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Introduction to Molecular Simulation
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® Structure Property
Trends are often
sufficient

® Modeling can probe
structural details that
are difficult to access
using experiment

® Modeling is another
analytical technique
like spectroscopy
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Quantum Mechanics Modeling

Numerical Quantum
Mechanics on molecules
ab initio?
N ) J\
. . 4 )
Density Functional Theory Hartree-Fock Theory Semi-Empirical Methods
Kohn-Sham Equations Schrodinger Equation HF with empirical approx.
Electron Density p(r) Wave Function ¥(r) ) ab initio?
\F N/
Quantum energy states
Electron density
‘ J
Ionization Potentials Bonded Force Field Constants
Reaction Barriers and Coordinates Charge Distribution Estimates

Bond Order and Strength

Interatomic interactions

Mesoscale Model Problems

Interactions can be quite
conformationally dependent

with polar polymers
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Intersegment potentials in
mesoscale models should
depend on conformation



Force Field Components

® Bonded Interactions

1/3
¢ Bonding parameters f (—IY) <<1
Bond | t N2mkT \V
¢ bond angle parameters Classical Force Fields
¢ Torsion angle parameters are justified when De Broglie

. wavelength is low
¢ Inversion parameters

® Dispersion Interactions (Lennard Jones etc.)
@ Polar Interactions |
® Other (hydrogen bonding...)



Bonded Interactions
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“Intrinsic” torsional potentials

E, = ikn (1 + cos(nd)))

n=1

angle potentials
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bonding potentials
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Dispersion Interactions

E =AeB'-£-

dispersion I‘6
< >
o 12 o 6
Edispersion = 48[(—) - a(""‘) :| a=1or?2
r r

Origin of energy is electron
correlation. Therefore this is
r difficult to fit from quantum
calculations due to problems
with correlation and overlap.

Smith, G.D.; Ludovice, P.J.; Jaffe, R.L.;
Yoon, D.Y.; J. Phys. Chem., 99, 164-172
(1995).
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Polar Interactions
- 4149,

1
E lombic ~—
couiomoic 471’808(}‘) r
« >

Some charge distribution must be used to mimic polar molecules.
Atom-centered point charges (q;, q,) are commonly used.

Distance dependent dielectrics
€(r) are used to account for

g=¢g; shielding do to polarizable
material.

&(r)

Ludovice, P.J. and Suter, U.W.; from

e=1 Computational Modeling of Polymers,

pages 401-435, (J. Bicerano, Ed.),
New York: Marcel Dekker (1992).




Initial Conformation Generation

Proteins

Crystals

Polymer Glass

Surfaces

symmetry

structure

Utilize known or hypothesized

Equilibration Methods

F=ma,

Molecular Dynamics (MD)
Integrate Newton’s 2nd Law

most accurate, least efficient

Molecular Mechanics (MM)
Energy Minimization, motion
is a perturbation about a mean
position (MD at 0 K)

Monte Carlo (MC)

random perturbations replace
differential equation, algorithms
assure correct distribution of states




Statistical Mechanics

® Thermodynamics is observed to be true

® Thermodynamics can be derived from statistical

mechanics

® MC models numerically reproduce statistical
mechanical ensembles

@ MD reproduces MC models at long times (ergodic

hypothesis)

® Energy Minimization is MD a OK for systems where
entropy is not important (crystals)

An ensemble is the distribution of molecular NVE, NVT,
states for a given set of constant properties. NPT, uVT

There is a function (partition function) that governs the distribution of
these states. O(N,V,T)= 2 —E, kT ZQ(N Vv, E)e B4

Z(N,P,T)= Z A ZQ(N V,T)e ™V'sT

A(N,V,T)=-kTIn(Q(N,V,T))

_ [ 91In(Q) _ 2 2 10(Q) Properties can be derived
= kT( oN lr E=kT ( oT )NV from these functions.




Statistical Mechanics

Analytical solution of these equations for realistic systems is very
difficult. Molecular simulation is the numerical solution of these
equations. BT

PNVTKNVT
2(‘ K )ZQ(NVT)

K(NVT)

Metropolis-Monte Carlo method stochastically samples according to
this distribution so properties can be averaged from MC results to
calculate any property K.

