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Concept of Process Monitoring

Effective maintenance starts with an early 
detection of developing problems

An engineer has a chance to 
stop the problem before it 
grows into a full malady

Data rich but information scarce 
from process automation  (PLC, 

DCS)

How do we extract an useful 
information ? (Data mining)

Process monitoring
using multivariate statistical 

analysis

Obtaining  stable condition
Improving process efficiency
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Integration of monitoring, prediction and 
control

MONITORING

PREDICTION

CONTROL
Statistical

Correlation
Model

Monitoring 
signals abnormal 

situations to 
controller

Monitoring establishes 
confidence in 
prediction

measurements

Predictions give 
controller ability to work 
beyond just abnormal 

situations

Adjustments
to batch
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Characteristics of Batch Process

Finite duration process: time variant and 
nonlinear behavior

Batch operation is typically done in “open-loop”
with respect to the product quality

Quality variables sampled well after batch 
completed

Monitoring provides a way to detect deviations in 
product quality to allow correction before it impacts 
the suitability of the product

Batch-to-batch variation 

3-way data (batch × variable × time)
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Traditional Monitoring Method for Batch 
Process

Ι J
Variables

X

1
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Batches

Time

P

1 J
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1 J 2J KJ

PT

t

t depicts the overall variability of each batch with 
respect to the other batches

P summarizes the time variation of the measurement 
variables around their average trajectories

Multiway PCA (Nomikos and MacGregor, 1994)
• Extended version of PCA to handle multiway batch data 

• 3-way data X(batch×variable×time) is unfolded into 2-dimensional matrix 
X(batch×(variable×time))

I
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Problems encountered for on-line 
monitoring of MPCA

1. Xnew is not complete until the end of the batch operation.

• The rest of the Xnew matrix from the current time to the end of the 
batch is still undefined. (Filling method)

2. Batch length is not identical each batch.
Loadings

New 
batches

Start Current time

Scores
Loadings

No data
J ×K

New batch
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Motivation of this research

• PCA 
– Using only the information contained 

in the covariance matrix of the data
– Not appropriate for non-stationary, 

dynamic, or non-Gaussian data.
Cause false alarms 

• Problems of conventional MPCA
– Batch length should be identical.
– Future observations should be 

anticipated for on-line monitoring
might cause bad performance

ICA

Another 
unfolding
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What is Independent Component Analysis?

• ICA is a statistical method, the goal of which is to decompose given 
multivariate data into a linear sum of statistically independent 
components, that is, the values of one variable do not convey any 
information about the other variable. 

• For example, given two-dimensional vector , x = [ x1 x2 ] T , ICA aims at 
finding the following decomposition
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where a1, a2 are basis vectors and s1, s2 are basis coefficients (sources)

Constraint: Basis coefficients s1 and s2 are statistically independent.

• We should find a1, a2, s1 and s2 from only x1 and x2

BIOMATHC.K. Yoo – Jan 6, 2003 - 10

How can we find source signals from only X?
X = A S

X: measured variable, A: mixing matrix, S: source signal

si : statistically independent and var(si)=1

• If W=A-1, we can exactly recover source signal from S = W X.

• How can we find W(separating matrix) from only X? 

W is initialized and updated to maximize the non-Gaussianity of S

• More non-Gaussian, more independent !

Measure of non-Gaussianity
• Kurtosis: kurt(y) = E(y4) – 3 (E(y2))2

- kurtosis is zero for a Gaussian random variable 
- very sensitive to outliers

• Negentropy: information-theoretic quantity of entropy
Hyvärinen(1998) developed a robust  approximation equation of 
negentropy
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Detail procedures of ICA 

1. Centering (mixed and independent source is zero-mean)

2. Whitening (remove all cross-correlations between X)

Transform the observed vector x linearly so that 

3. BT is initialized and updated to maximize the negentropy of 
s(k)

4. Since                            and                            , W
can be obtained by                  .

{ } Izz =)()( kkE T

)()()()( kkkk BsQAsQxz ===
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Comparisons between PCA and ICA

PCA
1. Second-order method (mean, 

variance)

2. Using only the information 
contained in the covariance 
matrix of the data vector x

3. Assume Gaussian 
distribution of x 

4.     Computationally simple

ICA
1. Higher-order method        

(mean,variance, skewness, kurtosis, 
etc)

2. Use information on the distribution 
of x that is not contained in the 
covariance matrix

3. Assume non-Gaussian distribution 
of x

4. More sophisticated techniques
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Comparisons of ICA solution with PCA solution
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Proposed method: On-line batch 
monitoring based on MICA and unfolding

Ι J
Variables

X1
1

K

Batch

Time
1 J 2J KJ

1. Unfold batch-wise
2. Mean centering and scaling to remove 
average batch trajectory and time correlation
3. Re-arrange variable-wise
4. Perform ICA
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New monitoring procedures (Part I)
1. Unfold                  to    

2. The data                 are normalized using the mean and standard 
deviation of each variable at each time in the batch cycle over all 
batches.

3. Rearrange the scaled               to 

4. Whitening procedure:

5. ICA procedure

Obtain W, B, and Snormal from 

6.   Calculate the norm of the row vectors of W and separate W into the 
deterministic part and the excluded part based on the magnitude of 
norms. B and Snormal can be separated with the similar criterion.

