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Objective:

» To develop a mathematical model to simulate the gas
composition of biomass gasification 1n the bubbling

fluidised gasihier.

s Unsteady state non 1sothermal model based on reaction
kinetics of produced combustible gases.

» Investigation of the effects of operating parameters
such as temperature and steam to biomass ratio on the
2as composIitions.

» Validate the model with experimental data
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Flue gas %\ Combustible Gases
\/ Hot Sand A
N

@OQ ,CO, Hy, H,O, CH, \
CFB BFB
CombUStor Gasiﬁer <::| Bion]ass
har
Sand
_ Steam
Alr
Ultimate Analysis Wt % dry basis
Biomass - Pinus radiata C 1398
H 7.31
O 43.88
N 0.03
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e Jeads a programme on
‘Wood IGCC’ for wood
imdustry.

e Has built a 100 kWth

laboratory-scale Fast
Internal Circulating
Fluidised Bed (FICFB)
Gasttier for tests and
evaluation of radiata pine
residues.

e Developing producer gas
cleaning technologies.

e Biofuels projects (Pyrolysis,
Fischer-Tropsch process).
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Biomass gasification

LAN TE RBURY

* There are two stages ol physical and chemical changes in the
bromass gasification:

- Decomposition of the biomass under high temperature. This 1s a
similar process to biomass fast pyrolysis.

- Secondary reactions mvolving the evolved volatiles.
- Char reaction with gasification agent.
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Instantaneous Overall Pyrolysis Reactions e
Heat at
veryhigh
Temp
|\IwoodC H1.44OO.66 + NmoistHZO > NCOCO+ NCQCOZ + |\IHZOHZO_|_

Ny, H; + Ny CH, + N CH, +
N, Tar+N, Char

tar cha
For reaction above (fast pyrolysis in fluidized bed) a product distribution,

mstead of a “typical” kinetic equation, was defined by Gonza “"lez-Saiz, in his
PhD Thesis “Advances in biomass gasification in fluidized bed”, with the
same type of biomass as the one considered mn our research (small pine wood
chips) and 1n a fluidized bed working under similar experimental conditions

(Sadaka et al., 2002)

y. = Function (Temperature) 1 corresponds to volatile gases & tar and char
can be used as mitial condition
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Secondary Reactions Involved in the evolved S
volatiles and Gasification of char reactions
Reactions Equilibrium AG® AH®
temperature[K]  [J/mol] [J/mol]
Ky
Steam Gasification C+H,0=CO+H, 048 -164.21 124978
Ks
C+2H0=CO+2H, g3 1975 63065
Ky
Bouduard Reaction C+CO,«<2CO ~973 95187 187667
Steam Methane
Ke ~ 9Ye
Reforming Reaction ~ CH, +H,0&CO +3H, 893 L1152 157224
K2
Water gas - shift Reaction CO+H,0&CO,+H, 71098 -119.87 -63988

Ks
Methanation Reaction C+2H,<CH, ~ 390 7047  -89691



UCw

Hvdrodvnamic model Of FhlidiZ&tiOH UNIVERSITY OF

Producer Gas

|

Bubble i Emulsion
Region ; Region

Gasification
Zone

Fast Pyrolysis Zone

T

Inlet Steam at velocity of
U

(o]

«—— Biomass
Feed

Fig.1 Two phase model for fluidised
bed gasifier.
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e Mixing & distribution of sohds
& fluid - “Emulsion Region”

e Formation of motion of bubbles
through the bed - “Bubble

Region”

e Interphase mass transfer of
particles and gases between the
regions F, .

e Emulsion phase - plug flow and
all reactions occurs 1n this region

e Bubble phase - no solids, only
water gas reaction and methane
reforming reaction occurs.
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Mass Balance CANTERBURY
Accumulation rate of 1 out by ) fate of productio}
. rate of 11 - exchange With of 1 by chemical
of species (1) | = | rate of i out! + the emulsion | -

convection Qhase Y. \rﬁaCtiOIl Y.

