DOE의 수소생산 연구 동향

한국에너지기술연구원 이승재

수소생산의 연구 동향을 살펴보기 위하여, DOE의 R&D 현황을 조사하여 보았다. 자세한 내용은 <u>http://www.eere.energy.gov/hydrogenandfuelcells/production/</u>을 참고하기 바란다. 또한 2004년의 Annual progress Report 중 수소 생성 관련 연구 제목들을 살펴보았다.

1. 화석연료 기반의 수소 생산 연구

Technology	Organizations	Project Focus
Distributed	Praxair	Oxygen transport membrane for reforming
Reforming of Natural		followed by hydrogen transport membrane shift
Gas and Liquid Fuels		reactor/Low-cost hydrogen production platform
	Air Products and	Hydrogen refueling station using advanced
	Chemicals, Inc.	natural gas steam methane reforming
		technologies
	GE Global Research	Fuel-flexible autothermal reformer
	National Energy	Advanced water gas shift membrane reactors
	Technology	
	Laboratory	
	Innovatek	Novel catalytic fuel reforming
	Startech	Plasma gasification and ceramic membrane
	Environmental	hydrogen separation
Separations	Sandia National	Defect-free thin film membranes for hydrogen
	Laboratories	separation
	Oakridge National	Transport membrane development/Porous
	Laboratory	support tube fabrication
	Los Alamos	Microstructured membrane development

	National Laboratory	
Centralized Hydrogen	DOE Fossil Energy	Central natural gas reforming, coal gasification,
from Coal or Natural	Office (FE)	carbon sequestration
Gas		
	EERE in	Advanced technologies for reforming natural
	collaboration with	gas and producer gas, shift technology, and
	FE	separations and purification

2. 생물학적 기반의 수소 생성 연구

Technology	Organizations	Project Focus
Hydrogen production	National Renewable	Biomass pyrolysis followed by reforming
from biomass	Energy Laboratory	of the resulting bio-oil
	Iowa State University	Indirectly heated gasification system to
		convert switchgrass into hydrogen
	Pacific Northwest	Aqueous phase biomass gasification
	National Laboratory	

3. 전기적 수소 생산 연구

Technology	Organizations		Pro	ject Focus		
Hydrogen production	National	Renewable	Energy	Renewable	elect	rolysis
from water via electrolysis	Laboratory			integrated sy	stem develo	pment
	Idaho National Engineering and		Improved	methods	for	
	Environmental Laboratory		producing	hydrogen	via	
				electrolysis		
	Teledyne;	Proton	Energy	Hydrogen	generation	from
	Systemsy			electrolysis		
	Sandia National Laboratory		High-efficier	ncy elect	rolysis	
				materials		
	Giner Elect	trochemical Sy	ystems	Low-cost,	high-pi	ressure
				hydrogen ge	enerator	

4. 태양광을 이용한 수소 생산 연구

Technology	Organizations	Project Focus
Photobiological production	National Renewable	New strains of algae/systems with
of hydrogen	Energy Laboratory	improved oxygen tolerance/Reactor
		design and development
	UC Berkeley	New strains of algae with improved
		electron transport
	Oak Ridge National	New strains of algae with improved
	Laboratory	solar conversion efficiency (truncated
		Chl antenna size)
Photoelectrochemical	National Renewable	Development of durable and cost-
production of hydrogens	Energy Laboratory;	effective photoelectrochemical
	University of Hawaii	hydrogen production systems
	UC Santa Barbara; SRI	High-throughput analysis to identify
	International	candidate materials for further study

5. 고온에서의 수소 생산 연구

Technology	Organizations	Project Focus	
High-temperature	University of Nevada, Las	Thermocatalytic decomposition of	
(700°-1000°C)	Vegas	natural gas; high-temperature	
thermochemical water		thermochemical water-splitting cycles	
splitting			
	DOE Office of Nuclear	Initial research on high-temperature	
	Energy, Science, and	thermochemical production of hydrogen	
	Technology		

6. 2004 Annual Progress Report

- A. Distributed Production Technologies
- Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen and Synthesis Gas (ITM Syngas), Christopher Chen, Air Products

- Integrated Ceramic Membrane System for Hydrogen Production, Joseph Schwartz, Praxair
- Low Cost Hydrogen Production Platform, Tim Aaron, Praxair
- Autothermal Cyclic Reforming Based Hydrogen Generating and Dispensing System, Ravi Kumar, GE Energy
- Novel Catalytic Fuel Reforming, Patricia Irving, InnovaTek
- Water-Gas Shift Membrane Reactor Studies, Richard Killmeyer, NETL
- Hydrogen Production from Biomass Reformation, David King, PNNL

B. Biomass Gasification/Pyrolysis

- Hydrogen from Biomass: Catalytic Reforming of Pyrolysis Vapors, Bob Evans, NREL
- Startech Hydrogen Production (New Project), David Lynch, Startech Environmental Corporation
- C. Photobiological Production
- Maximizing Photosynthetic Efficiencies and Hydrogen Production in Microalgal Cultures, Tasios Melis, UC Berkeley
- Biological Systems for Hydrogen Photoproduction, Maria Ghirardi, NREL
- Algal H2 Production Systems: Creation of Designer Alga for Efficient and Robust Production of H2, James Lee, ORNL
- Hydrogen Reactor Development and Design for Photofermentation and Photolytic Processes, Dan Blake, NREL
- D. Photoelectrochemical Production
- Photoelectrochemical Systems for H2 Production, John Turner, NREL
- Photoelectrochemical Hydrogen Production Program, Eric Miller, University of Hawaii
- Discovery of Photocatalysts for Hydrogen Production, Brent MacQueen, SRI International
- Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials, Eric McFarland, U of California Santa Barbara

E. Electrolysis

- High Temperature Solid Oxide Electrolyzer System, Steve Herring, INEEL
- Renewable Electrolysis Integrated System Development and Testing, Carolyn Elam, NREL
- Alkaline, High Pressure Electrolysis, Steve Cohen, Teledyne
- Hydrogen Production Increasing the Efficiency of Water Electrolysis, David Ingersoll, SNL

- Low-Cost, High-Pressure Hydrogen Generator, Cecelia Cropley, Giner Electrochemical
- Hydrogen Generation from Electrolysis, Stephen Porter, Proton Energy Systems

F. High-Temperature Thermochemical Processes

• High Efficiency Generation of Hydrogen Using Solar Thermochemical Splitting of Water, Bob Perret, Univ. of Nevada