXB gN/gCOD 0.08
iXP gN/gCOD 0.06
fP - 0.08

Table 7.2 The parameters of the ASM1 model.

Design and Operational Parameters

The principal layout of the simulated plant is shown in Figure 7.5.
The volume of each biological reactor is 1000 m3, which yields a total
volume of 6000 m3. The return sludge 
ow rate is set to 100% of the
in
uent 
ow rate, while the internal recirculation is controlled, using a
setpoint of 1.0 mg N/l for the nitrate concentration SNO in bioreactor
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Parameter Unit Value

v0
0

m/day 250
v0
0

m/day 474
rh l/(mg TSS) 0.000576
rp l/(mg TSS) 0.00286
fns - 0.00288

Table 7.3 Settler model parameter values.

Anoxic AerobicAnoxic Aerobic Aerobic Aerobic

Reactor 1 Reactor 2 Reactor 3 Reactor 4 Reactor 5 Reactor 6

Influent Effluent

Sludge return

Internal recirculation

Figure 7.5 Principal layout of the simulated plant.

2. During dry-weather operation this implies 200-450% of the in
uent

ow rate. The aeration in bioreactor 3, 4 and 5 is set to a constant
value, causing the DO level to vary, due to load changes. The aeration
in bioreactor 6 is controlled to a set point of 2.0 mg/l. The operational
parameters are listed in Table 7.4.

Operational parameter Unit Value

Return sludge Qr % 100

ow rate
SNO setpoint for SNO;ref mg N/l 1.0
internal recirculation
Aeration reac. 3-5 KLa day�1 240
DO setpoint in reac.6 SO;ref mg -COD/l 2.0

Table 7.4 Operational parameters of the simulated process.
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7.2 General Operational Mode

Monitoring

As discussed in Chapter 6, when monitoring a general operational
mode, only the general operational conditions are considered without
any speci�c subprocess or quality variable in mind. The aim is either
to detect deviations from the normal mode (binary classi�cation) or
to classify the current mode into mode categories (multiple classi�ca-
tion). Thus, all available measurements are normally used, as we are
not focused on a speci�c deviation or disturbance. One can separate
the disturbances into two subcategories:

� external disturbances;

� internal disturbances.

External disturbances are de�ned as those imposed upon the pro-
cess from the outside and detectable when monitoring the in
uent
characteristics. For instance, a change in the in
uent 
ow rate can
be considered as an external disturbance. Internal disturbances are
caused by changes within the process a�ecting the process behaviour.
A pump failure is a typical internal disturbance. However, from a de-
tection point of view, a disturbance imposed upon the process from the
outside, may not be possible to detect directly. Instead, the disturb-
ance may be detected as an e�ect on internal variables. An example
of such an internal disturbance may be decreased nitri�cation, caused
by non-measurable changes in the in
uent wastewater characteristics.
The detection may be triggered by the decrease in oxygen demand.

External process disturbances

Hydraulic disturbances are common at most wastewater treatment
plants. In the in
uent data �le developed by the COST group, there
are three events associated with the in
uent 
ow rate. However, the
appearance of the disturbances di�er from each other. The �rst one
imitates a sudden storm event after a long period of dry weather. This
implies that there is a 
ush out of accumulated particulate matter in
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the sewer system. The second event is also a storm event, but now
the sewer is relatively empty of accumulated matter and, consequently,
the in
uent characteristics di�er from the �rst event. The third event
is an extended period of rain, appearing after a longer period of dry
weather. The following example shows how these disturbances appear
using a PCA model for general operational mode monitoring.

A PCAmodel is built from a period of one week of dry weather (normal
operation). The data used are the in
uent �le and model outputs, all
with noise added to mimic sensor noise and outliers as described in
Equations 7.1 and 7.2. In the model building stage it is important
to remove noise and outliers to get a representative model. This is
done by an FMH �lter applied iteratively until the noise and outliers
were reduced to an acceptable level. In Table 7.5, the variables used
to build the PCA model are listed. As is shown Table 7.6, the model

Var no Symbol Variable

1 SNH;in In
uent ammonia conc.
2 Qin In
uent 
ow rate
3 TSS Total suspended solids conc. (rector 4)
4 SO;3 Dissolved oxygen conc. (reactor 3)
5 SO;4 Dissolved oxygen conc. (reactor 4)
6 SO;5 Dissolved oxygen conc. (reactor 5)
7 KLa Oxygen mass transfer coe�cient (reactor 6)

Table 7.5 Variables constituting the X-block in the PCA model.

is able to capture most of the variability of the X-block in two PCs.
An investigation of the eigenvalues associated with the model shows
that three components may be a reasonable number of PCs.

Storm Events

The measurement variables during the storm weeks are presented in
Figure 7.6. The �rst storm is visible at around sample 850. The
second storm can be seen at around sample 1100.

In Figure 7.7, the SPE (top) and the �ltered SPE (bottom) measures
are shown. The �ltered SPE is used to determine whether a deviation
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Figure 7.6 The monitored variables during the storm weeks.
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Principal Eigenvalue % Variance % Variance
component of captured captured
number cov(X) this PC total

1 5.27 75.30 75.30
2 1.09 15.52 90.81
3 0.40 5.69 96.50
4 0.14 1.95 98.45
5 0.06 0.88 99.33
6 0.04 0.56 99.89
7 0.01 0.11 100.00

Table 7.6 Variance captured by the PCA model.

in SPE is caused by a single outlying value. Therefore, the SPE is
�ltered by a causal 5-point median �lter. This approximately corres-
ponds to a detection rule requiring more than two consecutive samples
to be above the limit. The limit is the 0.99 quantile of the training
data SPE. This corresponds approximately to the 0.95 quantile of
non-�ltered training data. Since the model will be applied to non-
�ltered data it is reasonable to use a less stringent limit. It can be
seen that besides a few exceeding samples during the �rst 800 samples,
there is a signi�cant deviation around sample 850. A second deviation
is visible between samples 1050 to 1200.

The T 2 measure also displays signi�cant deviations around samples
850 and 1050 (Figure 7.8). The same �ltering as in the SPE case has
been used to produce the �ltered T 2. The deviations in the T 2 meas-
ure are somewhat more signi�cant than the deviations in the SPE
measure. The implication of this is that the deviations are especially
large within the model, even though the deviations from the model
plane are signi�cant. A contribution plots is a fast way to investigate
the event and to isolate the variables causing the deviation. Figure
7.9 displays the variables responsible for the deviation in the SPE
measure at samples 850 and 1052, respectively. The �gure shows that
during both events it is the variable 2 (in
uent 
ow rate) and variable
3 (TSS in reactor 4) that are primarily responsible for the deviations.
If the signs of the elements constituting the loading matrix are invest-
igated, it can be derived that there is an increase in the in
uent 
ow
rate and a decrease in the TSS.
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Figure 7.7 SPE (top) and median �ltered SPE (bottom) during storm
event. The dashed line corresponds to the 0.99 quantile of
training data.
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Figure 7.8 T 2 (top) and median �ltered T 2 (bottom) during storm event.
The dashed line corresponds to the 99% con�dence level.
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Figure 7.9 Variables contributing to the deviations in SPE at sample 850
(left) and sample 1052 (right).

In order to determine variables which are contributing to the deviation
in T 2, the most signi�cant terms in Equation 6.36 must be found. Fig-
ure 7.10 shows that it is the third score vector that contributes the
most to T 2 at samples 851 and 1052 (which in both cases represent the
third consecutive sample above the signi�cance limit for T 2, respect-
ively). The second largest score contributing to T 2, is the score of PC
no 2. In Figure 7.11, the variables contributing to the deviations in
score vectors 2 and 3 are shown. The �gure indicates that the largest
contribution comes from variable 2 (in
uent 
ow rate), but it can also
be seen that variable 1 (in
uent ammonia) has contributed signi�c-
antly. An investigation of the loading matrix reveals that the in
uent

ow rate is higher and that the in
uent ammonia concentration is
lower than normal operating values.

The conclusion of the analysis of the contribution to the SPE and
T 2 measures during the storm events is that variables 2 and 3 (TSS)
changes the mutual relations within the model and that especially
variable 2 but also variables 1 and 3 are deviating from the normal
daily pattern. Could this have detected seen by investigating the
variables individually? The answer to that is yes, but it would not
be that obvious how to rank the process in
uence of each variable and
the task would involve monitoring of seven variables instead of two
model residuals.