Bubble phase Mass balance

2
ag:tib — _Ub % + Dib aﬁ—f(:zlb — Fbe (Cib —_ Cie)+ Rib
/ \ / \ / ghe}pical
Accumulation of Y Y caction term

species (1)

. rate of 1 out by exchange
{rate of 1 1n- rate of 1 out } with the emulsion phase
convection
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Emulsion phase Mass balance ) N e e

) _ Diffusion o’ Gas Exchange

C £ Emulsion HIUSION €O Coetlicient b/n

onc. of 1, phase gas efficient of < ion >
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Energy Balance

/Rate of heat
accumulation
n the
emulsion

\Rhase J

géat mn by ga?

flow 1n the
emulsion

\Rhase Y

</ D

heat generated
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heat out by R

gas flow 1n the
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N
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. |mputby | _
bed
material
o Y,

get heat )
exchange b/n
the bubble &

Emulsion

\Qhase )

’erat )

removed
by bed

material

ghar outj

UCw

UNIVERSITY OF
CANTERBURY

Te Whare Wikanga o Wiaitaka
CHEISTCHURCH NEW SEALAND

* Stimilarly for the bubble phase except all the terms applies except the last

two terms
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Bubble phase Energy balance ~ . T e
Heat mterchange
~ N coeflicient b/n
Sensible < bubble & >
< heat > emulsion phase
[kJ/kmol] [kW/m?K]

| l v ’
ac'b;prb = ;XZ(UbCibAHib)wbee(Te ~T,)+5,RAH,

/ AN ]

[ \ Net heat heat generateE
- ) exchange b/n| |by reactions n
Rate of heat . N O I 5 y
e OF e heat 1n by gas | |heat out by the bubble & |the emulsion
accumulation flow 1n the gas flow in the|  [Fmulsi h
in the bubble . - . HUISION = PHASC _
b emulsion emulsion Qhase
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Emulsion phase Energy balance
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: : T oT
x=H aC'b =0 aC'eZO a—sz —==0
OX OX OX OX
ib_&%:Cio ; ie_&aCie :Cio
x=() U, ox U, ox

Tb :Te :Tin



Hvdrodynamics of Fluidized Bed H&%

SRR
g . e At minimum Fluidization,
—+++—— Fluidized bed ————+— Elutriation s
R e e bed starts lifting.
2 ‘ ™ bed
g | | |
g i i * At this point the frictional
- 1 | upward lift force just
| i i exceeds the gravitational
* | | D force.
umf iy
g (log scale)
Gravitational force : _ _ _
(_ AI:))mf Ac — gW — ng,appV - g(pp — P xl_ Emt )me Ac
. 2
Pressure drop given by (- AP),, =1.75 (1_3‘9mf ) Uit P Lo +150 (1_ imf )2 M urnlle—mf
Enne d, Ene d,

Ergun’s Correlation of fixed bed

, 1800—ey iy gloypidend,

umf + ' mf
1.75p,d, 1.75p,
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Some variables mnvolved in the model are closely interrelated through
hydrodynamics derived from (Mor1 and Wen, 1975) and (Davidson et al.,
1985)

Bubble diameter: D, = Dy —(Dyy — Dy, Jexp(~0.3x/D)
Maximum Bubble diameter: D, =16 4[ A(UO U, )]04
Initial bubble diameter:
D,, = 0.871/A(U, -U,, JIN*
Bubble velocity:

. Ub :Uo _Umf +0'711(ng)0.5
Volume fraction of bubble:

Emulsion velocity: DEL= (U, ~Uy J1U,

Ue=U,, /(1- DEL)

Gas exchange co ethcient

b/n bubble & emulsion phase [1/s]
F. =0.11/D,
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e Arrhenius reaction type 1s used

e Temperature : 760 Deg C

e Feed rate : 20 kg/hr

e Steam/Biomass: 0.3

e Imitial volatiles after instant fast pyrolysis
Cigo= 0.0051 kmol/m? (29.81 mol %)
Ceoo=0.0067 kmol/m? (39.2 mol %)
Ceogo= 0.0023 kmol/m® (13.62 mol9s)
Cerao= 0.0021 kmol/m?® (12.2 mol %)

e Tnitial concentration of steam ,

Chvo,0= 0.0015 kmol/m®
e Mass of Tar formed during Initial pyrolysis =1.41 kg
e Mass of char formed during Imitial pyrolysis =2.99 kg



