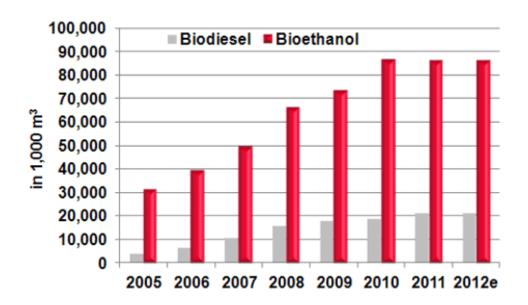


해조류 바이오연료 생산공정 설계 동향

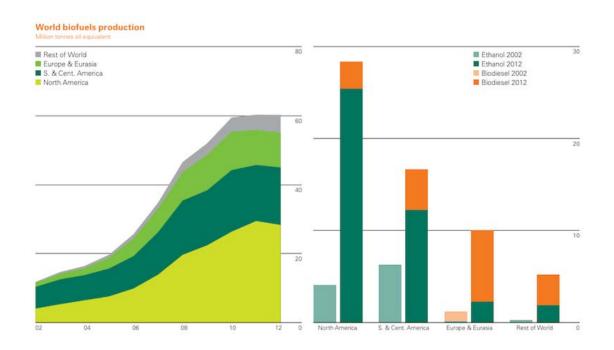
- INTRODUCTION -

부경대학교 화학공학과 유준


Importance of Bio-energy

- Growing demand for energy, fuel, materials and chemicals (growing market)
- Finite availability of fossil fuel resources (continued price rises)
- Overdependence of many countries on imported resources (national security)
- Reality of climate change and need to reduce greenhouse gases (keep warming below 2°C or GHGs concentration below 450-ppm CO₂ equivalent (UNCCC, 2010))
- The primary goal of the international energy agency is to reduce energy-related CO_2 emissions below 50% while renewables provide 40% of the primary energy supply by 2050

World biofuel production


➤ World biofuel production is growing fast and bioethanol is playing a major role amongst all other biofuels. The production of bioethanol for fuel applications has been increased from 13 billion gal In 2007 to 23.4 billion gal In 2011 (RFA, 2014).

World biofuel production

➤ World biofuel production is growing fast and bioethanol is playing a major role amongst all other biofuels. The production of bioethanol for fuel applications has been increased from 13 billion gal In 2007 to 23.4 billion gal In 2011 (RFA, 2014).

World biofuel production increase from 2002 to 2012 (www. businessinsider.com).

- Biomass is the only source of renewable liquid fuels.
- ***** Three generations of biomass have been studied so far in literature.

Biomass Feedstock

First generation biomass

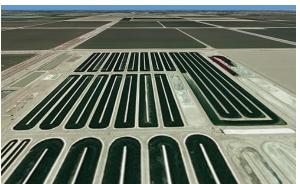
Sugar/Starch Crops: e.g. sugar cane / corn Oil Crops: e.g. rapeseed, soybean

- ❖ 1st generation biomass has a food vs. fuel issue.
- \diamond 2nd generation biomass requires extensive arable land.

Biomass Feedstock

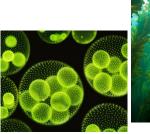
Second generation biomass

Lignocellulosic Biomass: e.g. forestry & agricultural wastes



- ❖ 3rd generation biomass includes micro- and macroalgae.
- * Micro- and macroalgae are gaining worldwide attention as biomass feedstock.

Biomass Feedstock



Macroalgae Microalgae

- ❖ 3rd generation biomass has advantages over 1st and 2nd generation biomasses.
- **Especially macroalgae have great potential in Korea as biomass feedstock.**

Biomass Feedstock

First generation biomass

Sugar/Starch Crops: e.g. sugar cane / corn Oil Crops: e.g. rapeseed, soybean

Second generation biomass

Lignocellulosic Biomass: e.g. forestry & agricultural wastes

Third Generation biomass:

Macroalgae Microalgae

	Land Plants		Marin Plants
Classification	Crop Based	Wood Based	Macro algae
	(1st Generetaion)	(2nd generation)	(3 rd generation)
Harvest cycle	1~2 times/Year	1 Times/8 year	4~6 Times/Year
CO ₂ Fixation	5-10	4.6	36.7
Ability (Ton/ha)			
Manufacturing	Simple	Complex(Lignin	Simple(No lignin)
Process		Removal)	
Disadvantage	Food-Related	Forest Damage	None
	Sun Light, CO ₂ ,	Sun Light, CO ₂ ,	Sun Light, CO ₂ ,
Cultivation	Fertilizer,	Fertilizer,	Sea Water
Environment	Water, Land	Water, Land	

- Like other biomass, there are two ways of biomass conversion to energy.
- * Biochemical conversion is appropriate for macroalgae and thus has been studied relatively extensively.