Another way of displaying the process mode is by score plots. Since
Figure 7.11 indicates that all three score vectors play an important
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Figure 7.10 Score vectors contributing to T 2 at sample 851.
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Figure 7.11 Variables contributing to the deviations in T 2 along PC no 2
(top left) and 3 (top right) at sample 851 and along PC no 2
(bottom left) and 3 (bottom right) at sample 1052.
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part for the deviations in T 2, every combination of the score vectors
is plotted in Figure 7.12. During normal operation, there are still
some points exceeding the 99% con�dence limit of the scores, but the
deviations are not signi�cant. In the �gure, a loop shaped pattern is
visible, representing the changes over the 24 hours of the day. However,
both the �rst ('*') and second ('+') storm event result in points located
well outside the normal operating region.
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Figure 7.12 Score plots showing the process in the PC space. The '*' rep-
resents the �rst storm event and the '+' represents the second
storm event.

An important observation is that after the second storm event the T 2

measure quickly resumes its normal operation value, while the SPE
measure does not (see Figures 7.7 and 7.8). This indicates that the
external disturbance has distorted the internal relations between the
variables and thus the process is still not in normal operational mode.
The normal operational mode is not reached within the remaining
time of the test period. This shows that monitoring the PC scores is
not su�cient to determine the operational mode.
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Rain Event

The measurement variables during the rain event are presented in Fig-
ure 7.13. The rain event is visible from samples 800 to 1000. The
same PCA model as used for the storm events is used to monitor the
rain event. Besides a continuously high level from samples 200 to 500,
the SPE does not display any signi�cant deviation from normal op-
eration (Figure 7.14). (The reason for the high level will be discussed
later.) However, the T 2 measure (Figure 7.15) shows a signi�cant de-
viation from samples 805 to 1000. The contribution from the scores to
the deviation in T 2 shows that it is changes along the third PC that
contribute the most to T 2 at sample 811 (Figure 7.16). The contribut-
ing variables to the change along PC nos 2 and 3 are shown in Figure
7.17. It is obvious that variable 2 (in
uent 
ow rate) is the main cause
of the deviation. Variable 1 (in
uent ammonia concentration) is also
a major contributor.

The implication of the SPE and T 2 plots is that the disturbance is
inside the model space, i.e. the deviations in the process are well
described by the PCA model. The mutual relations between the vari-
ables are not distorted. This may be somewhat confusing, but when
looking at how the rain data have been created, there is a simple ex-
planation. The rain event data are constructed by simply adding a
bias to the dry-weather data. This keeps the internal relation intact
and, consequently, the model �t is still good. The rain data do not
represent a totally realistic situation, but it is a good reminder of what
the di�erent measures express.

At �rst, the continuously high level of SPE between samples 200 and
500, is confusing. A contribution plot would show that variables 2 (in-

uent 
ow rate) and 3 (TSS concentration) are the main contributors
to the prediction error. The low level of TSS is perhaps not surprising,
since the data series is actually the continuation of the storm event
data �le, Thus, there is still a deviation from the second storm event.
However, the high 
ow rate values are more intriguing. An investig-
ation of the in
uent data reveals that 
ow rate is normal. However,
one should not forget how the PCA model is constructed. The SPE
is a measure of the prediction error. A high level of TSS, which is
highly (negatively) correlated to 
ow rate, will a�ect the prediction
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Figure 7.13 The monitored variables during the rain event.
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Figure 7.14 SPE (top) and median �ltered SPE (bottom) during a rain
event. The dashed line corresponds to the 0.99 quantile of
training data.
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Figure 7.15 T 2 (top) and median �ltered T 2 (bottom) during a rain event.
The dashed line corresponds to the 99% con�dence level.
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Figure 7.16 Score vectors contributing to T 2 at sample 852.
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Figure 7.17 Variables contributing to the deviations in T 2 along PC nos 2
(left) and 3 (right) at sample 811.
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of the 
ow rate and, consequently, cause the prediction error to in-
crease. This is an example of a disturbance or deviation di�cult to
detect by investigating a single variable, as the disturbance appears
as a statistical mis�t.

The storm and rain examples indicate the practicability of MVS for
general operational mode monitoring. They also show that the SPE
and T 2 measures should be used complementarily for good monitor-
ing results. This is further accentuated by the internal disturbance
examples presented in the following in subsection.

Internal Process Disturbances

Internal disturbances appear within the process or plant. Mechanical
breakdowns and sensor failures or drift are typical internal disturb-
ances. Other examples of internal disturbances are changes in reaction
rates caused by external variations as discussed earlier.

A PCA model was built from a period of 14 days of dry-weather
conditions. Noise was applied to the model output and in
uent data
in the same way as discussed earlier. In the model building stage, it is
important to remove noise and outliers to get a representative model.
This was done by an FMH �lter applied iteratively until the noise and
outliers were reduced to acceptable levels. Five principal components
were chosen and the captured variability is shown in Table 7.7.

Principal Eigenvalue % Variance % Variance
component of captured captured
number cov(X) this PC total

1 5.00 71.56 71.56
2 1.09 15.60 87.16
3 0.47 6.71 93.88
4 0.22 3.09 96.97
5 0.09 1.32 98.29
6 0.07 1.07 99.36
7 0.05 0.64 100.00

Table 7.7 Variance captured by the PCA model.
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Deteriorating Nitri�cation

To simulate decreasing nitri�cation capability of the activated sludge,
the speci�c growth rate for the autotrophs, �A, is decreased. This is
done as a step from �A=0.5 to 0.4 day

�1 at day 2 (sample 192). The
growth rate is then further decreased in a linear fashion. At day four
the growth rate is 0.3 day�1, and from that on it is constant according
to Figure 7.18.
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Figure 7.18 The decrease of the speci�c growth rate �A.
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Figure 7.19 The SPE measure un�ltered (top) and �ltered with a causal
median �lter of 5 points (bottom). Signs of a disturbance can
be seen around sample 200. The decrease of autotrophic growth
rate is imposed at sample 193.
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In Figure 7.19 (top), the sum of the prediction error (SPE) is plot-
ted. Apart from a few deviations before sample 200, the process can
be regarded to be in normal operational mode. This is in accordance
to the fact that the disturbance has not yet been introduced. How-
ever, at about sample 200, the SPE increases and exceeds its limits
signi�cantly. Thus, the model does not cover the present variability
of the process as well as before sample 200. We have a disturbance
and this corresponds well to the decrease in the speci�c growth rate of
autotrophs imposed at sample 192 (2 days). In Figure 7.19 (bottom),
the median �ltered SPE is shown. The median �lter introduces a
delay of 2 samples, but the result is somewhat more robust. After
sample 235, the SPE measure is again located inside the normal re-
gion. Is the disturbance no longer present? The answer is that the
disturbance is still present, but due to the variations in the process,
the SPE measure will di�er during the hours of the day. This means
that if the disturbance occurs when the SPE measure is low, it will
take longer time before the disturbance is detected. This points out
the di�culties in detecting deviations in dynamic systems.

The SPE measure reveals that the process has deviated from the
normal operation mode in the sense that the �t of the model has de-
creased. In Figure 7.20 (top), the T 2 measure is plotted. The T 2

measure also reveals a deviation, but this seem to be a diurnal event
occurring at this time every day. Looking at the whole week, there is
a tendency towards higher peaks, but it is not obvious. This implies
that the deviations within the model (that is the distances between
each sample and the origin) are not signi�cant. In Figure 7.20 (bot-
tom), the median �ltered T 2 measure is plotted. The T 2 together
with the SPE measure suggest that the disturbance has distorted the
mutual relationships between the variables, but the mean values and
extreme values are not signi�cantly di�erent from the normal opera-
tional mode. The reason for the deviation can be found by applying
the methods discussed in Chapter 6. By examining at the variable con-
tribution to the SPE at, for instance, sample 220, the reason for the
deviation can be found. The variable contribution is shown in Figure
7.21 (left). It is obvious that variable 4 (DO concentration in reactor
3) has contributed the most to the deviation in SPE. However, it may
be wise to look at the mean contribution over a few samples to avoid
the in
uence of single large variable values. The mean contribution
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Figure 7.20 T 2 (top) and 5-point median �ltered T 2 (bottom). No signi-
�cant deviations visible - the T 2 does capture the disturbance.
Consequently, the disturbance does not appear as deviating
amplitudes or mean values of the scores.
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Figure 7.21 Variables contributing to SPE at sample 220 (left) and vari-
ables contributing to the mean SPE at sample 216 to 225
(right).
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during samples 216 to 225 is shown in Figure 7.21 (right).

In this example, the detection and isolation of the disturbance do not
tell us what has caused the disturbance. There are several possible
causes for variable 4 to deviate but establishing these causes is the
task of diagnosis and will not be discussed here.

