		PID	Tuning			2003.4.1
			PID			
PID					가	
				tuning		
			tuning			
가	. PID	tuning	(, ,	, ,)
		가	가			가
			PID	tuning		
	tuning		,			

Tuning Name: Internal Model Control

Reference: Rivera, D. E., S. Skogestad and M. Morari, "Internal Model Control 4. PID Controller Design." Ind. Eng. Chem. Proc. Des. & Dev., 25, 252-265, 1986.

Method: Internal model control

PID 가 direct synthesis

C(s)

$$\frac{G(s)C(s)}{1+G(s)C(s)} = H(s)$$

G(s) , H(s)

PID 가

Tuning Rules:

Tuning Ruics.				
	kK _c	τ_{I}	$ au_{ m D}$	$ au_{ m F}$
$k/(\tau s+1)$	τ/λ	τ		
$k/(\tau_1s+1)(\tau_2s+1)$	$(\tau_1+\tau_2)/\lambda$	$\tau_1 + \tau_2$	$\tau_1 \tau_2 / (\tau_1 + \tau_2)$	
$k/(\tau^2 s^2 + 2\zeta \tau s + 1)$	2ζτ/λ	2ζτ	τ/(2ζ)	
$k(-\beta s+1)/(\tau s+1)$	$\tau/(2\beta+\lambda)$	τ		$\beta \lambda / (2\beta + \lambda)$
$k(-\beta s+1)/(\tau^2 s^2+2\zeta \tau s+1)$	$2\zeta\tau/(2\beta+\lambda)$	2ζτ	τ/(2ζ)	$\beta \lambda / (2\beta + \lambda)$
k/s	1/λ			
k/s	2/λ	2λ		
$k/(s(\tau s+1))$	1/λ		τ	
$k/(s(\tau s+1))$	$(2\lambda+\tau)/\lambda^2$	2λ+τ	$2\lambda\tau/(2\lambda+\tau)$	
k(-βs+1)/s	$1/(2\beta+\lambda)$			$\beta \lambda / (2\beta + \lambda)$
k(-βs+1)/s	$2(\beta+\lambda)/(2\beta^2+\lambda^2)$	2(β+λ)	$2\beta\lambda/(\beta+\lambda)$	$(\beta \lambda^2 + 4\beta^2 \lambda)/(2\beta^2 + \lambda^2)$
$k(-\beta s+1)/(s(\tau s+1))$	$1/(2\beta+\lambda)$		τ	$\beta\lambda/(2\beta+\lambda)$
$k(-\beta s+1)/(s(\tau s+1))$	$(2\beta+2\lambda+\tau)$	$2(\beta+\lambda)+\tau$	2τ(β+λ)	$\beta \lambda^2 /$
	$/(2\beta^2+4\beta\lambda+\lambda^2)$		$/(2\beta+2\lambda+\tau)$	$(2\beta^2+4\beta\lambda+\lambda^2)$

$$C(s) \!\!=\!\! K_c (1 \!+\! 1/\tau_I s \!+\! \tau_D s) \!/\! (\tau_F s \!+\! 1), \qquad \quad \lambda$$

Comments:

 $(1) tuning \qquad . \qquad \tau_I \qquad \qquad \tau \qquad .$

(2)

 $\qquad \qquad . \qquad \qquad \lambda$

Tuning Name: IMC-PID

Reference: Rivera, D. E., S. Skogestad and M. Morari, "Internal Model Control 4. PID Controller Design." Ind. Eng. Chem. Proc. Des. & Dev., 25, 252-265, 1986.

Method: Pade Internal model

control .

Tuning Rules:

	kKc	τ_{I}	$ au_{ m D}$	τ_{F}	λ
k exp(-θs)	τ/λ	τ			>1.70
$/(\tau_s+1)$					>0.2τ
	$(2\tau + \theta)/(2\lambda)$	$\tau + \theta/2$			>1.70
					>0.2τ
	$(2\tau + \theta)/(2\lambda + 2\theta)$	τ+θ/2	$\tau\theta/(2\tau+\theta)$	$\lambda\theta/(2\lambda+2\theta)$	>0.25θ
					>0.2τ

λ .

Comments:

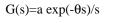
(1) IMC tuning .

Tuning Name: Ziegler-Nichols Step Response Method

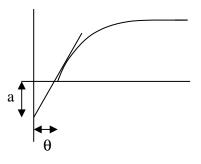
Reference: Ziegler, J. G. and N. B. Nichols, "Optimal Settings for Automatic Controllers." Trans. ASME, 64, 759-768, 1942.

Rules:

Method:



Tuning



Kc	τ_{I}	$ au_{ m D}$
1/a		
0.9/a	3θ	
1.2/a	2 θ	θ /2

Comments:

- (1) The decay ratio for the step response is close to one quarter.
- (2) The overshoot in the set point response is too large.

Tuning Name: Chien, Hrones and Reswick (CHR) Method - 1

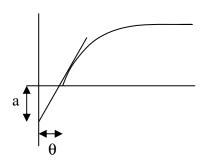
Reference: Chien, K. L., J. A. Hrones, and J. B. Reswick, "On the Automatic Control of Generalized Passive Systems." Trans. ASME, 74, 175-185, 1952.