Biomass Feedstock

First generation biomass

Sugar/Starch Crops: e.g. sugar cane / corn Oil Crops: e.g. rapeseed, soybean

Second generation biomass

Lignocellulosic Biomass: e.g. forestry & agricultural wastes

Third Generation biomass:

Macroalgae Microalgae

Conversion Technologies

Thermochemical

conversion: e.g. pyrolysis, gasification, etc.

Biochemical conversion:

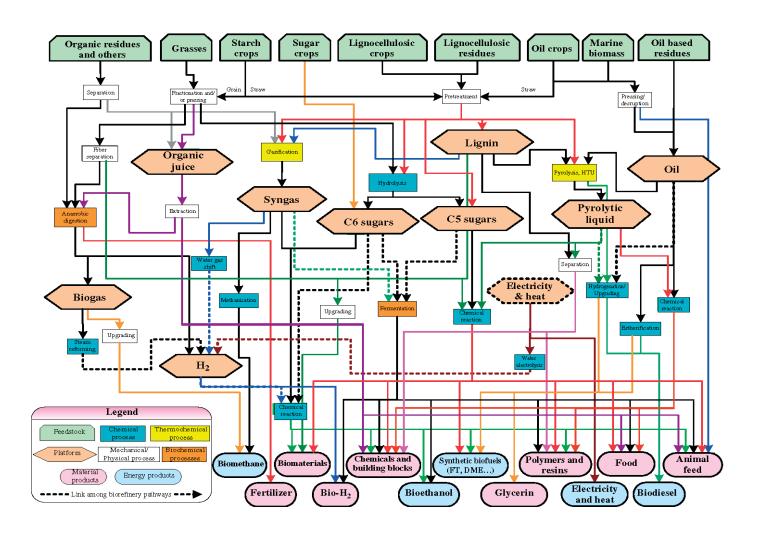
e.g. fermentation, anearobic digestion, etc.

Product Stream

Energy: e.g. heat, electricity

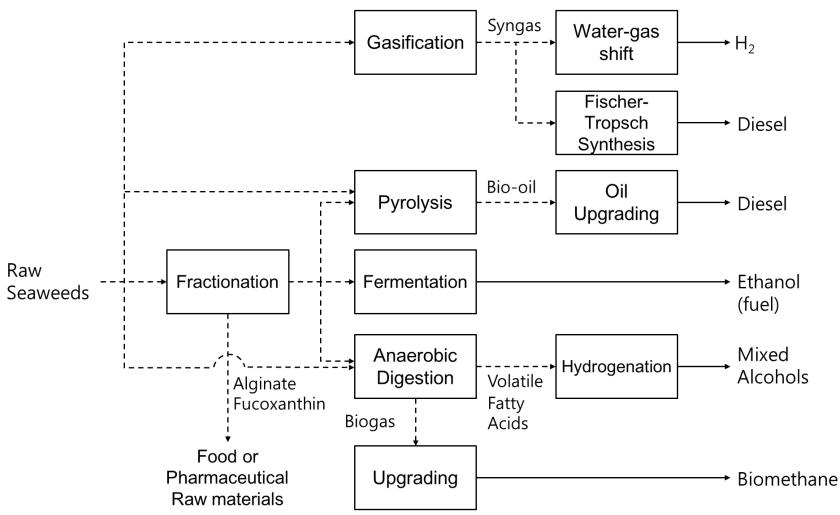
Fuels: e.g. biodiesel, bioethanol, biogas

<u>Chemicals:</u> e.g. bulk, intermediate, final


Materials: e.g. polymers

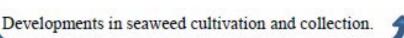
Brief history of seaweed biomass research

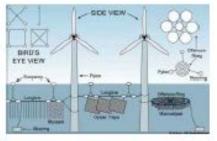
- 1. (U.S.A.) Marine Biomass Energy Program (1968 1990)
 - Focused on methane production and offshore cultivation
- 2. (Japan) Tokyo Gas & NEDO (2005 2007)
 - Focused on electricity generation from seaweed-derived methane
- 3. (EU) BioMara (2009 2015)
 - Focused on fuels (ethanol & methane) from macroalgae and cultivation
- 4. (Korea) Aquatic Biomass Research
 - Holistic approach for utilizing macroalgae for energy and high-value chemicals
- 5. (EU) MacroFuel (2016 2019)
 - Subsequent project of BioMara



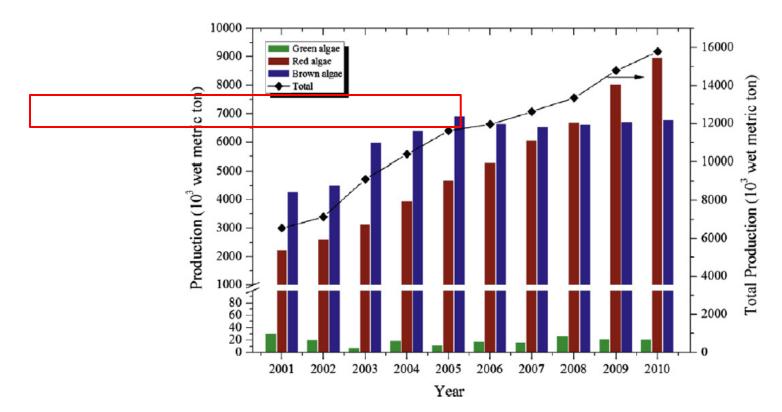
Biorefinery network (IEA Bioenergy task 42)