Mechanical Breakdown

A challenging problem is to detect changes or breakdowns of the mech-
anical equipment by monitoring the on-line measurements. For in-
stance, a small decrease in the return sludge 
ow rate, due to poor
pump performance, may not be detected by the pump alarm indicator.
However, such an event will slowly change the behaviour of the pro-
cess as, for example, the sludge content and, consequently, the sludge
age is a�ected. In order to simulate a breakdown in the return sludge
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Figure 7.22 SPE (top) and 5-points median �ltered SPE (bottom).


ow pumping, the 
ow rate is set to decrease in a linear fashion from
its normal value at day 2 to 75% of it normal value 3 hours later. The
same PCA model used in the previous example is applied. Is it then
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possible to quickly detect the change in 
ow rate?
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Figure 7.23 Variables contributing to the prediction error at sample 296.
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Figure 7.24 Variables contributing to the prediction error at sample 398
(left) and sample 490 (right).

When looking at the �rst 7 days, there is a slow trend in the SPE
measure (Figure 7.22 (top)). This trend becomes more visible when
the SPE is �ltered, using a causal median �lter of 5 points. There is
a signi�cant deviation around sample 295, but the impulse like shape
indicates that it is a measurement disturbance. However, in Figure
7.23 the reason for the deviation at sample 296 is shown. The �gure
shows that it is mainly variable 7 (KLa in reactor 6) contributing to
the deviation.

It is not until sample 480 that SPE more consistently exceeds the
limit. The variables contributing to this deviation at samples 398 and
490 is shown in Figure 7.24. In both �gures it is variable no 3 (TSS)
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that contributes the most. In Figure 7.25, the mean contribution over
a longer period is shown. This is done so that no momentary large
deviation will mislead us to draw a false conclusion. The contribution
from variable 3 is evident. The small contributions from variable 1 (in-

uent ammonia) and 2 (
ow rate) indicate that there are no trends in
the in
uent water characteristics, instead it is an internal disturbance.
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Figure 7.25 Variables contributing to the mean prediction error at sample
401 to 500.

The T 2 measure displays the same behaviour as in the previous ex-
ample. The disturbance is thus not clearly visible in the T 2 plot. The
disturbance consist of an internal distortion of the mutual relation-
ships of the variables.

Cluster Classi�cation

Di�erent operational modes give rise to di�erent patterns of the scores
in the score plots and clustering points represent similar conditions.
This can be used to empirically couple the score pattern to a certain
mode or a disturbance. An operator knows that if the points are
gathered in speci�c regions in the PC space, the process operates under
certain conditions. This can be used to classify several operational
modes with respect to the process location in the PC space, instead
of simply determining if the mode is normal or abnormal. Below two
simple examples are presented.
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General Classi�cation of the Storm Event

In order to classify deviations some criteria are needed. The isolation
of deviating variables during the storm events discussed on page 112
indicated that it was especially variables 2 (
ow rate) and 3 (TSS), but
also variable 1 (in
uent ammonia) that contributed to the disturbance
(see Figure 7.10). In Figure 7.26, the �rst two loading vectors of the
model used to monitor the storm event are plotted. As mentioned
in Chapter 6, the load plot indicates how the variables in
uence the
process representation in the PC plane. For instance, if Qin in Figure
7.26 increases (assuming that no other variables change), the points
representing the process in a score plot will move diagonally towards
the upper right corner. A decrease, on the other hand, will move the
points in the opposite direction. Thus, it can be seen in the �gure
that in order to force the process towards the upper right corner of
the score plot (Figure 7.12, lower left panel), variable 1 (SNH;in) must
be lower, variable 2 (Qin) must be higher and variable 3 (TSS) must
be lower than their normal mode values. The class (upper right corner
of the score plot) are thus de�ned by:

� variable 1 , in
uent ammonia: low;

� variable 2, in
uent 
ow rate: high;

� variable 3, TSS in reactor 4: low.

Next time the process is located in the upper right corner of the PC
space, the operators know that the variables 1, 2 and 3 are most likely
deviating in the same manner. The classi�cation gives a physical
interpretation to the disturbance pattern seen in the score plot.

Speci�c Classi�cation of the Storm Event

The disturbance pattern can also be coupled to an e�ect of the dis-
turbance. If, for instance, the e�uent nitrate concentration (SNO) is
measured, a classi�cation can be made with regard to the nitrogen
removal performance.

The storm event data is used as training data for a simple speci�c
classi�cation. During the storm events, the e�uent nitrate level is
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Figure 7.26 The �rst two loading vectors. The points indicate the in
uence
of a certain variable upon the process.

lower than normal. In order to create a simple criterion, the nitrogen
level is discretised into normal and low. Every value below the 0.10
quantile is labelled low, the rest is labelled normal. The aim is thus to
recognise a deviating score pattern when the nitrate level is low. The
rain data will serve as validation data of the classi�cation.

As previously described in Chapter 6, the k-nearest clustering al-
gorithm is simple and easy to use. Training instances are the two
�rst score vectors and the discretised nitrate level is the class out-
come. Figure 7.27 (top), displays how the instances with an outcome
of low nitrate level cluster in the upper right corner ('+'= instances
with low nitrate level). 11-nearest, that is k = 11, classi�cation is used
on the rain data and the outcome of is shown in Figure 7.27 (bottom).
The algorithm classi�es most of the deviating scores as "low nitrate".
Consequently, the mechanism resulting in low nitrate during the storm
event, is also present during the rain event. The classi�cation preci-
sion could probably be improved by �ltering and introducing a time
delay. One way to monitor the reliability of the classi�cation is to plot
the sum of the distances between a new instance and the k nearest
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Figure 7.27 Training instances (top) and 11-nearest classi�ed instances
(bottom). '+'= low nitrate e�uent level and 'o'= normal ni-
trate e�uent level.
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neighbours. High values of the sum indicate that the classi�cation is
somewhat uncertain and should be used with care. In Figure 7.28,
the sum of distances is plotted for the rain data. It is clear that the
classi�cations around samples 880 to 895 and 975 to 990 are not very
reliable. As a matter of fact, these are actually the instances with an
outcome of normal nitrate value in the upper cluster in shown Figure
7.27 (bottom).
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Figure 7.28 The sum of distances between a new instance and the 11-
nearest neighbours.

When a new deviation occurs, the same procedure can be used to
link this deviation to another important observation or key variable.
Instances can also be added to already known classes in order to de-
crease the uncertainty, for example, since the rain event has the same
e�ect on the e�uent nitrate concentration as the storm events, the
rain instances can be added to the training data for the low nitrate
class. However, an increasing number of examples in the training data
make the k-nearest algorithm slow, as every example must be checked
in order to �nd the k nearest neighbours.
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7.3 Speci�c Operational Mode

Monitoring

So far, the monitoring examples presented in this chapter have been
focusing on the general operational mode. No consideration has been
taken to the e�uent or quality variables of the simulated plant. Con-
sequently, the PCA models have been used as monitoring models. If
the monitoring is to be emphasised upon a subprocess of the treatment
process, the model must be able to take particular consideration to the
variables in
uencing that subprocess. This can be achieved with PLS.

Monitoring the Performance

Let us assume that the most critical requirements for the simulated
wastewater treatment plant are on e�uent nitrogen concentration. It
would then be desirable to emphasise the monitoring task of variables
in
uencing the e�uent nitrogen. This can be achieved by PLS, where
the input variables (X-block) are the same as in the PCA case listed
in Table 7.5 and the output variables (Y -block) are the e�uent nitrate
and ammonia concentration. The monitoring model is then identi�ed
in such a way, that a maximum of the variance in both input and
output variables is described. A static PLS model with time delays
is identi�ed from training data, which consist of 672 samples, i.e.
one week's data. Time lags according to a crosscorrelation analysis
between the input and output blocks are included in order to make the
model more accurate. In this case, when the Y -block constitutes two
output variables, the determination of the time lags becomes di�cult.
This is due to the fact that the time lags between the X-block and
the separate variables in the Y -block di�er. However, it turns out
that the crosscorrelation is practically the same and, consequently, a
compromise can be made. In Table 7.8 the explained variability of
the X and Y -block is listed, respectively. As shown in the table, the
model is able to capture most of the variability of the X-block, which
is desirable in a monitoring situation, and a large part of the variability
of the Y -block. Best predictive ability is accomplished with six latent
variables (LVs).
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X-block Y -block
LV total total

1 82.14 66.85
2 90.96 74.51
3 96.92 79.12
4 98.23 84.24
5 99.12 85.83
6 99.85 86.19

Table 7.8 Explained variability of the X and Y -block, respectively.
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Figure 7.29 SPE (top) and T 2 (bottom) measures during the storm events.
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Figure 7.29 displays the behaviour of the model when the storm data
are processed. The SPE measure (top) is low, which is expected as
six out of seven LVs are used. The SPE does not increase during
the storms and this is an indication that the internal relations are not
altered according to the model. On the other hand, the T 2 measure
displays signi�cant deviations at both storm events (around samples
850 and 1100, respectively).
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Figure 7.30 SPE (top) and T 2 (bottom) measures during the rain events.

