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True Moving Bed

Liquid

RAFFINATE

ELUENT

FEED

EXTRACT

Solid

Real counter 
current between 
liquid and solid 
stream
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Moving Bed Concept

Liquid

RAFFINATE

ELUENT

FEED

EXTRACT
The solid flow is 
simulated by a 
continous 
displacement of 
inlets / outlets
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Simulated Moving Bed

Inlet and outlet flow positions after ∆T
Simulation of the solid phase movement
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The solid flow is 
simulated by a 
discrete 
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Chromatographic process 
modelling

• Fast way to design processes
• Rapid calculations
• Numerical optimizations
• Only small amounts of products required

• Parametric study
•Estimation of robustness
•Determination of critical factors
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Process simulation

Purity, recovery
Productivity
Eluent consumption

Numerical 
simulation

Physical data :
isotherms
pressure drop
HETP

Operating flow-rates
Column size

Calculate process productivity for fixed conditions

Obtained from 
laboratory studies

Fixed by the user
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Productivity
Eluent consumption

Process Optimization

Numerical optimization

Numerical 
simulation

Physical data :
isotherms
pressure drop
HETP

Optimal flow-rates
Column size

The optimization search the
operating conditions to get an 
optimum productivity
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Required data for modeling

Concentration

A+B

A 

B

Solid

liq
ui

d

Flow rates and ∆t function of

• Adsorption isotherms 
(retention, selectivity,
capacity)

• Column efficiency
Van Deemter

Pressure drop
Kozeny Karman equation 

H=A+Bu+C/u
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Thermodynamics
(Adsorption Isotherm)
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Concentration on liquid phase

Analytical
Chromatography

(Linear)

Preparative
Chromatography
(non linear)
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Column efficiency:
plate model
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Model N plates (uniform composition)

Column efficiency (N) 
depends on:
• Liquid velocity (u)
• Column length (L)

Van Deemter model:

BuAN
L +=
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Pressure drop
The pressure drop (∆P) over a column filled by 
monodispersed stationary phase is proportionnal to:
• Column length (L)
• Speed velocity (u)
• 1/(particle diameter)²
• Solvent viscosity

For a fixed eluent and stationary phase: ukL
P ⋅=∆
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Required experiments for 
modelling

• 2 Analytical injections at different flowrates

• 1 Pressure drop measurement

• Some overloaded injections
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Pressure drop

Adsorption isotherm
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Calculations of TMB flow rates

Concentration

A+B
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B

Solid
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Adsorption of A 

Adsorption of B

Desorption of A

Desorption of B

Four zones 
have to be 
considered

Each zone have 
a specific role 

Flow rates have 
to satisfy these 
constraints



14

Front Direction in TMB
(one zone)
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TMB Internal flow rates

Zone IV

Zone III

Zone II

Zone I
B
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TMB flowrates – non linear isotherm
Zone I and IV

Zone I :

Zone IV :
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TMB flowrates – non linear isotherm
Zone II and III
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TMB – SMB two equivalent 
processes

SMB

Periodic steady state

Periodic shift of the 
injection/collection lines

Internal flow-rates

k=I, II, III or IV

Eluent, extract, feed, raffinate 
flow-rates
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Agreement between 
calculations and experiments

It works !

If the input data:If the input data:

•• adsorptionadsorption
•• kineticskinetics
•• hydrodynamicshydrodynamics

are reliable.are reliable.
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Accuracy of modelling tools

SMB : experimental and simulated internal concentration profiles
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Choosing the best conditions

Unsecure : bad estimation 
of column efficiency can 
involve an important loss of 
productivity

Secured bed length

Optimal bed length

Safer : using higher bed 
length implies a slightly 
lower but safer productivity

Limitation by
Col. efficiency

Limitation by
Pressure drop

2 effects are taken into account 
by optimization:


