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The Information Rev

I need tools to extract
important information from
mountains of data
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I Data Mining

B Data mining = ‘exploration and analysis
by automatic and semi-automatic means,
of large quantities of data in order to
discover meaningful patterns and rules’

Applications of data mining
v" Search database
v' Structural pattern recognition
v Medline abstract analysis
v' DNA chip data analysis

Who has information and uses it wins
) (Watterson, K)
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Data Mining + Domain

= Engineering Infor

B Informatics (8 2 10tSh): the study of the
structure, behavior, and interactions of natural
and artificial computational systems

B Informatics = Information + Mathematics

E Application Areas
v’ Bioinformatics (or Biomolecular Informatics)
v Cheminformatics
v Environmental Informatics
v’ Medical Informatics
v'Neuro Informatics

v Process Informatics
v Many More ...
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I Bioinformatics

Bioinformatics =
Biology + Informatics

Artificial Intelligence
Combinatorial Optimization

Data Mining
Digital Signal Processing
Machine Learning

Mathematical Modeling
Multivariate Statistics
Pattern Recognition

System identification

Sequence Expression SNP Other
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DNA chip

MICROARRAY ' s
(CHIP) SEGMENT SPOT CONTAINING COPIES PART OF ONE
OF A CHIP OF A SINGLE DNA MOLECULE DNA STRAND
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I The biological meaning of I

B Genome map 1s completed
v’ Need to study functional genomic

B Know who, when, where, why, how much gene expressed

v" To classify different types of diseases (ex. Cancer types)
v" To understand the behavior of a biological system
v" To understand cell dynamics

B Can systematically disturb cell

B DNA chip experiment and data analysis are different

matter

v Methods of data analysis variant result of DNA chip experiment
v’ Require suitable method of data analysis for DNA chip experiment objective
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Application of DNA ¢

B Analysis of gene expression and regulation
v" Genetic network, pathway analysis, metabolic engineering
B Disecase diagnosis

v Molecular cancer classification, the discovery of disease subtype,
The marker gene discovery

B And many more...

B Cancer diagnosis

v" Because significantly different
groups of genes are expressed by
many type of cell, we can

cenea || ¥ Gene A fingerprint characteristic cell

Gene B Gene B % @ %‘
Gene C™ %

Momnal cell Cancer cell
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cDNA chip: Lab Experii

PROTEIN
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Sample A

Sample B
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Gene A A

Statistical analysis
(data mining)

Hierarchal clustering

K-means clustering Expression
Level

Self-organizing map

Neural network

Bayesian decision theory
Principal component analysis
And many more...

A

/ >

Gene B

/ Molecular cancer classification

Gene B

Sample B Sample A

Identification of the potential marker gene
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cDNA chip: Proced

DNA chip For Functional study using data
experiment mining techniques

Biological Informatics
validation validation

1. Expression profile data warehousing
2. Other database integration

Data mining techniques

Inference new hypothesis for biological experiment
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olecular Classification of Cance

Moving from morphological to molecular classification

ALL AML
W

R
B T

Acute lymphoblastic Acute myelogenous
leukemia (ALL) leukemia (AML)
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Distinct types of diffuse large B-¢

dentified by gene expression pro
B There are new cancer class discovery, two molecularly distinct forms of B-cell

lymphoma (DLBCL) that are composed of GC B-like and Activated B-like
DLBCL
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Ash A. Alizadeh.,et al. 2000. Nature, 403, 503-511 POSTECH IPSE Lab.
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olecular Classification of Cutai

elanoma by Gene Expression

B [ imitation,

v' Because weighting method based on univariative or bivariative statistical
analysis, we can not capture correlated structure in the data

v" When multi-class cancer classify, it is hard to know whether highly express or
not
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lassification and Diagnostic Pre

sing Gene Expression Profiling

eural Network
B [ imitation,

v" Because relevant gene extraction method based on univariative statistical
analysis, we can not capture correlated structure in the data
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ene-expression profiles in heredit

B [ imitation,

v" Because relevant gene extraction method based on univariative statistical analysis, we
can not capture correlated structure in the data

v When multi-class cancer classify, it is hard to know whether highly express or not
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ene Selection for Sample Classifica

xpression Data: Study of Sensitivit)
arameters of the GA/KNN Method

B [imitation,

v' Tt is difficult to determine parameter value

v" When multi-class cancer classify, it is hard to know whether highly express or not

v Computing time take a long time

Gene selection The GA/KNN procedure
(repeat)d = 5

Near optimal solutions obtained
[12 T30 [ 32 Jias [27=]
— [3 Tre Juiz]i2a]ien]
20,000 T

[22 [ 5o [1uia]iso]s21]

v |

Compute the frequency of gene sele{:tiﬂnl

et El ol slead
:

Sort all genes according to frequency
of gene selection

Analysis

Gene [top 1 0.4 Frequency
- top 2 0.3

v

Classification Classify the test set samples using
of test set the most freguently selected genes

/Leping. L et al. 2001. bioinformatics, 17, 1131-1142,POSTECH IPSE Lab.




