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Cross Section of Proton Exchange Membrane Fuel Cell
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Performance Characteristics of a Fuel Cell
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Key Overpotential Sources

 Electrode losses

- Kinetic losses

- Transport losses

- Resistive losses: 1onic resistance

 Membrane internal resistance (IR) losses

- Includes contact resistances

* Transport losses within the diffusion layers

Objective:

Minimize Losses; Ensure Longevity
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Drawbacks of Direct Hydrogen Operation

* Hydrogen infrastructure — not yet available
* Systems 1ssues (automobile):
- fuel storage
- weight and volume for reasonable range
- ease of refueling?
- safety?

e Direct hydrogen (pure hydrogen) does not
seem feasible (and / or economically viable) in
the near future
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Other Options??

Indirect Hydrogen Direct Methanol

» Reform readily available * Feed methanol (and
liquid fuel (or natural water) directly into fuel

gas for stationary cell. apode
applications) e Oxidize methanol

(instead of hydrogen) at
the anode

* Use H, thus synthesized

in the fuel cell » Methanol may be fed as

* In-situ, continuous a liquid or as a vapour
generation e Greatly simplifies

* Mature technology system and
(reforming) infrastructure issues
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Fuel Cell Propulsion. Systems: Increasing Simplicity
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Indirect Hydrogen — Effect of CO

* Reformate stream — contains CO and CO,

e CO can be minimized by shift conversion (0.4
— 2 % CO), and further reduced by partial

oxidation (< 100 ppm CO)

 However, even 10 ppm of CO — detrimental to
electrocatalyst — adsorbs on active sites -
increases anode overpotential

* (Clearly, need better fuel processing (and) CO
tolerant electrocatalysts (and) a technique to
minimize CO adsorption
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Effect of CO in Reformate on Performance
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Fig. 13. Effects of CO level (ppm) in the hydrogen feed stream on the performance of a PEFC at 80 °C.
Both electrodes were based on an ionomer-impregnated PUC catalyst and thin sputtered platinum film, of
total loading 0.45 mg Puem® [17],

Pressurized Operation??
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Effect of CO in Reformate on Performance
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Why the Performance Loss?

Ecell =E cathode E anode
Thermodynamically:

E thode = 1.23 V (O,+4 H" + 4e = 2H,0)
E . oie =0V (H,=2H"12¢")
Therefore E__; (max) =123 V

In the presence of CO, two electrochemical
reactions occur:

Pt + CO >  CO/Pt
H, +2 Pt » 2 H/Pt (rate-limiting)
H /Pt > Pt+H"+e
CO/Pt + OH, 4, » Pt+CO,+H"+e
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11



* Anode overpotential — determined by the relative
contribution of CO oxidation

e Low currents — hydrogen requirements met by
adsorbed H,

* High currents (or large CO concentrations) — adsorbed
H, insufficient for faradaic requirements

e Therefore, CO removal (via electrooxidation) has to
occur — higher anode overpotential, higher E
lower E

anode

cell

Key Strategy: minimize CO adsorption on
catalyst
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Anode Overpotentials of 40% wt Pt-Ru/C (Pt/Ru =1/1)
with H, containing CO (10.4 to 485 ppm) at 80 °C (100%

R.H.).
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Note: increasing overpotential with: increasing CO
concentration and increasing currents
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How to Deal with CQ?

e Air — Bleed (or oxygen bleed)
« Better (more CO tolerant) anode electrocatalysts

* Elevated temperature operation

Each of above briefly discussed in forthcoming
slides

Note — improvements in reforming, shift
conversion and partial oxidation steps are
also of great use — however, these
approaches are not discussed in this lecture
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Air / Oxygen Bleed

e CO surface coverage — biggest problem

« Bleeding oxygen (as oxygen or as air) into the fuel
stream helps:

- CO poisoning Pt sites are oxidized in the presence of free
platinum to give CO,

CO/Pt +0, + Pt _ O/Pt+CO/Pt
O/Pt + CO/Pt . CO,+2Pt

- The strong preferential adsorption of CO on Pt actually
helps this mechanism!

ME 295/320 Fuel Cell Engg.- J. M. Fenton Gottesfeld
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Demonstration of Air Bleed Efficacy
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Fig. 14. Cleansing by oxygen bleeding of a platinum anode catalyst in the presence of 5-20 ppm CO in
the hydrogen fuel, demonstrated for a platinum anode catalyst of ultra-low loading (0.14 mg Pt/cm’),
consisting of a Pt/C//ionomer thin film composite bonded to the membrane [21]. (Repnnted by
permission of the American Chemical Society).
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Demerits of Air Bleed Technique

» Explosive limit of O, in H, 1s 5%. This limits
amount of CO tolerated to ~100ppm

* Some loss 1n fuel efficiency due to chemical
oxidation of hydrogen

* This loss increases as amount of oxygen
introduced increases (2 fold increase) — thus
the larger the amount of CO 1n stream, the
larger the loss of fuel efficiency

ME 295/320 Fuel Cell Engg.- J. M. Fenton

17



CO Tolerant Electrocatalysts

Recall: mechanism of CO and H, oxidation in a mixed
stream:

Pt+CO ——>  CO/Pt
H,+2Pt —— 2 H/Pt (rate-limiting)
H /Pt —>  Pt+H'+e
CO/Pt+0OH, —*> Pt+CO,+H' +e
Now, for CO electrooxidation, the catalyst site must be
hydrated (have an attached hydroxyl group on its

surface)
Ru+H,0 —— Ru-OH,, +H"+e-
Pt+H,0 — > Pt-OH,, + H" +e-

The potential at which this group 1s generated varies
from catalyst to catalyst:
- 0.5V for Pt
-~ 0.2 V for Ru!