Experiment Results from published literature data

Table 2. Effect of Catalyvsts on Gas Composition of

Biomass Fast Pyvrolyvsis

Gas Composgition (drv, inert firee, vol %)

sample H- CH, O COhy Clo
MNo Catalyst
pine sawdust 16.19 15.36 HZ. 16 971 G.55
ligmin 17.10 17.30 26.583 37.562 1.25
cellulose 19.28 13.38 53.76 7.41 6.16
Dolomite Catalyst
pine sawdust 28.14 12.18 35.40 20.00 1.27
lignin 31.75 12.06 17.94 37.35 0.89
cellulose 29.89 12.78 41.55 14.75 0.74
Nickel-Based Catalvst
pine sawdust 31.31 1.30 49.53 16.40 0.67
lignin 46.03 079 39.03 14.15 O
cellulose 34.67 1.08 47 .36 16.83 .06

(Lv, Chang et al. 2004)
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Simulation results T W g Mot
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Te Whare Wikanga o Wiaitaka

CHEISTOCHUREH WEW CEALAND

Table 2

Operating conditions, gas composition and yields

k!

A (pure) Steam’ Steam-0, mixtures™
Operating conditions
ER 0.18-0.45 | 0.24-40.51
S/B (kg kg daf) (.05 0.66 1.53-1.10 0.45-1.11
T(C) THI-83) TA0-T80) TH3-R30
(Gas composition
Ha (vol %, dry basis) 30-16.3 38-56 138-31.7
CO (vol %, dry bass) bu-224 17-32 42.5-5210
CO, (vol %, dry basis) bo-194 13-17 144-3.3
CHy (vol %, dry basis) 22-0.2 -12 fb.0-7.5
C,H,, (vol %, dry bass) (.2-33 21-23 25-36
N (vol %, dry basis) 41.6-61.6 0 0
Steam (vol %, wet basis) 11-M 52-600 38-61
Yields
Tars glkg daf 37619 G043 22446
Char g/kg daf ni' Y3-110 3-20
Gas Nm'/kg daf 1.25-245 1.3-1.6 0.86-1.14
LHV MJ/Nm' 17-84 122-13.8 103-13.5

(Gil et al., 1999)
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Steady State Gasifier Test showing the Transition Process from Heat-up
to Gasification at the Start.

——-H2 % —=— N2 % CO %

—¥-CH4 % -@— Ethene % Ethane %
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Sampling Time

Gasifier run on 03 March 08. Bed material: Sand (12.5kg)

Wood feed rate: 20 kg/hr ; Steam : 6 kg/hr ; S/B=0.3; Bed
Temperature: 750 Deg C
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Producer Gas Composition Changes with Different Fluidizing Gases to the Chute & CANTERBURY
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Siphon

-H2% B-N2% A CO% CH4 % —X-Ethene % -@-Ethane % —+-CO2 % — He % Lower CV (MJ/Nm3)
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|
I
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Lower Heating Value (MJ/Nm?)

14

15 16 17 18 19 20 21 22
DryWood pellets feed rate (Kggr/h)

Gasifier run: Bed material: Sand (12.5kg); Wood feed rate: 14.2 - 21.25 kg/hr;
Steam : 6 kg/hr ; S/B=0.28-0.45; avg bed temperature: 800 Deg C
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Steam to Biomass Ratio

Fttects of Increase in T'emperature
I. Hyand CO mcreased
II. CO,and CH, decreased

Effects of Increase in Steam to Biomass ratio.
I.  COqincreased
II. CO and H, decreased

III. CH, insignificant change ( remains unchanged)
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e Reaction kinetics of tar and higher hydrocarbon can be included.

e Parameters such as D1 and D2 are the axial dispersion co-efficient
for the bubble to emulsion and Emulsion to bubble phase. The values
are taken such as D1 constitutes to plug flow and D2 to mixed flow.

e It 1s recommended to use the diffusion co-ethicient of the individual
gas components. Finding the appropriate values for the dispersion
co-etticient for individual gas components involved 1n the reactions
between the phases, would improve the results.

e Both particle and gas phase void fractions are assumed to be constants.
Hence continuity equation along with the momentum equation can
be incorporated to the non isothermal reaction kinetics model to evaluate
the changes 1n the void fraction along the length of the gasifier.
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