The rain event is monitored in Figure 7.30. Here, the SPE is con-
stantly low and the process is inside the model region. However, the
T 2 measure deviates signi�cantly during the rain event (samples 800
to 1000).

Quality Variable Prediction

An appealing feature of the regression methods is the predictive cap-
ability. The predictive capability can be used directly to estimate
variables not measured or measured only at sparse instances. Pre-
diction can also be used for continuously validating the monitoring
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No of X-block Y -block
Model LVs total total

1 6 99.77 81.99
2 6 99.76 85.49
3 12 98.37 93.43

Table 7.9 Explained variability of the �rst (static, without time lags),
second (static, with time lags) and third (FIR model) PLS
model.

model. Here, examples of both �elds of application are presented.

Prediction of E�uent Nitrate

Measuring devices are expensive, both in terms of money and main-
tenance. Due to this, the number of measurements is often kept at a
minimum. Therefore, it is important to be able to estimate variables
not available from the measurement system. An example of this can
be the e�uent nitrate concentration. If a plant is built with parallel
lines, a good model can reduce the need for nitrate sensors. Instead of
installing one sensor in each line, only one can be installed and a model
can be used to estimate the nitrate concentration in the other lines.
The estimates will not be as good as a real sensor, but the results can
be used to indicate disturbances, calling for deeper investigations.

The independent block consists of the variables listed in Table 7.5.
The dependent block is the e�uent nitrate SNO, or more precisely the
nitrate concentration in reactor 6. Three PLS models are built. The
�rst is a static model, with no regard to time lags. The second model
is a static model with time lags. The third model is a �nite impulse re-
sponse (FIR) PLS model. The time lags are determined with crosscor-
relation analysis. The time lag demonstrating the best correlation is
chosen as the time lag for the relation between the independent and
dependent variable. The number of historic measurements included in
the FIR model is also determined by crosscorrelation analysis. There
are di�erent numbers of historic measurements for each variable in
the X-block and the numbers are chosen in such way that the time
shift corresponding to the maximum crosscorrelation is included. In
order to chose the appropriate number of components retained in each
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model, crossvalidation is used. In Table 7.9, the explained variability
of the three models is shown.
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Figure 7.31 The performance of the three models during normal (training)
conditions. The plot displays the results during three days,
of which the �rst is a Sunday (di�erent operational conditions
during weekends).

In Figure 7.31, the ASM1 output value and the predictions from the
PLS models are shown. Only the results during three days are plot-
ted to be able to discern the separate graphs. The predictions are
good, no model results deviate signi�cantly from the ASM1 output.
This is expected since the explained variability is high for all three
models. However, more interesting is to investigate how the models
perform when a new situation, not encountered in the training data,
arises. Figure 7.32 shows the prediction during the two storm events
(a total time period of six days). It is obvious that the static model
with no time lags performs poorly when compared to the other two
models. This is especially signi�cant during the second rain event,
around samples 2300 to 2450. Here, the �rst model predicts an in-
crease when the ASM1 output is actually decreasing. The second
(static with time lags) and third (FIR model) perform well, and both
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Figure 7.32 The performance of the three models during two storm events.

have captured the mechanisms that cause the nitrate concentration
to decrease even though the FIR model is notably better. During the
rain event the FIR model produces relatively good predictions. The
static model with time delays also captures the main dynamics of the
system. Which model produces the best prediction? One way to de-
termine this is to examine the sum of squares of the prediction error
(see Equation 6.26). The mean SPEY of models 1, 2 and 3 is listed
in Table 7.10.

The best predictive performance is achieved with the FIR model. This
is not a surprising result as this model captures the most variability of
the training data. The above is only an example of the performance
of di�erent models. In other situations, static models may perform
better than FIR (or IIR) models. The situation and the aim of the
model determine the best model structure.
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Figure 7.33 The performance of the three models during the rain event.

Model type mean SPEY

Static without time lags 2.10
Static with time lags 0.77
FIR model 0.59

Table 7.10 The mean SPEY of the PLS models.



Chapter 8

MVS Applied to Real On-line

Measurements

In this chapter a few detection examples are presented. They are
chosen to be informative and representative for the operation of a
treatment plant. The data that are used in this chapter, are real data
from the Ronneby wastewater treatment plant in Sweden.

8.1 The Ronneby Treatment Plant

The Ronneby treatment plant was originally built in 1970 and is loc-
ated on south-east coast of Sweden. The recipient, the Han�o bay, is
considered to be an environmentally sensitive area, and the require-
ments on e�uent quality have been increased over the years. This
led to a major upgrade of the plant in the early nineties, aiming at
nitrogen removal with a capacity for enhanced biological phosphorous
removal. However, chemical post-precipitation is still used to remove
phosphorous. The principal layout of the plant is shown in Figure
8.1. The Ronneby plant serves the city of Ronneby with a popula-
tion of about 15.000. Some key dimensions of the plant are given in
Table 8.1. The biological reactors at the Ronneby plant are divided
into two parallel lines. This is done to ensure the capability to always
keep one line intact in case of major disturbances, e.g. loss of nitri-
�cation. The intact line can then be used to recover the treatment
capacity of the a�ected line. The Ronneby plant is operated at a spe-
ci�c DO setpoint concentration, using controllers to maintain the DO
concentration. This is done successfully with rare deviations from the
setpoint. The DO concentration is measured at two separate locations
in each line. At the point of in
uent, 
ow rate, ammonia concentra-
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Screens Grit Removal Biolocical Reactors Clarifer Dissolved Air Flotation

Influent
wastewater

Effluent
water

1 2 3 4

Biological Reactors:
1. Anaerob/Anox
2. Anox/Aerob
3. Aerob
4. Aerob

To sludge
treatment

Figure 8.1 The principal layout of the Ronneby wastewater treatment plant.

Design load

Average 
ow rate (m3=day) 10.000
BOD7 (kg=day) 2.000
Tot-N (kg=day) 400
Tot-P (kg=day) 80

Dimensions

Anaerobic� (m3) 0
Anoxic� (m3) 3.000
Aerobic (m3) 3.200
Clari�er (m2) 2.010

E�uent quality requirements

BOD7 (mg=l) < 15
Tot-N (mg=l) < 12
Tot-P (mg=l) < 0.5

� The plant can be operated with either 3.000 m3

anoxic volume or 2.000m3 anoxic volume and 1000
m3 anaerobic volume.

Table 8.1 Some key dimensions and �gures for the Ronneby plant.
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tion, conductivity, pH and temperature are measured. Besides the
DO concentration, sludge concentration and air valve position of the
aeration systems are measured in. At the point of e�uent from the
biological reactors, ammonia and pH are measured, while phosphate,
turbidity and pH are measured at the plant outlet. The measurement
system collects data with a sampling interval of 5 minutes, i.e. 288
samples per day.

8.2 Monitoring General Operational

Modes

As discussed in Chapter 6, a general operational mode describes the
process mode without one or several target variables in mind. This
makes PCA suitable for the task. A straightforward way of using PCA
for classi�cation of operational modes is to use the statistics described
in Chapter 6. The PCA model is developed from data representing
normal and/or desired operational behaviour of the process. Con�d-
ence limits of SPE and T 2 are used to decide whether the process
mode is normal or not. The mode de�nitions are thus restricted to
normal and abnormal operation. As soon as the SPE or T 2 measures
exceed their limits, the process is said to be in an abnormal mode.
This is of course based on the assumption that the measurements are
correct. Consequently, we will have two cases of abnormal operation:
truly abnormal mode and believed abnormal mode due to sensor fail-
ure. The PCA model will not distinguish between these cases. How-
ever, if there is a sensor failure, this is also important information. It
is often easy to distinguish a sensor failure from a process failure, as
the sensor failure will normally in
uence only one variable. Process
failures on the other hand, can often be tracked in several variables.
Also, sensor failures often appear more abruptly than process changes.