)( KJI ××X )( JKI ×X

)( JKI ×X

)( JKI ×X )( IKJnormal ×X

normalnormal QXZ =

normal
T

normalnormal ZBWXS ==

ed WWW ,→ ed BBB ,→
normaldd XWS =

normalee XWS =
normalS
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New monitoring procedures (Part II)

7. Calculate I2, Ie
2 and SPE statistics

where n is a value from 1 to IK and 

8. Rearrange I2(1×IK), Ie
2 (1×IK) and SPE (1×IK)  to I2(I×K), 

Ie
2 (I×K) and SPE (I×K), respectively. 

8. Obtain control limits of I2, Ie
2 and SPE metrics at each time 

using kernel density estimation

)()()(2 nnnI d
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T
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d
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jj nxnxnSPE
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Kernel density estimation
Density estimation is the construction of an estimate 

of the density function from the observed data.

I2, Ie
2 and SPE are not normally distributed
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New monitoring procedures
(Contribution Plot Part)

1. Variable contribution to Inewd
2(k)

2. Variable contribution to Inewe
2(k)

3. Variable contribution to SPE (k) 
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On-line batch monitoring with MICA

Normalization and whitening

Obtain MICA model (W,S) and SPE from NOC

Determine the control chart limits of I2 and Ie
2 and SPE statistics 

using kernel density estimation (KDE)

Unfolding and mean trajectory removal under normal operation (NOC)

OnOn--line monitoringline monitoring

Project the new data into MICA model to calculate I2 and Ie
2 and SPE values 

Monitor if Inew
2, Inewe

2, and SPE values exceed the control limits

ModelingModeling
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Case Study (Fed-Batch Penicillin Production)

Substrate
Tank

Air

Cold
Water

Hot
Water

FermenterAcid

Base

T

pH

FC

FC

Substrate
Tank

Air

Cold
Water

Hot
Water

FermenterAcid

Base

T

pH

FC

FC

• Monitoring and control group (Ündey, C., Birol,B, and 
Çinar,A.) has developed a simulator (PenSim v2.0) that is 
capable of simulating concentrations of biomass, CO2, 
hydrogen ion, penicillin, carbon source, oxygen and heat 
generation under various operating conditions.
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Variables of Penicillin Process

• Total 11 Variables with underline are used for batch 
monitoring

Load variables: aeration rate, agitator power, substrate feed 
rate and substrate feed temperature

Manipulated variables: acid/base and heating/cooling water 
flow rates

Internal state variables: culture volume, generated heat, carbon 
dioxide, dissolved oxygen, biomass, penicillin and substrate feed 
concentrations

Controlled variables: bioreactor pH and temperature
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Normal batch trajectory
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Case I: Equal batch length

A total of 67 batches based on the normal operation are generated 
for the development of MPCA and MICA model providing the 
necessary information for on-line monitoring

The duration of each batch is 400hr. (45hr: pre-culture state, 355hr: 
fed-batch stage)

The sampling interval: 1 hr

Small variations were added to simulation input data for process 
common variations

Measurement noises were also added to 11 variables used in 
monitoring.

Disturbance: substrate feed rate is linearly decreased with slope  
–0.002 from time 100hr to time 250hr (slow process drift).
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MPCA Monitoring Results (Equal batch length)
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4 PCs (explain 62.2% of the variation) are used. 

To fill in the future values, the ability of PCA that handles missing data is 
used (Filling method 3 of Nomikos and MacGregor, 1994).

The dotted points represent the normal batch.

Detection time: 220hr (delayed about 120hr after occurring a fault)
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MICA Monitoring Results (Equal batch length)

3 ICs are used for deterministic part.

Detection time: 190hr (earlier than MPCA monitoring charts by 30hr)

MICA without estimating the future values still yields better results.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

Sample Number

I2 re
s

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Sample Number

S
P

E

Detection time: 190hr



1313

BIOMATHC.K. Yoo – Jan 6, 2003 - 25

Case II: Unequal batch length

Batch 1
Batch 2

Batch I

Time 1 Time 2 Time K-1 Time K

Mean

Standard
deviation

total 67 batches are generated.

20 batches(time 400), 10 batches(time399), 10 batches(time398), 5 
batches(time397), 5 batches(time396), 5 batches(time395), 5 
batches(time394), 5 batches(time393), 2 batches(time392),  

Test batch (time 395) having a step disturbance is also generated.
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MICA results (Unequal batch length)

Disturbance: step decreasing the agitation power by 10% at 
300hr, where it is lasted until the end of batch.

The disturbance is detected  well by Ie2 and SPE charts from 
300hr without delay.
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Contribution plot of MICA (Unequal batch length)
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From the contribution plot for Ie2 and SPE at sample 350, 
we can conclude variables 2 (agitation power) causes the 
large deviation primarily.
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Conclusion

In comparison to PCA, ICA can reveal underlying factors 
from multivariate statistical data including non-Gaussian.

MICA can detect a disturbance earlier than MPCA.
MICA need not anticipate the future values.

MICA is useful when the batch length is different from each 
batch.

MICA can be easily applied in most batch and semi-
batch processes (i.e. SBR)

Integration of monitoring, prediction, control and 
optimization) 


