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Introduction

A three-stage-steady-state thermodynamic
equilibrium model (TSM) including mass and

energy balances was applied for steam-air- Heated silica sand
Provide heat for

blown biomass gasification in a dual

___________

circulation fluidized bed (CFB) to calculate = "> B | Fuegasio;,
the gas product composition, the LHV, H,, CH,, HNZ' ioﬁ' |
circulation ratio and the heat recovery of C0,, H,0 \__HOlsh) |
biomass.

The heat required for gasification reaction
was provided by the circulating bed material
(silica sand)

The final composition of the gas product is |Biomass
obtained from two-stage equilibrium model
incorporated with biomass pyrolysis and
combustion.

The effects of reaction temperature, steam
to fuel ratio and oxygen to fuel ratio on the
gas product composition and overall
performance of CFB gasifier were studied
base on the final gas composition.

Additional
fuel
(biomass)

Cooled silica sand,
Char residue and
Ash

In the comparison of the final gas composition with steam gasification (for same
biomass and operating conditions), the objective of this study (increase LHV of gas
product) was confirmed.
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Three stage model (TSM)

Gas-phase

reaction is a
Char-gas reactions Water-gas shift
include: reaction

Pyrolysis and
combustion are
divided into two steps:
(1) Biomass Pyrolysis:
- Decomposes into

- Boudouard reaction

- Char-steam
reactions

gas, tar and char

- Thermal cracking of
tar

(2) CO and H,
combustion reactions
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TSM/ Assumptions

Stage Reactions Products proposed Assumed References
Pyrolysis First step: Thermal co, co,, CH,, H,and H,0  CO, CO,, CH,, Sadaka etal. (2002);
decomposition H, and H,0O Radmanesh et al. (2006);
Second step: Tar cracking CO, CO,, H,, heavier Wurzenberger et al. (2002);
hydrocarbon (e. g., C,Hg, Rath et al. (2001) [, ]
C,H,, and C4H,), and inert tar.
Combustion reactionsin  After combustion, the solid is The Oxygen Smith et al. (2005) [ 1]
very short time: fixed carbon (that does not reacted
CO(g) + 0,(g)— CO,(g) react), the gases include: CO,, completely in
H,0, CO, H,, N,, CH, very short time.
Ha(9) + O,(9)— H,0(g)
Solid—gas C(s) + CO,(g) «» 2CO(g) (Char unreacted) CO, CO,, Char unreacted, Nguyen et al. (2010) ;
reactions C(s) + H,0(g) < CO(g) + H,, (H,0 residue) CO, H,, H,0 Yoshida et al. (2008) [~,]
H,(9) residue
Water-gas  CO(g) +H,0(g) <« CO,(g) CO, CO,, H,, H,0O CO, CO,, H,, Wei et al. (2007); Walawender
shift + H,(0) H,O et al. (1985); Herguido et al.
reactions (1992) ;Sharma et al. (2008);

Altafini et al. (2003) [+, ]
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TS M/ Structure of TSM

- . Nco 7162.3 Sakada et al.
RILEERE:  ggo = = = 4697 X exp(~— (2002) []
Combustion ? 0648
e _ Nc¢H, = - Fagbemi et al.
l Dot = = 0.0013 X exp(=———) (2001) []
Char-gas Ny, 0.0 7542.8
_ - > B = 22 _—51.4 % exp(— Nguyen et al.
reaC|0nS Ny, 0 ot T (2010) []
10 24400 :
Gas-phase y TR =9%107 X exp(———7—) Wei et al.
reaction (200N 1]




CH4 formation (-)
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TSM/ Empirical models (1/4)

12 T T T T T T T
101 < —
8_ -
o
6_ -
4 i
2r 5 O Data of Wood
< Data od Coconut shell
O Data of Straw
a — Empirical model
0 | | | | | | |
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Pyrolysis temperature (1/K) x10°

Fig. 1. Empirical model for CH, formation
versus pyrolysis temperature. Experiment
data were taken from Fagbemi []
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Fig. 2. Empirical model for CO, formation
versus pyrolysis temperature. Experiment
data were taken from Fagbemi []
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TSM/ Empirical models (2/4)

Steam participation is expressed as the steam amount involved in the char-gas

equilibrium reactions. § = (nHZO‘involved/nHzo,total)
0.9

—— Yoshida et al. [9]

0.84 | —5—This study 1

0.7
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ra

0.4

nH;0con /INH,O

0.3+

0.2

0.1¢8
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Temperature (K)