Detection of a Sensor Failure

The general operational mode of the Ronneby wastewater treatment
plant is monitored with PCA. The model is identi�ed from data during
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Variable Measured
number entity

1 in
uent temperature
2 sludge concentration in line 1
3 sludge concentration in line 2
4 air valve position of blower 1 in line 1
5 air valve position of blower 2 in line 1
6 air valve position of blower 1 in line 2
7 air valve position of blower 2 in line 2
8 in
uent conductivity
9 in
uent ammonia
10 in
uent pH
11 in
uent 
ow rate

Table 8.2 Variables used in the PCA model.

a period of 2500 samples, i.e. approximately 9 days, and the variables
used are given in Table 8.2. During the period from which the training
data are collected, the process demonstrates a normal and desired
behaviour. Thus, the process mode described by the PCA model can
be said to be a normal operational mode. In the PCA model, six
principal components are retained, capturing approximately 90% of
the variability of the original data matrix (Table 8.3). The SPE and
T 2 measures of the new data are shown in Figure 8.2 and it is obvious
that everything appears relatively normal until sample 731. At this
time, both SPE and T 2 increase suddenly, and exceed the con�dence
limits by a wide margin. The mode can be classi�ed as abnormal.
The change is rapid, which suggests that the problem is not process
related. Instead, the change may have been caused by a sensor failure.
From Figure 8.3 it is concluded that the contribution to the deviation
in SPE at sample 731 is mainly caused by a change in variable 8,
i.e. in
uent conductivity. There are also signi�cant contributions
from variables 1 and 2, in
uent temperature and sludge concentration,
respectively. If the contribution to the changes along the PCs between
sample 730, where the SPE and T 2 measures are still small, and
sample 731 is studied, the picture becomes clear (Figure 8.4). It is
obvious that there is a change in variable 8 (in
uent conductivity) and
that this has caused the T 2 measure to exceed its limits. It can be seen
in Figure 8.2 that the residuals decrease at sample 1070 as suddenly
as they increased at sample 731. This is caused by a corrective action
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Principal Eigenvalue % Variance % Variance
component of captured captured
number cov(X) this PC total

1 4.70e+00 42.74 42.74
2 1.89e+00 17.18 59.93
3 1.32e+00 11.97 71.89
4 9.26e-01 8.42 80.31
5 6.65e-01 6.05 86.36
6 4.28e-01 3.89 90.25
7 3.40e-01 3.09 93.34
8 3.00e-01 2.73 96.06
9 2.52e-01 2.29 98.35
10 1.23e-01 1.12 99.47
11 5.78e-02 0.53 100.00

Table 8.3 Percent variance captured by the PCA model.
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Figure 8.2 The SPE and T 2 measures for new data.
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Figure 8.3 The contribution to the large SPE in sample 731.
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Figure 8.4 Variables contributing to change along PC no 1 (left) and PC
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Principal Eigenvalue % Variance % Variance
component of captured captured
number cov(X) this PC total

1 3.96e+00 33.03 33.03
2 2.43e+00 20.21 53.24
3 1.84e+00 15.37 68.61
4 1.31e+00 10.96 79.57
5 8.14e-01 6.79 86.36
6 6.89e-01 5.74 92.10
7 4.09e-01 3.41 95.50
8 2.31e-01 1.92 97.43
9 1.72e-01 1.43 98.86
10 7.61e-02 0.63 99.50
11 6.02e-02 0.50 100.00
12 1.14e-14 0.00 100.00

Table 8.4 Percent variance captured by the PCA model.

performed on the failing sensor. The signi�cant increase in both SPE
and T 2 makes it di�cult to draw any conclusions of how the process is
operating during the sensor failure. A small but signi�cant change of
the process behaviour would "drown" in the residuals caused by the
sensor failure. Thus, it is important that the misleading data from the
erroneous sensor are replaced by data not distorting the monitoring.

Detection of External Disturbance

In the previous example the cause of the change of operational mode
was caused by a sensor failure. This should have been resolved dur-
ing the screening stage of the data. A more interesting situation is
if there are many concurrent variables driving the process in a cer-
tain direction. A PCA model is developed to monitor the process
behaviour. In order to obtain a general model, more samples than
in the previous example were included. The model is based on 6000
samples (approximately 21 days) collected during normal operational
conditions. There are periods of rain and other minor disturbances,
which make the model slightly more tolerant to such disturbances in
the data. The data used for developing the model are the same as in
the previous example, except that a variable describing the di�erence
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between sludge concentration in line 1 and 2 is included as variable 12.
The captured variance is shown in Table 8.4. The number of retained
principal components are chosen to four. This implies that the model
is able to capture approximately 80% of the variance of the training
data.

In Figure 8.5, the SPE (top) and T 2 (bottom) measures are plotted.
First we focus on the SPE measure. The residual is increasing signi-
�cantly from sample 650 and forward. As mentioned before, the SPE
is the Euclidian distance between the sample and the model plane
(with four dimensions in this case). After sample 650 the process
leaves the model region and the distance to the model plane increases.
A residual contribution plot (Figure 8.6, top) reveals what has caused
the deviation. At sample 685 there is no single variable that can be
pointed out as the main cause. Variables 1 (in
uent temperature) and
9 (in
uent pH), together with variables 5 (air valve position) and 11
(in
uent 
ow rate) are slightly more dominant than the others. The
conclusion is that the process has left the model region and several
variables have contributed to this. In the residual contribution plot
at sample 852 (Figure 8.6, bottom), it is possible to distinguish a few
dominant variables contributing to the deviation. Variables 2 (sludge
concentration, line 1), 10 (in
uent pH) and 12 (di�erence in sludge
concentration between lines 1 and 2) appear to be the main contrib-
utors. The disturbance in sample 852 is thus not exactly the same as
in sample 685.

The T 2 measure also increases around sample 650. The residual
reaches a peak at sample 685, and the reason can be found in the
contribution plots. Figure 8.7 shows the variables contributing to the
change along the principal component between samples 640 and 685.
Here, variables 4, 5, 6, 7 (air valve positions) and 11 (in
uent 
ow
rate) are the most dominant variables. An increased in
uent 
ow rate
causing an increased demand of aeration seem to be the reason that
the T 2 measure exceeds its limits. The variables contributing to the
change along the PCs between samples 640 and 852 are shown in Fig-
ure 8.8. There are two dominant variables: 2 (sludge concentration
in line 1) and 12 (di�erence in sludge concentration). The conclusion
is that there is a change in the sludge concentration in line 1. Hence,
the disturbances at samples 685 and 852 are not the same.
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Figure 8.5 The SPE and T 2 measures for the new data.
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(bottom).
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Figure 8.7 Variables contributing to the change along the PC nos 1, 2, 3
and 4 between samples 640 and 685.

1 2 3 4 5 6 7 8 9 10 11 12
−1

−0.5

0

0.5

1

1.5

2
Sample 640−852

C
on

tr
. a

lo
ng

  P
C

 n
o 

1

Variables
1 2 3 4 5 6 7 8 9 10 11 12

−6

−4

−2

0

2

4
Sample 640−852

C
on

tr
. a

lo
ng

  P
C

 n
o 

2

Variables

1 2 3 4 5 6 7 8 9 10 11 12
−1

0

1

2

3

4

5
Sample 640−852

C
on

tr
. a

lo
ng

  P
C

 n
o 

3

Variables
1 2 3 4 5 6 7 8 9 10 11 12

−1

0

1

2

3

4

5
Sample 640−852

C
on

tr
. a

lo
ng

  P
C

 n
o 

4

Variables

Figure 8.8 Variables contributing to the change along the PC nos 1, 2, 3
and 4 between samples 640 and 852.
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The original variables are shown in Figures 8.9, 8.10 and 8.11. The
limits are the approximate 95% con�dence limits of the original train-
ing data. It is obvious that there are disturbances in most variables
somewhere between samples 600 and 700, and it is di�cult to determ-
ine which ones are responsible for the deviations in SPE and T 2. The
contribution plots make it easier to determine the most probable main
contributors to the process deviation and, thus, to the change in mode
from normal to abnormal operation.
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Figure 8.9 The original (measured) variables 1 to 4, plotted in order from
top to bottom. The dashed lines correspond to the approximate
95% con�dence limits of the training data.
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Figure 8.10 The original (measured) variables 5 to 8, plotted in order from
top to bottom. The dashed lines correspond to the approximate
95% con�dence limits of the training data.
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Figure 8.11 The original (measured) variables 9 to 12, plotted in order from
top to bottom. The dashed lines correspond to the approximate
95% con�dence limits of the training data.
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Principal Eigenvalue % Variance % Variance
component of captured captured
number cov(X) this PC total

1 3.56e+00 35.55 35.55
2 1.43e+00 14.30 49.86
3 1.34e+00 13.40 63.26
4 1.08e+00 10.77 74.02
5 8.27e-01 8.27 82.29
6 6.90e-01 6.90 89.19
7 5.02e-01 5.02 94.21
8 3.56e-01 3.56 97.77
9 1.69e-01 1.69 99.45
10 5.46e-02 0.55 100.00

Table 8.5 Percent variance captured by the PCA model.

Detection Using Multiple Operational Classes

Monitoring the SPE and T 2 residuals is e�ective, but not especially
transparent. As mentioned before, the nature of most industrial pro-
cesses implies that only a few latent variables or principal components
will cover most of the variability of the process space. By plotting,
for instance, the �rst score vector against the second score vector the
process changes can be viewed as a point moving around in the plane
as new samples are added. Points that cluster represent similar pro-
cess behaviour and, consequently, deviating points indicate process
changes. This makes the score plot useful for classi�cation purposes.
A PCAmodel is identi�ed from a set of data containing 10 000 samples
(approximately 36 days) of process measurements. The variables in-
cluded in the analysis is the same as the ones listed in Table 8.2.
However, the temperature measurement is excluded for reasons dis-
cussed later. The model is able to capture 50% of the variability using
two principal components (Table 8.5). In Figure 8.12, it is shown
that the majority of the data is located in a cluster somewhat sym-
metrically located around the origin. There is one more cluster below
the main cluster. The clusters are demarcated by class boundaries.
These boundaries are determined empirically, by manually examining
the plot. Four classes are de�ned from the numerical characteristics of
the data. Is it possible to �nd a physical interpretation to the cluster
appearances? Some of the variables of the data used to identify the
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Figure 8.12 Score plot with classes manually de�ned from separate clusters
and patterns in the plane.