I Limitations and Improv

B Limitations of Previous Approaches
v Small number of samples vs many variables
v" Strong variable interaction
v" Lack of interpretation based on biological meanings

v" Limitation in the identification of marker genes due to the black
box model

v' Limitations due to univariate approaches
v" Procedure of analysis are very complex and take a long time

B Improvements

v Overcome interaction of many variables

v" Develop to a method to select potential marker genes
v Develop multivariate approach

v Develop simple and ease procedure of data analysis
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Proposed Pre

B High dimensional data

DNA Chip Data B Highly correlated variables
B Data preprocessing
PCA Analysis 1. Dimension reduction
2. Modeling of correlation
structure
Stepwise Discriminant Analysis E Feature selection

(Select highly discriminant PC)

Bayesian Decision Theory (Classifier) RalSCESil I RURTTIIEEEES

Contribution Analysis B Select the potential marker genes
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B Stepwise Discriminant Analysis

v’ Select subset where Wilks’ lambda value is minimum
v Maximize the discriminant power

SS
A = _w SS, : Class heterogeneity

SS { SSw : Class homogeneity

E Contribution Analysis

v' Discover potential marker genes to discriminate cancer classes

C ; : the contribution of gene j
P : the loading of the j-th gene on the n-th PC
i,n : the average score of cancer class 1
r,n : the average score of reference cancer class

W, : the weight factor ( eigenvalue of n-th PC)
POSTECH IPSE Lab.




Case Study: Classifi

Small Round Blue Ck

B Cancer DNA Chip data
v' Total samples : 88-by-2308 (samples-by-variables)

v" Training samples (63), Testing samples (20), Noise samples (5)

B Small round blue cell tumor

EWS (Ewing family tumor) BL (non-Hodgkin lymphoma)
A e = =

oY/ RMS (rhabdomyosarcoma) NB (neurobléstoma) POSTECH IPSE Lab.



Classification Result:

Classification power 100% gt g

—

Z S
/ \
Parametric method /¢ Nonparametgic method
‘ :
: .. Kernel densit
Bayesian decision theory , Ll,n cat .Qua?dr.atlc K- nearest \ Y
discriminant | discriminant neiohbor
function function I 8 normal ) biweight
|
Cross-validation of ' |
.. 0.8359 0.75 | 0 0 1 045
Without training set . )
SDA — ' '
Classification of 0.7833 0.75 V| 07833 | 0.7833 |I 0.3475
the test set \ b
— \ !
Cross-validation of | = 3¢ 05575 | 0 0 ,| 01051
Using training set _
SDA T !
Classification of 0 05417 [V 0 0/ | 0.1667
the test set \ /
A) 7/
Training sample: 63, test sample: 25 S=-
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The number of identified pote

Class Number of genes Number of genes | Number of Number of Image ID number
identified using the identified (Khan matched mismatched
proposed method et al., 2001) genes genes
EWS 54 16 16 0 e
BL 45 10 9 1 o7 200814 v,
NB 95 15 13 2 :‘0 82225, 813266 “;
RMS 68 20 14 6 ;'. 788107,809901,12215—",
. 9 1
- 245330,246377,14095
1 09 4
Not BL 61 12 8 4 %, 45291,204545
233721, 563673
Not EWS 12 1 1 0 N
Overlap 24 0 _..
Total 311 74 61 13

Khan et al. misjudgment 5 : image ID 82225, 813266, 233721, 245330, 122159 K
Redefine 2: image ID 45291, 563673
Overall trend agree 6 : image ID 204545, 788107, 1409509, 809901, 246377, 200814
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I he expression profile of potential

Results are consistent with that of Khan et al., (2001)

Expression Level

Genes expressed
in NB class

—= 812105

Class

POSTECH IPSE Lab.



he expression profile of potential

Not matched results

A —— 382225
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mm*‘"f% WS EWS EWS EWS EWS EWS EWS EWS BL BL NB NB NB NB NB RMS RMS RMS RMS RMS RMS

Tumor class
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he expression profile of potential

New discovered potential marker gene

6

Genes expressed

> in RMS class

—— 143306

Expression level
w
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Tumor class
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Interpretation of the a

E Hierarchal clustering based on 311 selected potential marker
genes

B Correct classification for each class

Noise sample of

Derived from same Derived from same

cell line (GICAN) cell line (ST486) same cell (sk-muscle)
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Genes

Highly expressed gene group
of each tumor class
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Interpretation

Biologi

Marker genes for cancer classes

Marker genes not matched

al validatic

for cancer classes

Gene Cancer Biological gene function
Image ID class
1435862 EWS antigen identified by monoclonal antibodies 12E7, Gene Chip data Normal | Gene Chip Normal
F21 and 013 Image ID Cancer Cancer | Image data Cancer
291756 EWS tubulin, beta, 5 class class ID Cancer class
class

43733 EWS glycogenin 2

823886 Not BL RMS 782488 | All class Not NB
52076 EWS olfactomedinrelated ER localized protein

897667 EWS RMS 814773 | EWS NB
377731 EWS glutathione S-transferase M5
784224 RMS fibroblast growth factor receptor 4 162208 BL L0 SRl NB L0
470128 RMS Myosin IC 626502 BL RMS 308231 NB RMS
296448 RMS insulin-like growth factor 2 (somatomedin A) 785793 BL RMS 823886 | NB RMS
207274 RMS Human DNA for insulin-like growth factor II 868304 BL RMS 377048 NB RMS

(IGF-2); exon 7 and additional ORF

781018 BL RMS
461425 RMS Myogenesis
377671 RMS integrin, alpha 7
823886 RMS Smooth muscle myosin heavy chain isoform

SMemb [human, umbilical cord, fetal
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I Contributi

B Accurate multivariate classification method based
on Bayesian method

Potential marker gene selection method
Simple and easy procedure for data analysis

250 new candidate marker genes discovered

new hypothesis testing based on the candidate
marker genes for drug discovery or cancer
research
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I: iotechnology meets data minin

Time to dance!!!

B Contacts between the established ‘data mining community’
and ‘bio/medical scientists’ seem to be rare

B There will be more dances, and new biotechnology will be
forthcoming as we learn the steps
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Duestions ?

Contacts and full paper request: sw74@postech.ac.kr
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