ME 295/320 Fuel Cell Engg.- J. M. Fenton
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* Thus, catalysts with Ru will have a lower
anodic overpotential at high currents (or high
CO concentrations) than catalysts containing Pt

* Ru—not a very good catalyst for H, oxidation
* Pt-Ru alloys — have been successfully used

However — limitations such as increasing
anode overpotential with increasing CO
concentration and increasing currents are
not eliminated by this approach
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* The extent of CO tolerance depends greatly on
the catalyst structure and formulation

* Even for the best catalysts, the improved CO
tolerance all but vanishes for high currents

 However, a combination of precisely
formulated catalyst (typically 1:1:: Pt:Ru) and
air / oxygen bleed has been found to be
effective at high currents as well

ME 295/320 Fuel Cell Engg.- J. M. Fenton
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Elevated Temperature Operation

e CO adsorption on Pt is an exothermic process

* By the Le-Chatlier — Braun principle,
increasing the system temperature favours the
endothermic CO desorption reaction

» Effect of increasing system temperature 1s to
lower the fraction of catalyst covered with CO,
thereby lowering anode overpotential

* The effect has been clearly demonstrated

ME 295/320 Fuel Cell Engg.- J. M. Fenton
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CO+Pt = CO-Pt (associative adsorption)
H,+2 Pt =2 H-Pt (dissociative adsorption)

Fractional coverage (f) of CO and H given by:
feo = Keo Peo/[1+ Koo PeotKy"Py’~]
f.,=K,05P 05 /[1+ Keo PCO_I_KHO'SPHO'S]

K = equilibrium constants, P = partial pressures

As T increases, f;; increases as H adsorption is less
exothermic than CO adsorption, and because H
adsorption requires 2 sites as opposed to one for

CO adsorption

ME 295/320 Fuel Cell Engg.- J. M. Fenton Yang et. al
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CO Coverage on the Pt-Ru Catalyst Surface at
Various Temperatures
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Cell Voltage (V)

ME 295/320 Fuel Cell Engg.- J. M. Fenton

Cell Voltage (V)

110
los
l o6
] 04

102

1.0
—e— Perf.-80 °C
O Resistance-80 °C
08 t —v— Perf-105 °C
—v- Resistance-105 °C
r v —=- Perf-120 °C
06 - —0 - Resistance-120 °C
[ N ~_
\. \V\\
04 - \ \w\‘v
S
a
0.2r - g —gp— — 00O
[ 000+ OO0 O N o
0.0 L 1 1 1 1 I | | \ 0.0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Current Density (mA/cm?)

H2+104ppm CO

Resistance (Ohm-cmz)

1.0
Perf.-80 °C 1 0.8
Resistance-80 °C
Perf.-105 °C
- Resistance-105 °C los
Perf.-120 °C
Resistance-120 °C
104
\
3 102
VT e — e — VY
[ 00 0 OO0 ]
0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.0
0 200 400 600 800 1000 1200 1400 1600

Current Density (mA/cm?)

Racictanca (Nhm_~m2)

1 atm, H,/0,,

NTZHP membrane

H2+10.4ppm CO

Current Density (mA/cm?)

S1

1.0 1.0
—e— Perf-80 °C ]
‘O Resistance-80 °C 1 R
08| —v— Perf-105°C 108 €
— —v - Resistance-105 °C o
2 —= Perf-120°C &
© 0.6 Resistance-120 °C 106 <
g "~ <
S ~ 3
> o4l 2
= 0.4 ~_ N 104 8
O Sa g
] [0}
02}t o0 —0——p———0—7% loo &
VN — g — ) — e —Y
[ 00 00 o O QO
0.0 Il Il Il Il Il Il Il 0.0
0 200 400 600 800 1000 1200 1400 1600
Current Density (mA/cm?)
1.0
Perf.-80 °C |
Resistance-80 °C 108
Perf.-105 °C g
> - Resistance-105 °C £
Py Perf.-120 °C 106 £
o Resistance-120 °C o
e (O]
> - 1 2
Z - 04 §
3 T ] »
] n
] O
{02 X
V= — g — — — 1
[ OO ]
0.0 : : : : 0.0
0 200 400 600 800 1000

27



Can we extend this infinitely?