PCA model are shown in Figure 8.13. There are some events occur-
ring during the training period: immediately before sample 2000 there
are a few peaks in the in
uent 
ow rate (plot d) and in the air valve
position (plot c), around samples 4400, 5800 and 6900 there are peaks
in the suspended solids concentration (plots a and b) and from about
samples 7000 to 7500 there is a period of rain increasing the in
uent

ow signi�cantly (plot d). All these events are represented by the
di�erent class memberships in the score plot. Normal, dry-weather
conditions are covered by class a. The peaks in 
ow rate together
with the increased oxygen demand are represented by class d, longer
periods of high 
ow rate fall into class b and upsets in the suspended
solids concentrations belong to class c. As shown in Figure 8.12, di�er-
ent operating conditions appear as clusters or deviations in the score
plot. Next step is to investigate how the PCA model performs when
it is applied to new (on-line) data. In Figure 8.14, the PCA model
and its classes, are used to classify new data (10000 samples). The
majority of the data falls into the normal class (a), but there are some
interesting deviations. Data are frequently classi�ed as class b (high

ow rate) and some times as class d (high oxygen demand). There are
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Figure 8.13 The original (measured) variables. Suspended solids concen-
tration in line 1 (a) and in line 2 (b). Air valve position (c)
and in
uent 
ow rate (d).

also samples falling outside all the de�ned classes, somewhere between
and below classes b and d. In that case we have a situation not covered
by the de�ned classes, and the set of classes may have to be updated
for future use. The data falling outside the de�ned classes ranges from
samples 1937 to 1972 in the �rst event (the loop below class d) and
from samples 3090 to 3100 in the second event (the loop below class
b). By examining Figure 8.15, both events can be traced to an in-
crease in both oxygen demand (plot c) and in
uent 
ow rate (plot d).
This is not surprising as the events occur in between and below classes
b and d in Figure 8.14. The samples inside class c can be interpreted
as an increase in the suspended solids concentration around samples
2150 and 3460. As a matter of fact, some samples fall outside the axis
of the score plot and are not included for clarity reasons. An example
of an event outside the score plot can be seen in Figure 8.15 around
sample 500. It is obvious that something is wrong at this point in
time.

In this example it is demonstrated that PCA can be used for classi-
�cation of general operational modes, and that the number of classes
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Figure 8.14 Score plot with classes from Figure 8.14.
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Figure 8.15 The original (measured) variables. Suspended solids concen-
tration in line 1 (a) and in line 2 (b). Air valve position (c)
and in
uent 
ow rate (d).
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can be more than two, i.e. normal and abnormal operation. Here
the classi�cation was done manually, but there is no problem assign-
ing a simple classi�cation algorithm, such as k-nearest neighbour, to
perform the task automatically (see Chapter 7).

8.3 Monitoring Speci�c Operational

Modes

An advantage of PLS, in comparison with PCA, is the capability of
linking a set of dependent variables to the independent variable block.
This allows us to develop a model that focuses on the variability in-

uencing the output variables of interest. Changes in independent
variables in
uencing the dependent variables will have a larger impact
on the monitoring model than variables not in
uencing the depend-
ent block. Referring to what was discussed earlier about general and
speci�c operational mode descriptions, PLS will serve as a tool for
de�ning and classifying speci�c operational modes.

Disturbances with Respect to E�uent Turbidity

The e�uent turbidity is considered an important variable for monit-
oring the e�uent water quality from the Ronneby plant. Thus, the
e�uent turbidity forms the Y -matrix (or a rather vector). The X-
matrix consists of the variables listed in Table 8.6. The goal is to
develop a model that will describe a normal operational mode in-
cluding minor disturbances. Consequently, the period used for train-
ing contains mostly of dry-weather conditions, but with limited time
periods of rain and storm events. The training period covers 10 000
samples, that is 35 days. Before the data are used, an exponential �l-
ter (� = 0:9) is applied in order to remove outliers and suppress noise.
The resulting model captures the variability of the X and Y -blocks
according to Table 8.7.

When the model has been identi�ed, it is subjected to new data. The
new period is immediately succeeding the training period which im-
plies that the data should and the model result should agree well, at
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Variable Measured
number entity

1 sludge concentration in line 1
2 sludge concentration in line 2
3 air valve position, blower 1 in line 1
4 air valve position, blower 2 in line 1
5 air valve position, blower 1 in line 2
6 air valve position, blower 2 in line 2
7 in
uent 
ow rate
8 pH, bio reactors

Table 8.6 Variables included in the PLS model.

X-block Y -block
LV

number this LV total this LV total
1 47.28 47.28 64.17 64.17
2 19.95 67.23 3.90 68.07
3 10.03 77.25 1.86 69.94
4 7.25 84.50 0.48 70.42
5 8.33 92.83 0.11 70.53
6 3.20 96.04 0.21 70.74
7 0.75 96.79 0.22 70.96
8 3.21 100.00 0.00 70.96

Table 8.7 Percent variance captured by the PLS model.
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Figure 8.16 The T 2 measure (top) and the �ve-points median �ltered T 2

measure (bottom).
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Figure 8.17 The SPE measure (top) and the �ve-points median �ltered
SPE measure (bottom).
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Figure 8.18 The e�uent turbidity during the monitored period.
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Figure 8.19 A closer look at the SPE, T 2 and e�uent turbidity around
sample 1570.

least in the beginning of the new period. In Figures 8.16 and 8.17, the
SPE and T 2 residuals are shown. Evidently, there are disturbances at
several occasions during the period. The question is if they correspond
to real disturbances. If so, the e�ect should be possible to observe in
the e�uent turbidity measurement. It is concluded from the �gures
that the disturbances in the beginning only a�ect the T 2 measure and,
thus, they are inside the model region. However, at about sample 1900
and forward, the disturbances also a�ect the SPE measure, which in-
dicates that the process has drifted outside the model region (Figure
8.17). How does this di�erence in the disturbance appearance a�ect
the e�uent turbidity? In Figure 8.18, the e�uent turbidity during
the period is shown. During the �rst 2000 samples, the variations are
short, almost impulse like. From sample 2000 and forward, the vari-
ations demonstrate a more continuous behaviour, with longer periods
of high e�uent turbidity. The di�erence in appearance coincides with
the behaviour of the SPE residual. When disturbances are more per-
sistent, the SPE residual increases.
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Figure 8.20 Score plot of the �rst two scores. A few speci�c deviating
samples are indicated (compare with Figure 8.16).

Figures 8.16 and 8.17 span over a long period, approximately two
weeks, and from the �gure it is not possible to decide exactly when an
indication of a disturbance occurs. A closer examination of the plots
(Figure 8.19) shows that the indication (the residual breaking the con-
�dence limit) not rarely occurs several samples before the increase in
the e�uent turbidity is visible. This is due to the time delay between,
for instance, in
uent variables and the e�uent variables. When in-
dependent variables in
uencing the dependent variable change, the
residuals are a�ected before the dependent variable (if the dependent
variable is a�ected at all).

In Figure 8.20, the �rst two scores are displayed. Some of the more
deviating points are indicated by their sample number. At samples
174, 1033 and 3071 there are major deviations from the normal opera-
tional process region. One would expect that the variable or variables
responsible for the deviations at these samples are the same ones. In
Figure 8.21, the contributions to the deviation along the second PC
at samples 174, 1033 and 3071 are shown. The �gure clearly indicates
variable 8 (pH in the biological reactor), as the main contributor for
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Figure 8.21 Variables contributing to the T 2 measure at speci�c samples.
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Figure 8.22 Variables contributing to the T 2 measure at speci�c samples.

all occasions. In the T 2 plot the events are seen as sudden peaks in
the T 2 value (Figure 8.16). Sample 3553 is primarily deviating along
the �rst PC axis. The reason for the deviation can be seen in Figure
8.22 (left). Variable 2 (sludge concentration in line 2) is the dom-
inant contributor. In the same �gure, the contributions to the high
T 2 value at samples 1998 (middle) and 2042 (right) are shown. In
both cases, variable 7 (in
uent 
ow rate) has moved the process in
the PC space. In this way, all the deviating points can be investigated
and the variables causing the deviations can be isolated. To be able
to compare the PLS based monitoring with more conventional time
series monitoring, the original variables are shown in Figure 8.23. The
con�dence limits are based on the approximate 95% con�dence limits
of the training data.
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Figure 8.23 The original variables of the X-block. From the top: sludge
concentration line 1, sludge concentration line, air valve po-
sition 1-line 1, air valve position 2-line 1, air valve position
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uent 
ow rate and pH in
bioreactor.