Fig. 3. Water amount contributing to the equilibrium reaction of the second stage
(B), this function was taken from Nguyen et al. (2010) []
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TSM/ Empirical models (3/4)

The equilibrium constant of water-gas shift reaction is corrected by the non-equilibrium
factor (k)

14 1
A Exp.-Pine sawdust
1.2 4 O Exp.-Legume straw A Pinesawdust
0.8 A
—Theorical B Legume straw |
1 -
——Empirical model) |
z 0.6
=08 — ..
g I —Expon. (Empirical model))
D e
§06 o § A
£ 0.4
3
S m]
50.4 - A
o A
. = 0.2 1
A
0.2
A
g 3 >
0 . . . . . 0 T T T T T
740 760 780 800 820 840 860 740 760 780 800 820 840 860

Gasification temperature (0C)

(@) (b)

Gasification temperature (°C)

Fig. 4. Effect of gasification on the equilibrium constant of the water-gas shift reaction: (a) equilibrium
constant vs. gasification temperature; (b) non-equilibrium factor (k) vs. gasification temperature
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TSM/ Empirical models (4/4)

—Ep—CO2 formation
+CH4 formation

—©— B - steam parti

—%“— 1 - non-equilibrium factor
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2\
A\
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2\

L

10°
0.

0.9

1

1.1 1.2 1.3
temperature (1/K)

1.4

Non-equilibrium factor (in water-
gas shift stage) has the most
effect when temperature changes

Fig.5. The temperature effect comparison between empirical sub-models
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Operating conditions (1/2)

Table 1: Analysis properties of Korean wood chips, that used in this study.

Biomass properties

Proximate analysis (Wt%) Ultimate analysis (wt%)
H,O 6.40 C 50.80
\olatile 75.90 H 5.37
Fixed carbon 17.40 O 43.6
Ash 0.30 N 0.00
S 0.00
Cl 0.00
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Operating conditions (2/2)

Table 2: Operating conditions of each case study.

Operating conditions

Case study Effects of S/F  Effects of gasification Effects of Oxygen
ratio temperature to Fuel ratio
Temperature of steam inlet (K) 673 673 673
Temperature of fuel (biomass) inlet (K) 598 598 598
Required heat capacity (MW) 100 100 100
Gasifier temperature (K) 1173 900-1173 1173
Steam to fuel ratio(kg/kg) 1.0-2.0 1.0 1.0
O/C ratio (-) 2 2 1.0 -2.0
(Oxygen to fuel ratio (kg/kg)) (0.46) (0.46) (0.0 - 4.6)
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Results and Discussion (1/7)

Effect of Temperature on the final gas product composition

60

50

40

Gas Composition, N2 free vol% at S/F = 0.5 and O/C = 1.5 (or O/F=0.23)

—©— CO air-steam-mix model

—&— H2 air-steam-mix-model

—b— CO02 air-steam-mix model

= —H— CH4 air-steam-mix model
A —6—CO steam model

" —&—H2 steam model

—&—C02 steam model

—&— CH4 steam model

0
700

780 800 820 840 860 880 900

Gasfier temperature (°C)

-The water-gas shift reaction is known
to proceed forward at the
temperatures above 700°C in the
presence of steam [ ]. =» Increase
of H, and CO, formations and a
decrease of CO formation when
temperature increase.

-In air blown system, combustion
reactions lead to produce CO, and
steal CO (as initial contents of stage 2
and 3) = reduce influence of water-
gas shift reaction =& CO content T
and H, content { in the final gas
product

=» Increase LHV of gas product

Fig. 6. The comparison of final gas composition between TSM of Steam-air-blown gasification and Steam
gasification (fixed Steam to fuel ratio = 0.5 and Oxygen to Fuel ratio = 0.23) with the variety of gasification

temperature.
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Results and Discussion (2/7)

Effect of S/F ratio on the final gas product composition

Gas Composition, N2 free vol% at T = 800°C and O/C = 1.5 (or O/F = 0.23)