« NO!!!
e Materials 1ssues rise to the fore — especially the ionomeric
membrane in a PEMFC

« Note: previous figures indicated 105°C to be a better CO
tolerant operating temperature than 120°C — contrary to
expectation based on Le-Chatlier- Braun principle

« This apparent contradiction — effect of membrane resistance,
cathode overpotential and system water content. These 1ssues
will be discussed 1n the following slides

Note — membrane conductivity (p) determines its resistance at

any given condition for a given thickness (t) and active area
(A)(R=p t/A)

ME 295/320 Fuel Cell Engg.- J. M. Fenton
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Temperature and Relative Humidity

 Linked to one another

* Maintaing a saturated environment above
100°C — requires system pressurization

* Leads to parasitic power losses and complex
systems

* Need exists to develop membranes for high
temperature / low relative humidity operations

Is proton conductivity influenced by
temperature and water content??

ME 295/320 Fuel Cell Engg.- J. M. Fenton
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Limitations of Current PEM Technology

* Conductivity — strong

function of water content

* Drops in under saturated
environments

e Increased membrane and
electrode resistance at

High T / Low RH

Conductivity vs. T and RH - Nafion 112
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Conductivity Mechanisms

“Vehicular” mechanism

e Proton attached to
solvent (“‘vehicle™)
molecule —e.g. H;O"

e Moves at rate of
vehicular diffusion

 Vehicle counter
diffusion

* Net proton transport —
governed by vehicle
diffusion rates

ME 295/320 Fuel Cell Engg.- J. M. Fenton

Grotthuss mechanism

* Also called “hopping”
mechanism

 Stationary vehicles (only
local motion)

e Proton “hops” from vehicle
to vehicle

 Always within H bond
environment

 Solvent reorientation —
provides H" pathway

e Continuous motion

31
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Gierke Cluster Network Model for Nafion®
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Conductivity in Nafion®

LT /100% RH
* High water uptake

e Combined vehicular /
Grotthuss mechanisms

« Large water content — symmetric
environment

e Easy, quick reorientation

 Large cluster diameters (4 nm); |

large interconnecting pores ~
(~ Inm)
* Good diffusional transport —

* Fast hopping
* High conductivity!

HT / LRH
Low water uptake

Cluster shrinks (~ 2.4
nm)

Hopping — difficult

Proton transport —
vehicular mechanism

Pore narrowing

Poor diffusional
transport

Low conductivity!
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33



Alternate Strategy

e Nafion®

composite
membranes

* Incorporation of
inorganic additives
to Nafion® matrix

" op@ ky 5,BEEx AT #008R*

Nafion® 112 Nafion® / PTA
o Additives used — -
Heteropolyacids S p—
(HPAs), layered ?j; o] mooC
phosphates, metal : §§§ a100c
OXideS, etc. > 0:0; m120C

Nafion PTA STA SMA

Membrane

Nafion® vs. composite membranes
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e The development of such composite membranes
permits operation at higher temperatures — though
resistive losses are still greater than at 80°C

* The temperatures currently attainable at ambient
pressure (130°C) allow operation (in conjunction with
CO tolerant catalysts) with up to 100ppm CO with
minimal losses (when compared to operation with
pure H, at 130°C)

 This approach can be combined with techniques such
as air-bleed for greater efficacy

* Further improvement hinges on improved membranes
and electrocatalysts
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Effect of Water Content on CO Tolerance

* Recall: CO oxidation requires the generation
of hydroxyl (OH") groups on the catalyst
surface

* Such groups are generated by the oxidation of
water

* Thus, better CO tolerance can be achieved
under well hydrated conditions

Trade off exists between Temperature (and
lower surface coverage) and humidity (and
more hydroxyl groups generated on
catalyst)!!
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Effect of CO on Membrane Resistance
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Resistance:

- Constant at
100% RH,

-Increases
slightly with CO
concentration at
50% RH

- Increases
perceptibly at
30% RH
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Why Does Resistance Increase?

The oxidation of CO to CO, will occur at a rate
determined by the current output of the cell

Thus, all available water 1s used up (to generate
hydroxyl groups) at a particular CO
concentration

Any increase 1n CO concentration will result 1n
water being sucked out from the membrane to
support CO oxidation — thereby increasing
membrane resistance

The CO concentration at which this starts to
occur 1s lower at lower relative humidities

ME 295/320 Fuel Cell Engg.- J. M. Fenton
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Effect of CO, on PEMFC Performance

* CO, —netther chemically nor electrochemically
inert!

e Can be chemically reduced to give CO (reverse
water gas shift: CO, + H, = CO+ H,0)

* Can be electrochemically reduced to give CO
CO,+2H"+2 e =CO+ H,0

* Approaches similar to those adopted for CO
tolerance have been shown to improve CO,
tolerance as well

ME 295/320 Fuel Cell Engg.- J. M. Fenton
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Effect of CO, — Treatment Using Air-Bleed
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Fig. 16. Effects of CO; at the level expected in amethanol reformate, and of subsequent oxygen addition
to the anode, in the case of a Ha/air PEFC with a 0.12 mg P‘t,l"::m2 thin-film anode [21]. (Reprinted by
permission of the American Chemical Society).
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