Chapter 9

Conclusions

The development of measuring techniques for wastewater treatment
purposes has put emphasis on the way the collected data are used.
Methods for analysing large amounts of data are required in order to
transform the data into information. Information extraction from on-
line measurements will most likely become more and more important,
partly, because the environmental requirements are becoming more
stringent and, partly, because of the increased process complexity due
to new and more e�cient plant con�gurations.

9.1 Summary of Results

In this thesis, a number of di�erent tools for monitoring on-line meas-
urements are presented. Monitoring on-line measurements involves
detection of deviating situations, such as faults, process disturbances
and extraordinary events, not normally observed in the process. Mon-
itoring also involves isolation of the deviating variables, so that the
variables responsible for the deviating situation are located. Monitor-
ing can be performed either on each variable individually, or simultan-
eously on many variables using multivariate monitoring techniques.

Data Screening

Measurement data collected at real wastewater treatment plants are
often distorted by noise, outliers, missing values and drifts. This calls
for validation and reconstruction of data prior to any thorough ana-
lysis. Satisfactory noise reduction can be achieved by digital �lters and
especially by using non-linear �lters. Median �lters and �nite response
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impulse median hybrid (FMH) �lters have proven to be e�ective, due
to their capability to preserve discontinuities in measurement signals.
Median �lters with appropriate parameters can also be used for outlier
removal. However, the median �lter is coarse, and sometimes other
detection techniques must be used. Multivariate statistics (MVS) has
proven to be useful to detect deviating values in data.

Single Variable Detection

In order to detect deviations in individual measurement signals the
signal can be analysed in both the time and frequency domains. Detec-
tion in the time domain involves, for instance, analysis of amplitude,
centre of location, spread and both short and long-term variability.
Usable methods have been presented together with examples of their
applicability. In the frequency domain, periodic behaviours can be
detected both as long-term and short-term (noise) variations.

Individual investigation of each measurement signal results in a lot of
information on the signal. However, the interpretation is sometimes
di�cult, since the information is not put into a context. Individual in-
vestigation of signals does not allow the consequence of any synergetic
e�ects to be detected.

Multivariate Detection

In order to detect synergetic e�ects, the measurements must be in-
vestigated simultaneously. Multivariate statistics (MVS) provides us
with methods to accomplish this. MVS analysis makes it possible to
determine the operational mode, that is the conditions under which
the process is operated, and the information on the present opera-
tional mode is contextual. This makes the result easier to interpret
and more suitable for operational decisions than information on indi-
vidual measurements. In this thesis the concept of general and speci�c
operational modes is introduced.

A general operational mode description aims at describing the opera-
tional mode without any consideration taken to one or several speci�c
process output criteria. A method presented for general monitoring
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is principal component analysis (PCA). Monitoring of the general op-
erational mode, using PCA, is especially well suited for process mode
monitoring, but can also be used for process output monitoring.

Speci�c operational mode descriptions aim at describing the process
conditions that in
uence one or several process output criteria. Spe-
ci�c monitoring can be carried out using, for instance, projection to
latent structures (PLS). Monitoring of the speci�c operational mode,
using PLS, is suited for process output control, i.e. quality control of
the product. PLS can also be used for estimation of process output
variables.

Most of the information obtained by analysis of individual measure-
ment signals can also be gained by using multivariate monitoring.
However, the contextual information provided by multivariate monit-
oring, makes the multivariate monitoring advantageous in comparison
with single variable monitoring. Thus, multivariate monitoring is well
suited for wastewater treatment processes.

9.2 Implementation Aspects

Some aspects of implementation of the methods described in this thesis
are appropriate to discuss. There are many factors to consider, and
the best solution for disturbance detection and isolation may vary
considerably from plant to plant. The comments in this section are
the author's own opinions, which have evolved during the studies on
which this thesis is based.

Data Screening

The most important issue for collection of on-line measurements is
the quality of the data. Low data quality limits the use consider-
ably. Therefore, the measurement system, including sensors, devices
and computers must be properly and continuously maintained and
checked. However, measurement related disturbances will always oc-
cur, especially in an industrial environment. Digital �ltering is a
straightforward, and yet, 
exible way to improve the data quality.
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The median-based �lters, used in this work, have proven to be e�ect-
ive. The frequently occurring step changes and discontinuities in data
are preserved (which is not the case when using linear �lters) while
noise is reduced. The main drawback is the unavoidable time delay,
which may cause problems in some applications where a fast response
is important.

Single Variable Detection

Analysis of a single measurement is done in order to extract inform-
ation. The basic features, such as amplitude, mean and spread, can
all be used for information extraction. However, the features must be
put into context and presented in a comprehensible way. In time series
plots, adaptive limits for detection are perhaps more suitable for the
changing conditions common for wastewater treatment, whereas �xed
limits are more appropriate when �xed requirements or goals are to
be maintained.

Multivariate Detection

The majority of the measurement features that are obtained by single
variable analysis can also be obtained by multivariate analysis. This
makes the multivariate approach more versatile, as the result of syn-
ergetic e�ects of several variables can be detected at the same time as
basic single variable features are extracted. In this thesis, multivariate
statistics (MVS) has been used for detection and isolation of disturb-
ances in wastewater treatment processes. If the general mode of the
process is to be monitored, a principal component analysis (PCA) is
normally adequate. Since the present mode is inquired for, no time
delays have to be considered and no historical measurements need
to be incorporated. However, if predictive capability is desired, the
monitoring method must take the output variables into consideration.
With projection to latent structures (PLS) this is achievable. Since
the analysis involves a coupling between input and output variables,
time lags between the input and output block must be accounted for.
Moreover, dynamics becomes important when the relations between
the input and output blocks are to be described. Dynamics can be
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incorporated in the analysis by identi�cation of FIR or IIR models.
Furthermore PLS, provide means to focus the detection on speci�c
processes within the treatment process.

In order to detect process deviations, detection limits on the results
of MVS can be used. Due to the fact that measurement series from
wastewater treatment rarely display normal distribution, robust tech-
niques, such as quantiles, are often more suitable for determining de-
tection limits than methods based on, for instance, standard deviation.
Moreover, the diurnal variations, common in wastewater treatment,
lead to patterns in the process representation in a score plot. Ellipse-
shaped boundaries often describe these patterns poorly. Therefore,
empirically determined boundaries should be used to determine the
normal operational mode.

9.3 Topics for Future Research

As the study presented in this thesis progressed, some interesting top-
ics for further studies arose.

Multivariate statistics (MVS)

In processes with many di�erent separate subprocesses, the multiblock
analysis approach may prove powerful. Multiblock analysis implies
that theX-block is separated into several blocks, each one representing
a subprocess. This makes the analysis more physically interpretable
and the isolation task easier. If a wastewater treatment plant with
separate processes is considered, this may signi�cantly improve the
isolation of a fault or disturbance.

Parallel MVS models can increase the applicability of monitoring. In-
stead of attempting to describe all operational modes with one model,
several parallel models, each specialised for a certain operational mode,
can be used. If an objective criterion of the performance of the model
can be determined, this criterion can be used to weight the results of
each model, giving high weights to well-performing models and low
weights to poor performing models. In this way, the models will not
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only produce accurate outputs, but the operational mode can be dir-
ectly determined from the model currently used. A possible criterion
for parallel models could be the SPE residual, normalised by the
standard deviation of the SPE residual of the training period.

In order to take the dynamics with di�erent time constants fully into
consideration, decomposition of the signals into di�erent time scales
before analysis may be a successful approach. Tools for decomposi-
tion of signals may be based on Fast Fourier Transformation (FFT).
In FFT a signal is decomposed into sinusoidal signals of di�erent amp-
litudes and frequency. However, in wastewater treatment processes,
this is not always suitable, as the signals cannot always be approxim-
ated by a sum of di�erent sinusoidal signals. However, wavelet theory
may then be an alternative. As opposed to a sinusoid, a wavelet is
a wave form with limited duration and di�erent amplitude, but with
zero average. Therefore, wavelet transformations may be more suited
to handle process signals with irregular features. The idea of using
wavelet theory to decompose measurement signals into a few domin-
ant time scales and then perform MVS analysis on the di�erent time
scales is appealing. Wavelets can also be used for noise reduction and
detection of changes in signal characteristics (Misiti et al. 1996).