Rules:

Method: Ziegler-Nichols Step Response Method

 $G(s)=a \exp(-\theta s)/s$

Tuning



Overshoot	Kc	τ_{I}	$ au_{ m D}$
0%	0.3/a		
	0.6/a	4θ	
	0.95/a	2.40	0.42θ
20%	0.7/a		
	0.7/a	2.3θ	
	1.2/a	2θ	0.42θ

Tuning Name: Chien, Hrones and Reswick (CHR) Method - 2

Reference: Chien, K. L., J. A. Hrones, and J. B. Reswick, "On the Automatic Control of Generalized Passive Systems." Trans. ASME, 74, 175-185, 1952.

Method: Chien, Hrones and Reswick Method - 1 $G(s){=}a \; exp(-\theta s)/s$

 $G(s)=a \exp(-\theta s)/(\tau s+1)$

Tuning Rules:

Overshoot	Kc	τ_{I}	$ au_{ m D}$
0%	0.3/a		
	0.35/a	1.2τ	
	0.6/a	τ	0.5θ
20%	0.7/a		
	0.6/a	τ	
	0.95/a	1.4τ	0.47θ

Tuning Name: Ziegler-Nichols Frequency Response Method

Reference: Ziegler, J. G. and N. B. Nichols, "Optimal Settings for Automatic Controllers." Trans. ASME, 64, 759-768, 1942.

Tuning Rules:

Kc	$ au_{ m I}$	$ au_{ m D}$
0.5Ku		
0.45Ku	Pu/1.2	
0.6Ku	Pu/2	Pu/8

Ku ultimate gain Pu ultimate period .

Comments:

Tuning Name: Modified Ziegler-Nichols Method

Reference: Astrom, K. J. and Hagglund, T., PID Controllers, 2nd ed., ISA, N. C., 1995.

Method: Nyquist point

$$G(jw_o) = r_a exp(j(\pi + \phi_a))$$
Nyquist point

$$G(jw_o)C(jw_o)\!\!=\!\!r_bexp(j(\pi\!\!+\!\!\varphi_b))$$

가
$$\phi_a=0$$
 $r_a=1/Ku$ 가

 $w_o=2\pi/Pu$ 7

ΡI

$$Kc = K_u r_b \cos(\phi_b)$$

$$\tau_I = -\frac{1}{\omega_o \tan(\phi_b)}$$

PID $\tau_D=0.25\tau_I$

$$Kc = K_u r_b \cos(\phi_b)$$

$$\tau_I = \frac{2}{\omega_o} \frac{1 + \sin(\phi_b)}{\cos(\phi_b)}$$

$$\tau_D=0.25\tau_I$$

Ziegler-Nichols Frequency Response Method $r_b=0.6621, \phi_b=0.4366$

$$r_b=0.41, \phi_b=1.0647$$

$$r_b=0.29, \phi_b=0.8029$$

Tuning Name: Modified Ziegler-Nichols Method with Loop Shaping

Reference: Astrom, K. J. and Hagglund, T., PID Controllers, 2nd ed., ISA, N. C., 1995.

$$Kc = K_u r_b \cos(\phi_b)$$

$$\tau_I = \frac{1}{\omega_u^2 (\tau_D - a)}$$

$$\tau_D = 0.5 \left(a - \phi' - a\omega_u \frac{r'}{r} + \left(\frac{r'}{r} - a\omega_u \phi' \right) \tan \psi \right)$$

$$\begin{split} G(j\omega) &= r(\omega) \; exp(j(\pi + \varphi(\omega))) \\ \psi : the \; desired \; slope \\ a &= tan(\varphi_b)/\omega_u \end{split}$$

ultimate frequency, $\omega_u, \qquad \qquad , \qquad \qquad r \quad r', \varphi \quad \varphi' \qquad . \qquad r_b, \varphi_b$.

 $r_b\!\!=\!\!0.707,\,\varphi_b\!\!=\!\!\pi/4,\,\psi\!\!=\!\!\pi/4$

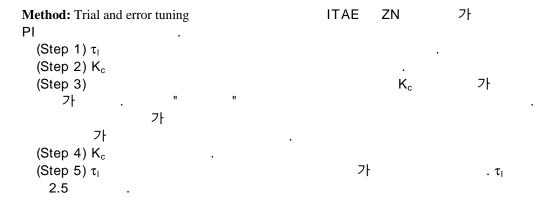
Tuning Name: Trial and error tuning

Reference: D. E. Seborg ,T. F. Edgar and D. A. Mellichamp, Process Dynamics and Control. John Wiley & Sons, N.Y, 296-297, 1989.

Method: (Step 1) τ_D τ_{I} (Step 2) K_c K_c (Step 3) 가 가 가 가 (Step 4) K_c 가 (Step 5) τ_I . τ_{I} 3 (Step 6) τ_D 가 . τ_{D}

Tuning Name: Iterative Continuous Cycling

Reference: J. Lee, W. Cho and T. F. Edgar, "Multiloop PI Controller Tuning for Interacting Multivariable Processes", Compters Chem. Engng, 22, 1711-1723, 1998.