55 T T T T T T
—©— CO air-steam-mix model . .
—s—mairsteammix-mocel || - 1 NE forward water-gas shift reaction rate
T e et L e || Increases with the increase of steam to fuel
sl e —© CO steam model | ratio [ ]. =»leads to increase of H, and
e —#&— H2 steam model .
o 5 €02 steam model CO,, while CO and CH, decrease.
404 —&— CH4 steam model 1
3 . ) ) | - Inoverall, the variation of the syngas
g composition in biomass gasification with
2 30f ) respect to the steam to fuel ratio is mainly
ézsz influenced by the water-gas shift reaction
8 p—" > g ’ T [ ]
20_ S —
15%;'\5\ - ‘ > = . 7 © S o o . a
. e \EF“E)—‘B\‘B_H 58 5 g o MH_“ —
10 -
5O Oil 0{2 013 Oi4 0{5 016 Oi7 0{8 019 1

S/F ratio (kg/kg)

Fig. 7. The comparison of final gas composition between TSM of Steam-air-blown gasification and Steam

gasification (fixed Temperature = 800°C and Oxygen to Fuel ratio = 0.23) with the variety of Steam to Fuel ratio
(S/F).
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Results and Discussion (3/7)

Effect of O/F ratio on the final gas product composition

Gas Composition (N2 free vol%) at T = 800°C and S/F = 0.5
60 T T T T T T T T T

-The oxygen content lead to violent combust
of CO and H, =» makes higher CO, content
1 infinal gas product.

55

50

—&— CO model
—4A—H2 model ||

o coamodel| | -IN this study, we found an optimum point is
= cmmodel| | OQfF = 0.12 (for the highest CO content in
the final gas composition—-> highest LHV of
1 final gas product).

451 .
Optimum
point

40}

35F

1
N
/

composition (%Vol)

25

201

151

10 I I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O/F ratio (kg/kg)

Fig. 8. The effect of Oxygen to fuel ratios on the final gas compositions (fixed Temperature
=800°C and Steam to Fuel ratio = 0.5) in TSM of Steam-air-blown gasification.
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When steam and oxygen
increase = The reactions
in both combustion stage
and water-gas shift stage
are promoted strongly =
Produce more gas product.
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Results and D

800° C

Lower Heating Value (LHV) versus S/F and O/F ratio at T

- The concentration of CO and
CH, decreases with an increase

of steam to fuel ratio = the
- The increasing of Oxygen to

lower heating value of gas
Fuel ratio =» concentration of

product decreases.

CO and H, decrease = heating

| value of gas product decrease .

Y

/ / /

/
o (o] [ee] ~
—

AmE\_va_v anjen BuneaH 1amoT

Steam to fuel ratio (-)

Oxvaen to fuel ratio (-)

Fig. 10. The effect of Steam to Fuel ratios and Oxygen to Fuel ratios on the Lower heating Value

800°C).

of gas product (at T
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Results and Discussion (6/7)

50—

45—

40—

35—

30—

25—

20—

15—

10—

Circulation ratio versus S/F and O/F ratio at T =800° C

The LHV of gas product
decrease much when steam
and oxygen increase =» (Total
heat out — total heat in)
decreases = amount of
circulation sand increase.

0.5

Oxygen to fuel ratio (-)

Steam to fuel ratio (-)
Fig. 11. The circulation ratio inside a CFB gasifier versus Steam to Fuel ratio and Oxygen to
Fuel ratio (at T = 800°C)
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Results and Discussion (7/7)

Cold gas efficiency versus S/F and O/F ratio at T =800° C

Heat recovery at optimum point
of O/F ratio

086——T |
o+ | Gas yield (the amount of
reacted biomass, and
082~ ‘ converted to another
‘ XX W products) increases =» heat
L ‘ I o .
CERRIK ”i‘ Sleealeiatise
08— %QW::%&%::W&%:::& :‘:::&:s:sts:“s?:“‘ —__| recovery increases.
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Fig. 12. The 3D-plot of cold gas efficiency in a CFB gasifier versus Steam to Fuel ratios and
Oxygen to Fuel (at T = 800°C)
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Conclusions

The TSM is developed to calculate the final gas composition,
lower heating value, circulation ratio and heat recovery in a CFB
gasifier.

Due to the presence of oxygen in the gasifier, both biomass
pyrolysis and gas combustion were taken into account in the first
stage of model.

With the comparison between two studies (steam gasification and
steam-air-blown gasification), we conclude that, the biomass
gasification process with steam-air-blown produced the higher
LHV of gas product than the steam gasification and suitable for
IGCC power generation system.

In this study, we also found the optimum Oxygen/Fuel ratio is
0.12 when the gasifier temperature is 800°C and Steam/Fuel ratio
Is 0.5; at this point the heat recovery is higher than 82%.
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