Identi�cation of dynamic models using MVS has been discussed brie
y
in Chapter 6. However, there are many interesting aspects of the coup-
ling between automatic control and chemometrics remaining to be in-
vestigated. Examples of this are presented Wise (1991) and Wise et al.
(1990) where it is demonstrated how MVS can be used for monitoring
and control of dynamic processes, or in Piovoso and Kosanovich (1994)
where the possibility to use MVS for controller design is discussed.

Qualitative Diagnosis

As mentioned in Chapter 3, the next logical step after detection and
isolation is diagnosis of faults, disturbances and events. Graph-based
methods for qualitative diagnosis, as discussed in Chapter 3, may be
successful, but there are several interesting alternatives, such as vari-
ous types of knowledge based or expert systems.
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Interpretation Tools

A signi�cant amount of information can be gained by using di�erent
types of information extraction methods from on-line measurements
and in this thesis a few methods have been presented. However, the
interpretation part is not always straightforward, especially when ex-
perience and knowledge of the methods are limited. This calls for a
good and easily interpretable man-machine interface, i.e. the system
presenting of the information. This is a large topic, including research
in, for instance, psychology and cognition. Much can be done to im-
prove the comprehensibility of the information presented in order to
make it easier for plant operators to quickly make correct decisions.
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Appendix A

Notation and Abbreviations

A.1 Notation

A Area of settler

a Number of dimensions retained in the MVS model

� Forgetting factor

B Regression matrix

BFIR Regression matrix of a FIR model

BIIR Regression matrix of an IIR model

b Regression vector

b Regression scalar

d Euclidian distance or delay

E General matrix of errors

Ef Detection measure based on a periodogram

e General vector of errors

F Matrix of errors of independent block in PLS

fp General function describing a process

G Goal in a success-tree model

h Sampling time

Jdn Flux associated with downward bulk movement
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Js Flux associated with gravity settling

Jup Flux associated with upward bulk movement

KLa Oxygen transfer rate coe�cient

k Point in time

l Number of historic values in a model

� Diagonal matrix of eigenvalues

� Eigenvalue

M General matrix

m Number of samples in a data series

n Number of variables in a data matrix

P Loading matrix

p Loading vector

Q Loading matrix of the dependent block in PLS

Qe E�uent 
ow rate

Qf Feed layer 
ow rate

Qu Under
ow rate

Qr Return sludge 
ow rate

q Loading vector of the dependent block in PLS

R�

per Periodogram

r Rank

rh Settling characteristic parameter of the hindered
settling zone

rp Settling characteristic parameter at low solids con-
centrations

� Standard deviation

�2 Variance
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SALK Alkalinity

SI Inert organic matter concentration

SND Biodegradable organic nitrogen concentration

SNH Ammonia nitrogen concentration

SNO Nitrate and nitrite nitrogen concentration

SO Dissolved oxygen concentration

SS Readily biodegradable substrate concentration

� Time shift

T Score matrix

T̂ Estimated score matrix

T 2 Hotelling's T 2 statistics

t Score vector

ti;� Con�dence limit for the ith score

U General data matrix of controlled variables or score
matrix of the dependent block in PLS

u Score vector of the dependent block in PLS

vs Settling velocity

v0 Maximum practical settling velocity

v00 Maximum theoretical settling velocity

W General matrix of weights

w General vector of weights

X General data matrix of independent variables

x General data vector of independent variables

x̂ Estimated value of an independent variable

XB;A Active autotrophic biomass concentration
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XB;H Active heterotrophic biomass concentration

X(f) Fourier transform of x(k); x(k � 1); : : : ; x(k �m)

Xf Particulate concentration in feed layer

XI Particulate inert organic matter concentration

Xn Particulate concentration in layer n

XND Particulate biodegradable organic nitrogen concen-
tration

XP Particulate product concentration from biomass de-
cay

xq New instance in k-nearest neighbour

XS Slowly biodegradable substrate concentration

Y General data matrix of dependent variables

Y (f) Fourier transform of y(k); y(k � 1); : : : ; y(k �m)

y General vector of measurements or model outputs

ŷ General vector of �lter outputs

ŷFMH FMH-�lter outputs

A.2 Abbreviations

AR Autoregressive �lter or process

ARMA Autoregressive moving average �lter or process

AS Activated sludge

ASM1 Activated Sludge Model No.1

CCF Crosscorrelation function

COD Chemical oxygen demand

cov Covariance
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CUSUM Cumulative sum

DAF Dissolved air 
otation

DFT Discrete Fourier transform

D2C Detection, diagnosis and consequence analysis

DO Dissolved oxygen

EWMA Exponentially weighted moving average

FIR Finite impulse response

FMH FIR median hybrid

IAWQ International Association on Water Quality

IIR In�nite impulse response

IQR Interquartile range

LV Latent vector

MA Moving average �lter or process

MAX Moving average adaptive exponential �lter

MIMO Multiple input, multiple output

MISO Multiple input, single output

MLR Multiple linear regression

MVS Multivariate statistics

NIPALS Nonlinear partial least squares

PC Principal component

PCA Principal component analysis

PCR Principal component regression

PLC Programmable logic controller

PLS Projection to latent structures or partial least squares

R Range
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SISO Single input, single output

SPC Statistic process control

SPE Squared prediction error

SS Suspended solids

TSS Total suspended solids



Appendix B

The NIPALS Algorithm for PLS

In this appendix the basic algorithm for projection to latent struc-
tures (PLS) is presented. The algorithm can be found in Geladi and
Kowalski (1986) or in Sharaf et al. (1986).

It is assumed that X and Y are mean-centred and scaled to unit
variance.

For each component:

ustart = some yi (B.1)

In the X-block:

wT =
uTX

uTu
(B.2)

Normalisation:

wT
new =

wT
old

kwT
oldk

(B.3)

t =
Xw

wTw
(B.4)

In the Y -block:

qT =
tTY

tTt
(B.5)

Normalisation:

qTnew =
qTold
kqToldk

(B.6)

u =
Yq

qTq
(B.7)
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The weights wT replace the pT in order to get orthogonal t values.

Check convergence: compare the t with the preceding t:

error = t� tpreceding (B.8)

If error is below a certain threshold, then go to Equation B.9, oth-
erwise return to Equation B.2 until convergence is obtained. (If the
Y -block has only one variable, Equations B.5-B.8 can be omitted by
putting q = 1, and no further iteration is necessary.)

Calculate the X loadings and rescale the scores and weights accord-
ingly:

pT =
tTX

tTt
(B.9)

Normalisation:

pTnew =
pTold
kpToldk

(B.10)

tnew = toldkp
T
oldk (B.11)

wT
new = wT

oldkp
T
oldk (B.12)

(pT ,qT and wT should be stored for prediction; t and u can be stored
for isolation and classi�cation purposes).

Find the regression coe�cient b for the inner relation:

b =
uTt

tT t
(B.13)

Calculation of the residuals. The general outer relation for the X-
block (for component i) is:

Ei = Ei�1 � tip
T
i ; X = E0 (B.14)

Fi = Fi�1 � bitiq
T
i ; Y = F0 (B.15)

From here, one goes to Equation B.1 to implement the procedure for
the next component. (Note: after the �rst component, X in Equa-
tions B.2, B.5 and B.9 and Y in Equation B.7 are replaced by their
corresponding residual matrices Ei and Fi, respectively).



Appendix C

The IAWQ Activated Sludge

Model no.1

This appendix contains the complete IAWQ Activated Sludge Model
no.1 (ASM1), developed by Henze et al. (1987). It is a result of the
work carried out by Task Group on Mathematical Modelling for Design

and Operation of Biological Wastewater Treatment Systems, formed
by International Association on Water Quality (IAWQ). On the next
three pages, Tables C.1 and C.2 list the processes and reactions of the
model and the default values of the parameters for 10 and 20� C

Table C.1 (Next two pages) The ASM1 model in matrix format (Jeppsson
1996).

Table C.2 (Page 190) The default set of parameter values for the ASM1
model (Jeppsson 1996).
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‘Decay’ of
heterotrophs

‘Decay’ of
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Ammonification of
soluble organic
nitrogen

‘Hydrolysis’ of
entrapped organics

‘Hydrolysis’ of
entrapped organic
nitrogen
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Rates [ML-3T-1]
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Stoichiometric
   Parameters:
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   yield: YH
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   yield: YA
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   products: fP

Mass N/Mass COD
   in biomass: iXB

Mass N/Mass COD
   in products from
   biomass: iXP
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∑

Kinetic Parameters:
   Heterotrophic growth and decay:
           , KS, KO,H, KNO,bH

   Autotrophic growth and decay:
           , KNH, KO,A, bA

   Correction factor for anoxic
       growth of heterotrophs: ηg

   Ammonification: ka

   Hydrolysis: kh, KX

   Correction factor for anoxic
       hydrolysis: ηh

µ̂H

µ̂A
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