K _ The ergodic hypothesis equates the
< >ensembze - < >ume results of MC and MD in the
thermodynamic limit



Molecular Dynamics (MD)

- Y. = F =—
o Q mi, =F, =-V.E,
e 20d order ODE is integrated
f o O using 2™ order algorithm
> (Verlet class algorithms) and
Su=1fs.

More commonly expressed in P == _8_1_:1_ 5 = 2{1_
terms of the Hamiltonian : ox. ’ op,

H=E+E, |



Other MD “Ensembles”

Common conditions of MD simulations include:
ONVT constant temperature and constant volume
ONPT constant pressure and constant temperature
ONVE constant energy and constant volume
ONPH constant pressure and constant enthalpy

p;=-V,E p ~NP;  Use constraint multiplier to control T

n= —Q— (kT ~ kT egired ) “Integral Controller” of Nosé & Hoover

17' = -3-]-y- (kT - kT, . ) Where does Q come from?
Q desired

Q controls the rate of response of the controller and therefore the
fluctuations around the average. Q can be adjusted to match
fluctuations predicted by statistical mechanics.

(E2)~(E.) =X (1) <V2>‘<V>2=V"T(‘5‘(%L]



Molecular Dynamics (MD)

41.210*

[Ty pp——————— y
12610° k
1310 i
%':glg 13810 B
1410 P

146104 B

When is MD done?
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Properties approaching steady state is a necessary but not sufficient
condition for equilibration.

>
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May be stuck in a local g

minimum, so comparisonto ~ °
experiment is important. conformation space

A Sample Molecular Dynamics simulation

At 300K At 3000K



Energy Minimization

Energy minimization is MD at OK! This is useful for
systems where entropy is not important.

energy

conformation space

A=-RTInZ=-RTIn(e™*'*")=E,

Q
-E kT -E kT -E kT
Z=Ee ! ﬂZe B = g~

i=1 i=l

Periodic Boundary Conditions

...... ry
i "

Molecules are folded into periodic cell

@ Eliminates end effects in bulk simulations

® Creates artificial symmetry for non-crystalline
systems

@ Most simulations use macrocells in P1 symmetry

® Truncates long range interactions which may require
correction (coulombic interactions)



Periodic Energy Corrections

Very computationally expensive therefore calculation times improve if
you use cut-offs

Direct Cut-Off : Ignores all interactions
after a certain cut-off limit E(r)

Tt

Spline Cut-Off : In the specified spline zone,
gradually decreases the interactions examined

Ewald : The summation of the non-bonded terms is carried out in
reciprocal space. (summation is conditionally convergent)

Cell Multipole : The simulation space is divided into uniform
cubic cells and cells are approximated by a combination of
multipoles. Multipole summations converge more rapidly than
monopole summations



Metropolis MC Method

Monte Carlo methods find the states of a system by jumping from
state to state using a known transition probability

B, e B}

Pab

Metropolis found a way to do this without the transition probability.
He proved that this will sample the ensemble properly as long as the
acceptance probability is chosen correctly

probability
A _fandom B ——b acceptance

test
‘ no ‘

random
yes



Extraction of Properties

Property

Method

Thermodynamic | Carry out multiple simulations at
various states or use fluctuations

Transport Integrate autocorrelation function
of use Einstein relationship

Structural Apply structural transform

Coefficient of Thermal Expansion o

wo LV
V JT

simulation in periodic cell
(NPT)

For Poly(norbornene)
o = 80 ppm/°C

Single Simulation

Volume

e

Temperature

— T2
. / <8V8H>NPT =kT'e
constant pressure & temperm‘

Simulate at
Various
Temperatures



Diffusion Coefficient
After MD Simulation

(r(ty-r(0)) (v(1)-v(0))
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Calculate slope of mean
squared displacement

Integrate velocity
autocorrelation function

=
D=slope/6 D= ‘3‘,([ (v(®)-v(O)at

Pair Distribution Function

dN. Vv
g;(r)=—" 8o

dv N,

Ideal Gas

Crystalline
Solid

g(r)

Normalized
differential number of
pairs per volume

g(r)

E_ = 27:Np_[g(r)U (r)r*dr

re

Liquid or
Glass

r

Can be used periodic
energy correction and
diffraction