Comment

Tuning Name: Cohen and Coon rule

Reference: G. H. Cohen and G. A. Coon, "Theoretical Considerations of Retarded Control," Trans.

ASME, 75, 827, 1953.

Method: Cohen and Coon(1953) 1/4 decay ratio closed

loop . Ziegler - Nichols .

Tuning Rule:

	kK _c	τ_{I}	τ_{D}
k exp(-θs)	$(1+\theta/(3\tau))\tau/\theta$		
$/(\tau s+1)$	$(0.9+\theta/(12\tau))\tau/\theta$	$\theta(30+3\theta/\tau)/(9+20\theta/\tau)$	
	$(4/3+0.25\theta/\tau)\tau/\theta$	$\theta(32+6\theta/\tau)(13+8\theta/\tau)$	$4\theta/(11+2\theta/\tau)$

Comment:

(1) 1/4 decay ratio .

(2) closed-loop responce .

Tuning Name: Integral of time absolute error (ITAE)

Reference:

Method:

$$ITAE = \int_0^\infty t \mid y_s(t) - y(t) \mid dt$$

Tuning Rule:

Process	Role	kKc	$ au/ au_{ m I}$	$ au_{ m d}/ au$
$k \exp(-\theta s)/(\tau s+1)$	Disturbance rejection	$0.859(\theta/\tau)^{-0.977}$	$0.674(\theta/\tau)^{-0.680}$	
	,	$1.357(\theta/\tau)^{-0.947}$	$0.842(\theta/\tau)^{-0.738}$	$0.381(\theta/\tau)^{0.995}$
	Set point tracking	$0.586(\theta/\tau)^{-0.916}$	$1.030 - 0.165(\theta/\tau)$	
		$0.965(\theta/\tau)^{-0.850}$	$0.796 - 0.1465(\theta/\tau)$	$0.308(\theta/\tau)^{0.929}$

Comment: settling time .

Tuning Name: ITAE for SOPTD Model **Reference:**

Method: ITAE

$$G(s) = \frac{k \exp(-\theta s)}{\tau^2 s^2 + 2\tau \zeta s + 1}$$

Tuning Rule:

Tuning Rule:	
Step set point change	$kkc = -0.04 + \left\{ 0.333 + 0.949 \left(\frac{\theta}{\tau} \right)^{-0.983} \right\} \zeta, \zeta \le 0.9$
	$kk_c = -0.544 + 0.308 \left(\frac{\theta}{\tau}\right) + 1.408 \left(\frac{\theta}{\tau}\right)^{-0.832} \zeta$, $\zeta > 0.9$
	$\frac{\tau}{\tau} = \left\{ 2.055 + 0.072 \left(\left(\frac{\theta}{\tau} \right) \right) \right\} \zeta, \frac{\theta}{\tau} \le 1.0$
	$\frac{\tau}{\pi} = \left\{ 1.768 + 0.329 \left(\left(\frac{\theta}{\tau} \right) \right) \right\} \zeta, \frac{\theta}{\tau} > 1.0$
	$\frac{\tau}{\tau_d} = \left\{ 1.0 - \exp\left(-\frac{(\theta/\tau)^{1.060}\zeta}{0.870}\right) \right\} \left(0.55 + 1.683\left(\frac{\theta}{\tau}\right)^{-0.090}\right)$
Step input disturbance rejection	$kk_c = -0.670 + 0.297 \left(\frac{\theta}{\tau}\right)^{-2.001} + 2.189 \left(\frac{\theta}{\tau}\right)^{-0.766} \zeta, \zeta < 0.9$
	$kk_c = -0.365 + 0.260 \left(\frac{\theta}{\tau} - 1.400\right)^2 + 2.189 \left(\frac{\theta}{\tau}\right)^{-0.766} \zeta, \zeta \ge 0.9$
	$\frac{\pi}{\tau} = 2.212 \left(\frac{\theta}{\tau}\right)^{0.520} - 0.300, \frac{\theta}{\tau} < 0.4$
	$\left \frac{\pi}{\tau} = -0.975 + 0.910 \left(\frac{\theta}{\tau} - 1.845 \right)^2 + \left\{ 1 - \exp \left(-\frac{\zeta}{0.150 + 0.330 (\theta/\tau)} \right) \right\}, \frac{\theta}{\tau} \ge 0.4$
	$ \times \left\{ 5.250 - 0.880 \left(\frac{\theta}{\tau} - 2.800 \right)^{2} \right\} $
	$\frac{\tau}{\tau_d} = -1.900 + 1.576 \left(\frac{\theta}{\tau}\right)^{-0.530}$
	$ + \left\{ 1 - \exp\left(-\frac{\zeta}{-0.15 + 0.939(\theta/\tau)^{-1.121}}\right) \right\} \left\{ 1.45 + 0.969\left(\frac{\theta}{\tau}\right)^{-1.171} \right\} $