Conversion pathways for seaweed biomass feedstock under consideration


Seaweed resource and cultivation


❖ Seaweeds are cultivated naturally and artificially. High yield artificial cultivation technologies are required to be developed to have higher biomass production and lower selling prices.

	Yield	Production Cost
System	Dry ton ha. year	\$ dry ton
Macrocystis, nearshore	83	25
Gracilaria/Laminaria rope farm (offshore)	59	112
Gracilaria/Ulva, tidal flat farm	30	21
Sargassum, floating cultivation	47	25

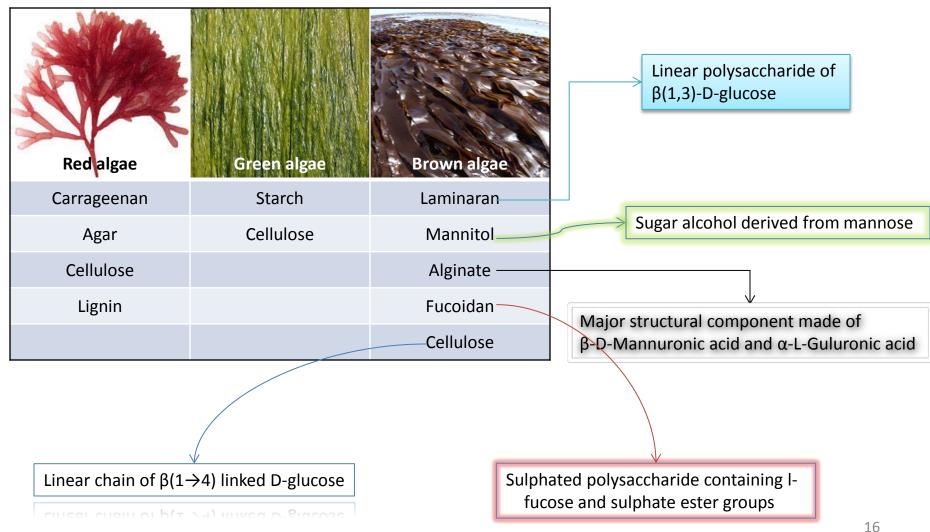


Seaweed resource and cultivation

❖ Seaweeds are cultivated naturally and artificially. High yield artificial cultivation technologies are required to be developed to have higher biomass production and lower selling prices.

World production of farmed macroalgae from 2001 to 2010. Adjusted from FAO (2012a) (Jung et al., 2013).

Seaweed resource and cultivation


Seaweeds are cultivated naturally and artificially. High yield artificial cultivation technologies are required to be developed to have higher biomass production and lower selling prices.

Species	Group	Production ton wet	% of total
L. japonica	Brown algae	5,146,883	32.61
E. spp.	Red algae	3,489,388	22.1
K. alvarezii	Red algae	1,875,277	11.88
U. pinnatifida	Brown algae	1,537,339	9.74
G. verrucosab	Red algae	1,152,108	7.30
P. spp.	Red algae	1,072,350	6.79
G. spp.	Red algae	565,366	3.58
P. tenera	Red algae	564,234	3.57

Species	Group	Production ton wet	% of total
E. denticulatum	Red algae	258,612	1.64
S. fusiforme	Brown algae	78,210	0.50
Phaeophyceae	Brown algae	21,747	0.14
E. clathrata	Green algae	11,150	0.07
M. nitidum	Green algae	4,531	0.03
C. spp.	Green algae	4,309	0.03
C. fragile	Green algae	1,394	0.01
G. amansii	Red algae	1,200	0.01
Total		15,784,098	100.00

Macroalgae

Brown Algae

Chemical Composition of Brown Algae (Laminaria Japonica)

Proximate analysis	dry basis, % w/w	Elemental analysis	dry basis, % w/w
Ash	26	С	34.6
Volatile Solids (VS)	74	Н	4.7
Protein	12	0	31.2
Lipids	2	N	2.4
Mannitol	12	S	1
Laminarin	14	Minerals (Average for L. Japonica)	mg/100g dry
Alginates	23	Ca	552.5
Cellulose	6	Na	3111
Fucoidin	5	K	8515
Component	% wet basis	Mg	757
Water	88	I	410
Total solids	12	Fe	29
Heating Value	MJ/kg, dry basis	Mn	0.4
HHV	13.2	Se	0.4
LHV	12.1	Cu	0.2
		Zn	0.13